Directed reprogramming of comprehensively characterized dental pulp stem cells extracted from natal tooth

. 2018 Apr 18 ; 8 (1) : 6168. [epub] 20180418

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29670257
Odkazy

PubMed 29670257
PubMed Central PMC5906561
DOI 10.1038/s41598-018-24421-z
PII: 10.1038/s41598-018-24421-z
Knihovny.cz E-zdroje

The aim of this study was to extensively characterise natal dental pulp stem cells (nDPSC) and assess their efficiency to generate human induced pluripotent stem cells (hiPSC). A number of distinguishing features prompted us to choose nDPSC over normal adult DPSC, in that they differed in cell surface marker expression and initial doubling time. In addition, nDPSC expressed 17 out of 52 pluripotency genes we analysed, and the level of expression was comparable to human embryonic stem cells (hESC). Ours is the first group to report comprehensive characterization of nDPSC followed by directed reprogramming to a pluripotent stem cell state. nDPSC yielded hiPSC colonies upon transduction with Sendai virus expressing the pluripotency transcription factors POU5F1, SOX2, c-MYC and KLF4. nDPSC had higher reprogramming efficiency compared to human fibroblasts. nDPSC derived hiPSCs closely resembled hESC in terms of their morphology, expression of pluripotency markers and gene expression profiles. Furthermore, nDPSC derived hiPSCs differentiated into the three germ layers when cultured as embryoid bodies (EB) and by directed differentiation. Based on our findings, nDPSC present a unique marker expression profile compared with adult DPSC and possess higher reprogramming efficiency as compared with dermal fibroblasts thus proving to be more amenable for reprogramming.

Zobrazit více v PubMed

Ebrahimi B. Reprogramming of adult stem/progenitor cells into iPSCs without reprogramming factors. J. Med. Hypotheses Ideas. 2015;9:99–103. doi: 10.1016/j.jmhi.2015.09.003. DOI

Korbling M, Estrov Z, Champlin R. Adult stem cells and tissue repair. Bone Marrow Transplant. 2003;32:S23–S24. doi: 10.1038/sj.bmt.1703939. PubMed DOI

Ebrahimi B, Yaghoobi M, Kamal-abadi A, Raoof M. Human dental pulp stem cells express many pluripotency regulators and differentiate into neuronal cells. Neural Regen. Res. 2011;6:2666–2672.

Eminli S, et al. Differentiation stage determines reprogramming potential of hematopoietic cells into iPS cells. Nat. Genet. 2009;41:968–976. doi: 10.1038/ng.428. PubMed DOI PMC

Giorgetti A, et al. Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell. 2009;5:353–357. doi: 10.1016/j.stem.2009.09.008. PubMed DOI PMC

Kim JB, et al. Oct4-induced pluripotency in adult neural stem cells. Cell. 2009;136:411–419. doi: 10.1016/j.cell.2009.01.023. PubMed DOI

Niibe, K. et al. Purified mesenchymal stem cells are an efficient source for iPS cell induction. PLoS One6, 10.1371/journal.pone.0017610 (2011). PubMed PMC

Wang J, et al. Generation of induced pluripotent stem cells with high efficiency from human umbilical cord blood mononuclear cells. Genomics Proteomics Bioinformatics. 2013;11:304–311. doi: 10.1016/j.gpb.2013.08.002. PubMed DOI PMC

Yulin X, et al. Efficient generation of induced pluripotent stem cells from human bone marrow mesenchymal stem cells. Folia Biol. (Praha) 2012;58:221–230. PubMed

Vidal S, Amlani B, Chen T, Tsirigos A, Stadtfeld M. Combinatorial modulation of signaling pathways reveals cell-type-specific requirements for highly efficient and synchronous iPSC reprogramming. Stem Cell Reports. 2014;3:574–584. doi: 10.1016/j.stemcr.2014.08.003. PubMed DOI PMC

Kim JB, et al. Direct reprogramming of human neural stem cells by OCT4. Nature. 2009;461:649–643. doi: 10.1038/nature08436. PubMed DOI

Sun N, et al. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl. Acad. Sci. USA. 2009;106:15720–15725. doi: 10.1073/pnas.0908450106. PubMed DOI PMC

Yan X, et al. iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev. 2010;19:469–480. doi: 10.1089/scd.2009.0314. PubMed DOI PMC

Park JH, Daheron L, Kantarci S, Lee BS, Teixeira JM. Human endometrial cells express elevated levels of pluripotent factors and are more amenable to reprogramming into induced pluripotent stem cells. Endocrinology. 2011;152:1080–1089. doi: 10.1210/en.2010-1072. PubMed DOI PMC

