Comparative genomics of Ascetosporea gives new insight into the evolutionary basis for animal parasitism in Rhizaria
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
2017-04563
Vetenskapsrådet
2017-01197
Svenska Forskningsrådet Formas
PubMed
38702750
PubMed Central
PMC11069148
DOI
10.1186/s12915-024-01898-x
PII: 10.1186/s12915-024-01898-x
Knihovny.cz E-zdroje
- Klíčová slova
- Bonamia, Marteilia, Mikrocytos, Paramarteilia, Paramikrocytos, Evolutionary transition, Genome reduction, Intracellular parasite, Phylogeny, Protozoa, Reductive evolution,
- MeSH
- biologická evoluce MeSH
- fylogeneze * MeSH
- genom MeSH
- genomika * MeSH
- molekulární evoluce MeSH
- Rhizaria * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Ascetosporea (Endomyxa, Rhizaria) is a group of unicellular parasites infecting aquatic invertebrates. They are increasingly being recognized as widespread and important in marine environments, causing large annual losses in invertebrate aquaculture. Despite their importance, little molecular data of Ascetosporea exist, with only two genome assemblies published to date. Accordingly, the evolutionary origin of these parasites is unclear, including their phylogenetic position and the genomic adaptations that accompanied the transition from a free-living lifestyle to parasitism. Here, we sequenced and assembled three new ascetosporean genomes, as well as the genome of a closely related amphizoic species, to investigate the phylogeny, origin, and genomic adaptations to parasitism in Ascetosporea. RESULTS: Using a phylogenomic approach, we confirm the monophyly of Ascetosporea and show that Paramyxida group with Mikrocytida, with Haplosporida being sister to both groups. We report that the genomes of these parasites are relatively small (12-36 Mb) and gene-sparse (~ 2300-5200 genes), while containing surprisingly high amounts of non-coding sequence (~ 70-90% of the genomes). Performing gene-tree aware ancestral reconstruction of gene families, we demonstrate extensive gene losses at the origin of parasitism in Ascetosporea, primarily of metabolic functions, and little gene gain except on terminal branches. Finally, we highlight some functional gene classes that have undergone expansions during evolution of the group. CONCLUSIONS: We present important new genomic information from a lineage of enigmatic but important parasites of invertebrates and illuminate some of the genomic innovations accompanying the evolutionary transition to parasitism in this lineage. Our results and data provide a genetic basis for the development of control measures against these parasites.
Department of Organismal Biology Uppsala University Norbyv 18D Uppsala SE 752 36 Sweden
Division of Fish Health University of Veterinary Medicine Veterinärplatz 1 Vienna 1210 Austria
Marine Institute Rinville Oranmore H91R673 Ireland
Natural History Museum Science London SW7 5BD UK
Present Address Natural History Museum Oslo University Oslo 0562 Norway
Present Address The Royal Swedish Academy of Sciences Stockholm SE 114 18 Sweden
