Expanded host and geographic range of tadpole associations with the Severe Perkinsea Infection group

. 2021 Jun ; 17 (6) : 20210166. [epub] 20210616

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34129800

Severe Perkinsea infection is an emerging disease of amphibians, specifically tadpoles. Disease presentation correlates with liver infections of a subclade of Perkinsea (Alveolata) protists, named Pathogenic Perkinsea Clade (PPC). Tadpole mortality events associated with PPC infections have been reported across North America, from Alaska to Florida. Here, we investigate the geographic and host range of PPC associations in seemingly healthy tadpoles sampled from Panama, a biogeographic provenance critically affected by amphibian decline. To complement this work, we also investigate a mortality event among Hyla arborea tadpoles in captive-bred UK specimens. PPC SSU rDNA was detected in 10 of 81 Panama tadpoles tested, and H. arborea tadpoles from the UK. Phylogenies of the Perkinsea SSU rDNA sequences demonstrate they are highly similar to PPC sequences sampled from mortality events in the USA, and phylogenetic analysis of tadpole mitochondrial SSU rDNA demonstrates, for the first time, PPC associations in diverse hylids. These data provide further understanding of the biogeography and host range of this putative pathogenic group, factors likely to be important for conservation planning.

Zobrazit více v PubMed

Isidoro-Ayza M, Lorch JM, Grear DA, Winzeler M, Calhoun DL, Barichivich WJ. 2017. Pathogenic lineage of Perkinsea associated with mass mortality of frogs across the United States. Sci. Rep. 7, 10288. (10.1038/s41598-017-10456-1) PubMed DOI PMC

Davis AK, Yabsley MJ, Kevin Keel M, Maerz JC. 2007. Discovery of a novel alveolate pathogen affecting southern leopard frogs in Georgia: description of the disease and host effects. EcoHealth 4, 310-317. (10.1007/s10393-007-0115-3) DOI

Chambouvet A et al. 2015. Cryptic infection of a broad taxonomic and geographic diversity of tadpoles by Perkinsea protists. Proc. Natl Acad. Sci. USA 112, E4743. (10.1073/pnas.1500163112) PubMed DOI PMC

Koch R. 1884. The etiology of tuberculosis. Germ. Theory Dis. 2, 1-88.

Chambouvet A et al. 2020. Diverse alveolate infections of tadpoles, a new threat to frogs? PLoS Pathog. 16, e1008107. (10.1371/journal.ppat.1008107) PubMed DOI PMC

Fredricks DN, Relman DA. 1996. Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin. Microbiol. Rev. 9, 18-33. (10.1128/CMR.9.1.18) PubMed DOI PMC

Green DE, Converse KA, Schrader AK. 2002. Epizootiology of sixty-four amphibian morbidity and mortality events in the USA. Ann. N.Y. Acad. Sci. 969, 323-339. (10.1111/j.1749-6632.2002.tb04400.x) PubMed DOI

Landsberg JH, Kiryu Y, Tabuchi M, Waltzek TB, Enge KM, Reintjes-Tolen S, Preston A, Pessier AP. 2013. Co-infection by alveolate parasites and frog virus 3-like ranavirus during an amphibian larval mortality event in Florida, USA. Dis. Aquat. Organ. 105, 89-99. (10.3354/dao02625) PubMed DOI

Green DE, Feldman SH, Wimsatt J. 2003. Emergence of a Perkinsus-like agent in anuran liver during die-offs of local populations: PCR detection and phylogenetic characterization. Proc. Am. Assoc. Zoo. Vet. 2003, 120-121.

Burreson EM. 2008. Misuse of PCR assay for diagnosis of mollusc protistan infections. Dis. Aquat. Organ. 80, 81-83. (10.3354/dao01925) PubMed DOI

Smilansky V, Chambouvet A, Reeves M, Richards TA, Milner DS. 2021. A novel duplex qPCR assay for stepwise detection of multiple Perkinsea protistan infections of amphibian tissues. R. Soc. Open Sci. 8, 202150. (10.1098/rsos.202150) PubMed DOI PMC

Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221-224. (10.1093/molbev/msp259) PubMed DOI

Smilansky V. 2020. Smilansky Perkinsea tadpole MSAs. Dataset. Figshare. (10.6084/m9.figshare.13108136.v1) DOI

Lockhart PJ, Steel MA, Hendy MD, Penny D. 1994. Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol. 11, 605-612. (10.1093/oxfordjournals.molbev.a040136) PubMed DOI

Gascuel O. 1997. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol. Evol. 14, 685-695. (10.1093/oxfordjournals.molbev.a025808) PubMed DOI