Mokry, J. et al. Telomere attrition occurs during ex vivo expansion of human dental pulp stem cells. J. Biomed. Biotechnol. 2010, 10.1155/2010/673513 (2010). PubMed PMC

Beltrao-Braga PC, et al. Feeder-free derivation of induced pluripotent stem cells from human immature dental pulp stem cells. Cell Transplant. 2011;20:1707–1719. doi: 10.3727/096368911X566235. PubMed DOI

Lo Sardo V, et al. Influence of donor age on induced pluripotent stem cells. Nat. Biotechnol. 2017;35:69–74. doi: 10.1038/nbt.3749. PubMed DOI PMC

Dyment H, Anderson R, Humphrey J, Chase I. Residual neonatal teeth: a case report. J. Can. Dent. Assoc. 2005;71:394–397. PubMed

Mhaske, S. et al. Natal and neonatal teeth: an overview of the literature. ISRN Pediatr. 2013, 10.1155/2013/956269 (2013). PubMed PMC

Verma K, et al. Therapeutic potential of dental pulp stem cells in regenerative medicine: an overview. Dent. Res. J. (Isfahan) 2014;11:302–308. PubMed PMC

Lamb, R. A. & Kolakofsky D. in Fields Virology (eds Fields, N., Knipe, M. & Howley, M.) (Lippincott-Raven Press, 1996).

Tokusumi T, et al. Recombinant Sendai viruses expressing different levels of a foreign reporter gene. Virus Res. 2002;86:33–38. doi: 10.1016/S0168-1702(02)00047-3. PubMed DOI

Li HO, et al. A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J. Virol. 2000;74:6564–6569. doi: 10.1128/JVI.74.14.6564-6569.2000. PubMed DOI PMC

Inoue M, et al. Nontransmissible virus-like particle formation by F-deficient sendai virus is temperature sensitive and reduced by mutations in M and HN proteins. J. Virol. 2003;77:3238–3246. doi: 10.1128/JVI.77.5.3238-3246.2003. PubMed DOI PMC

Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 2009;85:348–362. doi: 10.2183/pjab.85.348. PubMed DOI PMC

Suchanek J, Suchankova- Kleplova T, Rehacek V, Browne KZ, Soukup T. Proliferative capacity and phenotypical alteration of multipotent ecto-mesenchymal stem cells from human exfoliated deciduous teeth cultured in xenogeneic and allogeneic media. Folia Biol. (Praha) 2016;62:1–14. PubMed

Atari M, et al. Dental pulp of the third molar: a new source of pluripotent-like stem cells. J. Cell. Sci. 2012;125:3343–3356. doi: 10.1242/jcs.096537. PubMed DOI

Karbanova J, et al. Characterization of dental pulp stem cells from impacted third molars cultured in low serum-containing medium. Cells Tissues Organs. 2011;193:344–365. doi: 10.1159/000321160. PubMed DOI

Ferro, F., Spelat, R., Beltrami, A. P., Cesselli, D. & Curcio, F. Isolation and characterization of human dental pulp derived stem cells by using media containing low human serum percentage as clinical grade substitutes for bovine serum. PLoS One7, 10.1371/journal.pone.0048945 (2012). PubMed PMC

Alvarez R, Lee HL, Hong C, Wang CY. Single CD271 marker isolates mesenchymal stem cells from human dental pulp. Int. J. Oral Sci. 2015;7:205–212. doi: 10.1038/ijos.2015.29. PubMed DOI PMC

Suchanek J, et al. Dental pulp stem cells and their characterization. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2009;153:31–35. doi: 10.5507/bp.2009.005. PubMed DOI

Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI

Larue L, et al. A role for cadherins in tissue formation. Development. 1996;122:3185–3194. PubMed

Chen T, et al. E-cadherin-mediated cell-cell contact is critical for induced pluripotent stem cell generation. Stem Cells. 2010;28:1315–1325. doi: 10.1002/stem.456. PubMed DOI

Cawthon, R. M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 30, 10.1093/nar/30.10.e47 (2002). PubMed PMC

Wang F, et al. Molecular insights into the heterogeneity of telomere reprogramming in induced pluripotent stem cells. Cell Res. 2012;22:757–768. doi: 10.1038/cr.2011.201. PubMed DOI PMC

Suhr, S. T. et al. Telomere dynamics in human cells reprogrammed to pluripotency. PLoS One4, 10.1371/journal.pone.0008124 (2009). PubMed PMC

Vaziri H, et al. Spontaneous reversal of the developmental aging of normal human cells following transcriptional reprogramming. Regen. Med. 2010;5:345–363. doi: 10.2217/rme.10.21. PubMed DOI