Science for Life Laboratory Uppsala University Uppsala Sweden
Sustainable Aquaculture Futures Biosciences University of Exeter Stocker Road Exeter EX4 4QD UK
Zobrazit více v PubMed
Price PW. General concepts on the evolutionary biology of parasites. Evolution. 1977;31:405–420. doi: 10.2307/2407761. PubMed DOI
Poulin R, Randhawa HS. Evolution of parasitism along convergent lines: from ecology to genomics. Parasitology. 2015;142:S6–15. doi: 10.1017/S0031182013001674. PubMed DOI PMC
Katinka MD, Duprat S, Cornillot E, Méténier G, Thomarat F, Prensier G, et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature. 2001;414:450–453. doi: 10.1038/35106579. PubMed DOI
Keeling PJ, Fast NM. Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu Rev Microbiol. 2002;56:93–116. doi: 10.1146/annurev.micro.56.012302.160854. PubMed DOI
Keeling PJ, Slamovits CH. Causes and effects of nuclear genome reduction. Curr Opin Genet Dev. 2005;15:601–608. doi: 10.1016/j.gde.2005.09.003. PubMed DOI
Hikosaka K, Kita K, Tanabe K. Diversity of mitochondrial genome structure in the phylum Apicomplexa. Mol Biochem Parasitol. 2013;188:26–33. doi: 10.1016/j.molbiopara.2013.02.006. PubMed DOI
Jackson AP, Otto TD, Aslett M, Armstrong SD, Bringaud F, Schlacht A, et al. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol. 2016;26:161–172. doi: 10.1016/j.cub.2015.11.055. PubMed DOI PMC
Pombert J-F, Blouin NA, Lane C, Boucias D, Keeling PJ. A lack of parasitic reduction in the obligate parasitic green alga Helicosporidium. PLoS Genet. 2014;10:e1004355. doi: 10.1371/journal.pgen.1004355. PubMed DOI PMC
Janouškovec J, Tikhonenkov Denis V, Burki F, Howe AT, Kolísko M, Mylnikov AP, et al. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci. 2015;112:10200–10207. doi: 10.1073/pnas.1423790112. PubMed DOI PMC
M’Gonigle LK, Shen JJ, Otto SP. Mutating away from your enemies: the evolution of mutation rate in a host–parasite system. Theor Popul Biol. 2009;75:301–311. doi: 10.1016/j.tpb.2009.03.003. PubMed DOI
Papkou A, Gokhale CS, Traulsen A, Schulenburg H. Host–parasite coevolution: why changing population size matters. Zoology. 2016;119:330–338. doi: 10.1016/j.zool.2016.02.001. PubMed DOI
Bass D, Ward GM, Burki F. Ascetosporea. Curr Biol. 2019;29:R7–8. doi: 10.1016/j.cub.2018.11.025. PubMed DOI
Hartikainen H, Ashford OS, Berney C, Okamura B, Feist SW, Baker-Austin C, et al. Lineage-specific molecular probing reveals novel diversity and ecological partitioning of haplosporidians. ISME J. 2014;8:177–186. doi: 10.1038/ismej.2013.136. PubMed DOI PMC
Winters AD, Faisal M. Molecular and ultrastructural characterization of Haplosporidium diporeiae n. sp., a parasite of Diporeia sp. (Amphipoda, Gammaridea) in the Laurentian Great Lakes (USA) Parasit Vect. 2014;7:343. doi: 10.1186/1756-3305-7-343. PubMed DOI PMC
Laing I, Dunn P, Peeler E, Feist S, Longshaw M. Epidemiology of Bonamia in the UK, 1982 to 2012. Dis Aquat Organ. 2014;110:101–111. doi: 10.3354/dao02647. PubMed DOI
Alderman DJ. Epizootiology of Marteilia refringens in Europe. Mar Fish Rev. 1979;41:67–69.
