Expanded host and geographic range of tadpole associations with the Severe Perkinsea Infection group
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34129800
PubMed Central
PMC8205526
DOI
10.1098/rsbl.2021.0166
Knihovny.cz E-zdroje
- Klíčová slova
- alveolate parasites, amphibian conservation, frog disease,
- MeSH
- fylogeneze MeSH
- larva * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Aljaška MeSH
- Florida MeSH
- Severní Amerika MeSH
Severe Perkinsea infection is an emerging disease of amphibians, specifically tadpoles. Disease presentation correlates with liver infections of a subclade of Perkinsea (Alveolata) protists, named Pathogenic Perkinsea Clade (PPC). Tadpole mortality events associated with PPC infections have been reported across North America, from Alaska to Florida. Here, we investigate the geographic and host range of PPC associations in seemingly healthy tadpoles sampled from Panama, a biogeographic provenance critically affected by amphibian decline. To complement this work, we also investigate a mortality event among Hyla arborea tadpoles in captive-bred UK specimens. PPC SSU rDNA was detected in 10 of 81 Panama tadpoles tested, and H. arborea tadpoles from the UK. Phylogenies of the Perkinsea SSU rDNA sequences demonstrate they are highly similar to PPC sequences sampled from mortality events in the USA, and phylogenetic analysis of tadpole mitochondrial SSU rDNA demonstrates, for the first time, PPC associations in diverse hylids. These data provide further understanding of the biogeography and host range of this putative pathogenic group, factors likely to be important for conservation planning.
CNRS Université of Brest IRD Ifremer LEMAR Plouzané France
Department of Zoology University of Oxford Oxford OX1 3SZ UK
Faculty of Sciences University of South Bohemia 370 05 České Budějovice Czech Republic
Living Systems Institute and Biosciences University of Exeter Exeter Devon EX4 4QD UK
Sistema Nacional de Investigación SENACYT Panamá Republic of Panama
Smithsonian National Zoo and Conservation Biology Institute Washington D C USA
Smithsonian Tropical Research Institute Panamá Republic of Panama
Zobrazit více v PubMed
Isidoro-Ayza M, Lorch JM, Grear DA, Winzeler M, Calhoun DL, Barichivich WJ. 2017. Pathogenic lineage of Perkinsea associated with mass mortality of frogs across the United States. Sci. Rep. 7, 10288. (10.1038/s41598-017-10456-1) PubMed DOI PMC
Davis AK, Yabsley MJ, Kevin Keel M, Maerz JC. 2007. Discovery of a novel alveolate pathogen affecting southern leopard frogs in Georgia: description of the disease and host effects. EcoHealth 4, 310-317. (10.1007/s10393-007-0115-3) DOI
Chambouvet A et al. 2015. Cryptic infection of a broad taxonomic and geographic diversity of tadpoles by Perkinsea protists. Proc. Natl Acad. Sci. USA 112, E4743. (10.1073/pnas.1500163112) PubMed DOI PMC
Koch R. 1884. The etiology of tuberculosis. Germ. Theory Dis. 2, 1-88.
Chambouvet A et al. 2020. Diverse alveolate infections of tadpoles, a new threat to frogs? PLoS Pathog. 16, e1008107. (10.1371/journal.ppat.1008107) PubMed DOI PMC
Fredricks DN, Relman DA. 1996. Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin. Microbiol. Rev. 9, 18-33. (10.1128/CMR.9.1.18) PubMed DOI PMC
Green DE, Converse KA, Schrader AK. 2002. Epizootiology of sixty-four amphibian morbidity and mortality events in the USA. Ann. N.Y. Acad. Sci. 969, 323-339. (10.1111/j.1749-6632.2002.tb04400.x) PubMed DOI
Landsberg JH, Kiryu Y, Tabuchi M, Waltzek TB, Enge KM, Reintjes-Tolen S, Preston A, Pessier AP. 2013. Co-infection by alveolate parasites and frog virus 3-like ranavirus during an amphibian larval mortality event in Florida, USA. Dis. Aquat. Organ. 105, 89-99. (10.3354/dao02625) PubMed DOI
Green DE, Feldman SH, Wimsatt J. 2003. Emergence of a Perkinsus-like agent in anuran liver during die-offs of local populations: PCR detection and phylogenetic characterization. Proc. Am. Assoc. Zoo. Vet. 2003, 120-121.