Laino G, et al. A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB) J. Bone Miner. Res. 2005;20:1394–1402. doi: 10.1359/JBMR.050325. PubMed DOI

Akpinar, G. et al. Phenotypic and proteomic characteristics of human dental pulp derived mesenchymal stem cells from a natal, an exfoliated deciduous, and an impacted third molar tooth. Stem Cells Int. 2014, 10.1155/2014/457059 (2014). PubMed PMC

Karaoz E, et al. Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem. Cell Biol. 2010;133:95–112. doi: 10.1007/s00418-009-0646-5. PubMed DOI

Kerkis I, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs. 2006;184:105–116. doi: 10.1159/000099617. PubMed DOI

Lengner CJ, et al. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell. Stem Cell. 2007;1:403–415. doi: 10.1016/j.stem.2007.07.020. PubMed DOI PMC

Heng JC, et al. The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell. 2010;6:167–174. doi: 10.1016/j.stem.2009.12.009. PubMed DOI

Kishimoto T. Interleukin-6: from basic science to medicine - 40 years in immunology. Annu. Rev. Immunol. 2005;23:1–21. doi: 10.1146/annurev.immunol.23.021704.115806. PubMed DOI

Hossain A, et al. Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 Pathway. Stem Cells. 2015;33:2400–2415. doi: 10.1002/stem.2053. PubMed DOI PMC

Chen, H. et al. Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nat. Commun. 6, 10.1038/ncomms8095 (2015). PubMed PMC

Illich DJ, et al. Concise review: induced pluripotent stem cells and lineage reprogramming: prospects for bone regeneration. Stem Cells. 2011;29:555–563. doi: 10.1002/stem.611. PubMed DOI

Takeda-Kawaguchi, T. et al. Derivation of iPSCs after culture of human dental pulp cells under defined conditions. PLoS One9, 10.1371/journal.pone.0115392 (2014). PubMed PMC

Tamaoki N, et al. Dental pulp cells for induced pluripotent stem cell banking. J. Dent. Res. 2010;89:773–778. doi: 10.1177/0022034510366846. PubMed DOI

Pomeroy JE, et al. Stem cell surface marker expression defines late stages of reprogramming to pluripotency in human fibroblasts. Stem Cells Transl. Med. 2016;5:870–882. doi: 10.5966/sctm.2015-0250. PubMed DOI PMC

Beers J, et al. Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions. Nat. Protoc. 2012;7:2029–2040. doi: 10.1038/nprot.2012.130. PubMed DOI PMC

Rittie L & Fisher, G. J. in Fibrosis Research: Methods and Protocols (eds Varga, J., Brenner, D. A. & Phan, S. H.) 83–98 (Humana Press, Totowa, NJ, 2005).

Metsalu, T. & Vilo, J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43, 10.1093/nar/gkv468 (2015). PubMed PMC

Babicki, S. et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 44, 10.1093/nar/gkw419 (2016). PubMed PMC

Lin, Y. & Chen, G. Embryoid body formation from human pluripotent stem cells in chemically defined E8 media. https://www.stembook.org/node/6632 (2014). PubMed

Siller R, Greenhough S, Naumovska E, Sullivan GJ. Small-molecule-driven hepatocyte differentiation of human pluripotent stem cells. Stem Cell Rep. 2015;4:939–952. doi: 10.1016/j.stemcr.2015.04.001. PubMed DOI PMC

Mathapati, S. et al. Small-molecule-directed hepatocyte-like cell differentiation of human pluripotent stem cells. Curr. Protoc. Stem Cell Biol. 38, 10.1002/cpsc.13/full (2016). PubMed

Siller, R. & Sullivan, G. J. Rapid screening of the endodermal differentiation potential of human pluripotent stem cells. Curr. Protoc. Stem Cell Biol. 43, 10.1002/cpsc.36/full (2017). PubMed

Siller, R. et al. Development of a rapid screen for the endodermal differentiation potential of human pluripotent stem cell lines. Sci. Rep. 6, 10.1038/srep37178 (2016). PubMed PMC

Hay DC, et al. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc. Natl. Acad. Sci. USA. 2008;105:12301–12306. doi: 10.1073/pnas.0806522105. PubMed DOI PMC

Sullivan GJ, et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology. 2010;51:329–335. doi: 10.1002/hep.23335. PubMed DOI PMC

Lian X, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat. Protoc. 2013;8:162–175. doi: 10.1038/nprot.2012.150. PubMed DOI PMC

Maroof AM, et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell. 2013;12:559–572. doi: 10.1016/j.stem.2013.04.008. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...