Ward GM, Bennett M, Bateman K, Stentiford GD, Kerr R, Feist SW, et al. A new phylogeny and environmental DNA insight into paramyxids: an increasingly important but enigmatic clade of protistan parasites of marine invertebrates. Int J Parasitol. 2016;46:605–619. doi: 10.1016/j.ijpara.2016.04.010. PubMed DOI
Hartikainen H, Stentiford GD, Bateman KS, Berney C, Feist SW, Longshaw M, et al. Mikrocytids are a broadly distributed and divergent radiation of parasites in aquatic invertebrates. Curr Biol. 2014;24:807–812. doi: 10.1016/j.cub.2014.02.033. PubMed DOI
Lynch SA, Lepée-Rivero S, Kelly R, Quinn E, Coghlan A, Bookelaar B, et al. Detection of haplosporidian protistan parasites supports an increase to their known diversity, geographic range and bivalve host specificity. Parasitology. 2020;147:584–592. doi: 10.1017/S0031182019001628. PubMed DOI PMC
Collins E, Ward GM, Bateman KS, Cheslett DL, Hooper C, Feist SW, et al. High prevalence of Paramarteilia canceri infecting velvet swimming crabs Necora puber in Ireland. Dis Aquat Organ. 2022;148:167–181. doi: 10.3354/dao03652. PubMed DOI
Skujina I, Hooper C, Bass D, Feist SW, Bateman KS, Villalba A, et al. Discovery of the parasite Marteilia cocosarum sp. nov. in common cockle (Cerastoderma edule) fisheries in Wales, UK and its comparison with Marteilia cochillia. J Invertebr Pathol. 2022;192:107786. doi: 10.1016/j.jip.2022.107786. PubMed DOI
Stentiford G, Bateman K, Stokes N, Carnegie R. Haplosporidium littoralis sp. nov.: a crustacean pathogen within the Haplosporida (Cercozoa, Ascetosporea) Dis Aquat Organ. 2013;105:243–252. doi: 10.3354/dao02619. PubMed DOI
Cavalier-Smith T, Chao EE-Y. Phylogeny and classification of phylum cercozoa (Protozoa) Protist. 2003;154:341–358. doi: 10.1078/143446103322454112. PubMed DOI
Bass D, Chao EE-Y, Nikolaev S, Yabuki A, Ishida K, Berney C, et al. Phylogeny of novel naked filose and reticulose cercozoa: granofilosea cl. n. and proteomyxidea revised. Protist. 2009;160:75–109. doi: 10.1016/j.protis.2008.07.002. PubMed DOI
Sierra R, Cañas-Duarte SJ, Burki F, Schwelm A, Fogelqvist J, Dixelius C, et al. Evolutionary origins of Rhizarian parasites. Mol Biol Evol. 2016;33:980–983. doi: 10.1093/molbev/msv340. PubMed DOI
Burki F, Corradi N, Sierra R, Pawlowski J, Meyer GR, Abbott CL, et al. Phylogenomics of the intracellular parasite Mikrocytos mackini reveals evidence for a mitosome in Rhizaria. Curr Biol. 2013;23:1541–1547. doi: 10.1016/j.cub.2013.06.033. PubMed DOI
Onuț-Brännström I, Stairs CW, Campos KIA, Thorén MH, Ettema TJG, Keeling PJ, et al. A mitosome with distinct metabolism in the uncultured protist parasite Paramikrocytos canceri (Rhizaria, Ascetosporea) Genome Biol Evol. 2023;15:evad022. doi: 10.1093/gbe/evad022. PubMed DOI PMC
Žárský V, Karnkowska A, Boscaro V, Trznadel M, Whelan TA, Hiltunen-Thorén M, et al. Contrasting outcomes of genome reduction in mikrocytids and microsporidians. BMC Biol. 2023;21:137. doi: 10.1186/s12915-023-01635-w. PubMed DOI PMC
Carrasco N, Green T, Itoh N. Marteilia spp. parasites in bivalves: a revision of recent studies. J Invertebr Pathol. 2015;131:43–57. doi: 10.1016/j.jip.2015.07.016. PubMed DOI
Astashyn A, Tvedte ES, Sweeney D, Sapojnikov V, Bouk N, Joukov V, et al. Rapid and sensitive detection of genome contamination at scale with FCS-GX. Genome Biol. 2024;25:60. doi: 10.1186/s13059-024-03198-7. PubMed DOI PMC
Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO Applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2018;35:543–548. doi: 10.1093/molbev/msx319. PubMed DOI PMC
Salas-Leiva DE, Tromer EC, Curtis BA, Jerlström-Hultqvist J, Kolisko M, Yi Z, et al. Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nat Commun. 2021;12:6003. doi: 10.1038/s41467-021-26077-2. PubMed DOI PMC
Chevignon G, Dotto-Maurel A, Serpin D, Chollet B, Arzul I. De novo transcriptome assembly and analysis of the flat oyster pathogenic protozoa Bonamia ostreae. Front Cell Infect Microbiol. 2022;12:921136. doi: 10.3389/fcimb.2022.921136. PubMed DOI PMC
Keeling PJ, Corradi N. Shrink it or lose it: balancing loss of function with shrinking genomes in the Microsporidia. Virulence. 2011;2:67–70. doi: 10.4161/viru.2.1.14606. PubMed DOI
Lopes FR, Silva JC, Benchimol M, Costa GG, Pereira GA, Carareto CM. The protist Trichomonas vaginalis harbors multiple lineages of transcriptionally active Mutator-like elements. BMC Genomics. 2009;10:330. doi: 10.1186/1471-2164-10-330. PubMed DOI PMC
Hirakawa Y, Watanabe A. Organellar DNA polymerases in complex plastid-bearing algae. Biomolecules. 2019;9:140. doi: 10.3390/biom9040140. PubMed DOI PMC
Villalba A, Mourelle S, López M, Carballal M, Azevedo C. Marteiliasis affecting cultured mussels Mytilus galloprovincialis of Galioa (NW Span). I. Etiology, chases of the infection, and temporal and spatial variability in prevalence. Dis Aquat Organ. 1993;16:61–72. doi: 10.3354/dao016061. DOI
Perkins FO. Ultrastructure of sporulation in the European flat oyster pathogen, Marteilia refringens—taxonomic implications. J Protozool. 1976;23:64–74. doi: 10.1111/j.1550-7408.1976.tb05247.x. DOI
Ward GM, Neuhauser S, Groben R, Ciaghi S, Berney C, Romac S, et al. Environmental sequencing fills the gap between parasitic haplosporidians and free-living giant amoebae. J Eukaryot Microbiol. 2018;65:574–586. doi: 10.1111/jeu.12501. PubMed DOI PMC
Strassert JFH, Irisarri I, Williams TA, Burki F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat Commun. 2021;12:1879. doi: 10.1038/s41467-021-22044-z. PubMed DOI PMC
Schön ME, Zlatogursky VV, Singh RP, Poirier C, Wilken S, Mathur V, et al. Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat Commun. 2021;12:6651. doi: 10.1038/s41467-021-26918-0. PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Lartillot N, Philippe H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol. 2004;21:1095–1109. doi: 10.1093/molbev/msh112. PubMed DOI
Burki F, Kudryavtsev A, Matz MV, Aglyamova GV, Bulman S, Fiers M, et al. Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists. BMC Evol Biol. 2010;10:377. doi: 10.1186/1471-2148-10-377. PubMed DOI PMC
Cavalier-Smith T, Chao EE, Lewis R. Multigene phylogeny and cell evolution of chromist infrakingdom Rhizaria: contrasting cell organisation of sister phyla Cercozoa and Retaria. Protoplasma. 2018;255:1517–1574. doi: 10.1007/s00709-018-1241-1. PubMed DOI PMC
Krabberød AK, Orr RJS, Bråte J, Kristensen T, Bjørklund KR, Shalchian-Tabrizi K. Single cell transcriptomics, mega-phylogeny, and the genetic basis of morphological innovations in Rhizaria. Mol Biol Evol. 2017;34:1557–1573. doi: 10.1093/molbev/msx075. PubMed DOI PMC
Sierra R, Matz MV, Aglyamova G, Pillet L, Decelle J, Not F, et al. Deep relationships of Rhizaria revealed by phylogenomics: a farewell to Haeckel’s Radiolaria. Mol Phylogenet Evol. 2013;67:53–59. doi: 10.1016/j.ympev.2012.12.011. PubMed DOI