Foster PG, Hickey DA. 1999. Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J. Mol. Evol. 48, 284-290. (10.1007/PL00006471) PubMed DOI

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. (10.1093/molbev/msu300) PubMed DOI PMC

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. (10.1038/nmeth.4285) PubMed DOI PMC

Pomerantz A, Peñafiel N, Arteaga A, Bustamante L, Pichardo F, Coloma LA, Barrio-Amorós CL, Salazar-Valenzuela D, Prost S. et al. 2018. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. Gigascience 7, giy033. (10.1093/gigascience/giy033) PubMed DOI PMC

Lips KR et al. 2006. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc. Natl Acad. Sci. USA 103, 3165. (10.1073/pnas.0506889103) PubMed DOI PMC

Pramuk JB, Robertson T, Sites JW Jr, Noonan BP. 2008. Around the world in 10 million years: biogeography of the nearly cosmopolitan true toads (Anura: Bufonidae). Glob. Ecol. Biogeogr. 17, 72-83. (10.1111/j.1466-8238.2007.00348.x) DOI

McCutchan TF, de la Cruz VF, Lal AA, Gunderson JH, Elwood HJ, Sogin ML. 1988. Primary sequences of two small subunit ribosomal RNA genes from Plasmodium falciparum. Mol. Biochem. Parasitol. 28, 63-68. (10.1016/0166-6851(88)90181-8) PubMed DOI

Pagenkopp Lohan KM, Hill-Spanik KM, Torchin ME, Fleischer RC, Carnegie RB, Reece KS, Ruiz GM. 2018. Phylogeography and connectivity of molluscan parasites: Perkinsus spp. in Panama and beyond. Int. J. Parasitol. 48, 135-144. (10.1016/j.ijpara.2017.08.014) PubMed DOI

Vilas R, Cao A, Pardo BG, Fernández S, Villalba A, Martínez P. 2011. Very low microsatellite polymorphism and large heterozygote deficits suggest founder effects and cryptic structure in the parasite Perkinsus olseni. Infect. Genet. Evol. 11, 904-114. (10.1016/j.meegid.2011.02.015) PubMed DOI

Whitfield SM, Lips KR, Donnelly MA. 2016. Amphibian decline and conservation in Central America. Copeia 104, 351-379. (10.1643/CH-15-300) DOI

Peeler EJ, Oidtmann BC, Midtlyng PJ, Miossec L, Gozlan RE. 2011. Non-native aquatic animals introductions have driven disease emergence in Europe. Biol. Invasions 13, 1291-1303. (10.1007/s10530-010-9890-9) DOI

Naylor RL, Williams SL, Strong DR. 2001. Aquaculture—a gateway for exotic species. Science 294, 1655. (10.1126/science.1064875) PubMed DOI

Picco AM, Collins JP. 2008. Amphibian commerce as a likely source of pathogen pollution. Conserv. Biol. 22, 1582-1589. (10.1111/j.1523-1739.2008.01025.x) PubMed DOI

McKenzie VJ, Peterson AC. 2012. Pathogen pollution and the emergence of a deadly amphibian pathogen. Mol. Ecol. 21, 5151-5154. (10.1111/mec.12013) PubMed DOI

Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW. 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783. (10.1126/science.1103538) PubMed DOI

IUCN CI, and NatureServe. An analysis of amphibians on the 2008 IUCN Red List. See www.iucn-amphibians.org/red-listing/global-amphibian-assessment. (accessed 02/01/2018).

Lewis CHR, Richards-Zawacki CL, Ibáñez R, Luedtke J, Voyles J, Houser P, Gratwicke B. 2019. Conserving Panamanian harlequin frogs by integrating captive-breeding and research programs. Biol. Conserv. 236, 180-187. (10.1016/j.biocon.2019.05.029) DOI

Griffiths RA, Pavajeau L. 2008. Captive breeding, reintroduction, and the conservation of amphibians. Conserv. Biol. 22, 852-861. (10.1111/j.1523-1739.2008.00967.x) PubMed DOI

Smilansky V, Jirků M, Milner DS, Ibáñez R, Gratwicke B, Nicholls A, Lukeš J, Chambouvet A, Richards TA. 2021. Expanded host and geographic range of tadpole associations with the Severe Perkinsea Infection group. Figshare. (10.6084/m9.figshare.c.5448491) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Expanded host and geographic range of tadpole associations with the Severe Perkinsea Infection group

. 2021 Jun ; 17 (6) : 20210166. [epub] 20210616

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.13108136.v1

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...