Burreson EM. 2008. Misuse of PCR assay for diagnosis of mollusc protistan infections. Dis. Aquat. Organ. 80, 81-83. (10.3354/dao01925) PubMed DOI
Smilansky V, Chambouvet A, Reeves M, Richards TA, Milner DS. 2021. A novel duplex qPCR assay for stepwise detection of multiple Perkinsea protistan infections of amphibian tissues. R. Soc. Open Sci. 8, 202150. (10.1098/rsos.202150) PubMed DOI PMC
Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221-224. (10.1093/molbev/msp259) PubMed DOI
Smilansky V. 2020. Smilansky Perkinsea tadpole MSAs. Dataset. Figshare. (10.6084/m9.figshare.13108136.v1) DOI
Lockhart PJ, Steel MA, Hendy MD, Penny D. 1994. Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol. 11, 605-612. (10.1093/oxfordjournals.molbev.a040136) PubMed DOI
Gascuel O. 1997. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol. Evol. 14, 685-695. (10.1093/oxfordjournals.molbev.a025808) PubMed DOI
Foster PG, Hickey DA. 1999. Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J. Mol. Evol. 48, 284-290. (10.1007/PL00006471) PubMed DOI
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. (10.1093/molbev/msu300) PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. (10.1038/nmeth.4285) PubMed DOI PMC
Pomerantz A, Peñafiel N, Arteaga A, Bustamante L, Pichardo F, Coloma LA, Barrio-Amorós CL, Salazar-Valenzuela D, Prost S. et al. 2018. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. Gigascience 7, giy033. (10.1093/gigascience/giy033) PubMed DOI PMC
Lips KR et al. 2006. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc. Natl Acad. Sci. USA 103, 3165. (10.1073/pnas.0506889103) PubMed DOI PMC
Pramuk JB, Robertson T, Sites JW Jr, Noonan BP. 2008. Around the world in 10 million years: biogeography of the nearly cosmopolitan true toads (Anura: Bufonidae). Glob. Ecol. Biogeogr. 17, 72-83. (10.1111/j.1466-8238.2007.00348.x) DOI
McCutchan TF, de la Cruz VF, Lal AA, Gunderson JH, Elwood HJ, Sogin ML. 1988. Primary sequences of two small subunit ribosomal RNA genes from Plasmodium falciparum. Mol. Biochem. Parasitol. 28, 63-68. (10.1016/0166-6851(88)90181-8) PubMed DOI
Pagenkopp Lohan KM, Hill-Spanik KM, Torchin ME, Fleischer RC, Carnegie RB, Reece KS, Ruiz GM. 2018. Phylogeography and connectivity of molluscan parasites: Perkinsus spp. in Panama and beyond. Int. J. Parasitol. 48, 135-144. (10.1016/j.ijpara.2017.08.014) PubMed DOI
Vilas R, Cao A, Pardo BG, Fernández S, Villalba A, Martínez P. 2011. Very low microsatellite polymorphism and large heterozygote deficits suggest founder effects and cryptic structure in the parasite Perkinsus olseni. Infect. Genet. Evol. 11, 904-114. (10.1016/j.meegid.2011.02.015) PubMed DOI
Whitfield SM, Lips KR, Donnelly MA. 2016. Amphibian decline and conservation in Central America. Copeia 104, 351-379. (10.1643/CH-15-300) DOI
Peeler EJ, Oidtmann BC, Midtlyng PJ, Miossec L, Gozlan RE. 2011. Non-native aquatic animals introductions have driven disease emergence in Europe. Biol. Invasions 13, 1291-1303. (10.1007/s10530-010-9890-9) DOI
Naylor RL, Williams SL, Strong DR. 2001. Aquaculture—a gateway for exotic species. Science 294, 1655. (10.1126/science.1064875) PubMed DOI
Picco AM, Collins JP. 2008. Amphibian commerce as a likely source of pathogen pollution. Conserv. Biol. 22, 1582-1589. (10.1111/j.1523-1739.2008.01025.x) PubMed DOI
McKenzie VJ, Peterson AC. 2012. Pathogen pollution and the emergence of a deadly amphibian pathogen. Mol. Ecol. 21, 5151-5154. (10.1111/mec.12013) PubMed DOI
Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW. 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783. (10.1126/science.1103538) PubMed DOI
IUCN CI, and NatureServe. An analysis of amphibians on the 2008 IUCN Red List. See www.iucn-amphibians.org/red-listing/global-amphibian-assessment. (accessed 02/01/2018).
Lewis CHR, Richards-Zawacki CL, Ibáñez R, Luedtke J, Voyles J, Houser P, Gratwicke B. 2019. Conserving Panamanian harlequin frogs by integrating captive-breeding and research programs. Biol. Conserv. 236, 180-187. (10.1016/j.biocon.2019.05.029) DOI
Griffiths RA, Pavajeau L. 2008. Captive breeding, reintroduction, and the conservation of amphibians. Conserv. Biol. 22, 852-861. (10.1111/j.1523-1739.2008.00967.x) PubMed DOI
Smilansky V, Jirků M, Milner DS, Ibáñez R, Gratwicke B, Nicholls A, Lukeš J, Chambouvet A, Richards TA. 2021. Expanded host and geographic range of tadpole associations with the Severe Perkinsea Infection group. Figshare. (10.6084/m9.figshare.c.5448491) PubMed DOI PMC
Expanded host and geographic range of tadpole associations with the Severe Perkinsea Infection group
figshare
10.6084/m9.figshare.13108136.v1