Irwin NAT, Tikhonenkov DV, Hehenberger E, Mylnikov AP, Burki F, Keeling PJ. Phylogenomics supports the monophyly of the Cercozoa. Mol Phylogenet Evol. 2019;130:416–423. doi: 10.1016/j.ympev.2018.09.004. PubMed DOI
Glöckner G, Hülsmann N, Schleicher M, Noegel AA, Eichinger L, Gallinger C, et al. The genome of the foraminiferan Reticulomyxa filosa. Curr Biol. 2014;24:11–18. doi: 10.1016/j.cub.2013.11.027. PubMed DOI
Stjelja S, Fogelqvist J, Tellgren-Roth C, Dixelius C. The architecture of the Plasmodiophora brassicae nuclear and mitochondrial genomes. Sci Rep. 2019;9:15753. doi: 10.1038/s41598-019-52274-7. PubMed DOI PMC
Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, et al. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature. 2012;492:59–65. doi: 10.1038/nature11681. PubMed DOI
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. doi: 10.1186/s13059-019-1832-y. PubMed DOI PMC
Szöllősi GJ, Rosikiewicz W, Boussau B, Tannier E, Daubin V. Efficient exploration of the space of reconciled gene trees. Syst Biol. 2013;62:901–912. doi: 10.1093/sysbio/syt054. PubMed DOI PMC
Layer G, Reichelt J, Jahn D, Heinz DW. Structure and function of enzymes in heme biosynthesis. Protein Sci. 2010;19:1137–1161. doi: 10.1002/pro.405. PubMed DOI PMC
Sawicki KT, Chang H-C, Ardehali H. Role of heme in cardiovascular physiology and disease. J Am Heart Assoc. 2015;4:e001138. doi: 10.1161/JAHA.114.001138. PubMed DOI PMC
Laranjeira-Silva MF, Hamza I, Pérez-Victoria JM. Iron and heme metabolism at the Leishmania-host interface. Trends Parasitol. 2020;36:279–289. doi: 10.1016/j.pt.2019.12.010. PubMed DOI PMC
Steenwyk JL, Opulente DA, Kominek J, Shen X-X, Zhou X, Labella AL, et al. Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts. PLoS Biol. 2019;17:e3000255. doi: 10.1371/journal.pbio.3000255. PubMed DOI PMC
Gill EE, Fast NM. Stripped-down DNA repair in a highly reduced parasite. BMC Mol Biol. 2007;8:24. doi: 10.1186/1471-2199-8-24. PubMed DOI PMC
Santos AC, Julian AT, Pombert J-F. The Rad9–Rad1–Hus1 DNA repair clamp is found in microsporidia. Genome Biol Evol. 2022;14:evac053. doi: 10.1093/gbe/evac053. PubMed DOI PMC
Nakjang S, Williams TA, Heinz E, Watson AK, Foster PG, Sendra KM, et al. Reduction and expansion in microsporidian genome evolution: new insights from comparative genomics. Genome Biol Evol. 2013;5:2285–2303. doi: 10.1093/gbe/evt184. PubMed DOI PMC
Derilus D, Rahman MZ, Serrano AE, Massey SE. Proteome size reduction in Apicomplexans is linked with loss of DNA repair and host redundant pathways. Infect Genet Evol. 2021;87:104642. doi: 10.1016/j.meegid.2020.104642. PubMed DOI PMC
Woo YH, Ansari H, Otto TD, Klinger CM, Kolisko M, Michálek J, et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. Elife. 2015;4:e06974. doi: 10.7554/eLife.06974. PubMed DOI PMC
Mottram JC, Coombs GH, Alexander J. Cysteine peptidases as virulence factors of Leishmania. Curr Opin Microbiol. 2004;7:375–381. doi: 10.1016/j.mib.2004.06.010. PubMed DOI
Coombs GH, Goldberg DE, Klemba M, Berry C, Kay J, Mottram JC. Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends Parasitol. 2001;17:532–537. doi: 10.1016/S1471-4922(01)02037-2. PubMed DOI
Jean L, Grosclaude J, Labbé M, Tomley F, Péry P. Differential localisation of an Eimeria tenella aspartyl proteinase during the infection process. Int J Parasitol. 2000;30:1099–1107. doi: 10.1016/S0020-7519(00)00099-0. PubMed DOI
Chong RS-M. Chapter 73 - Marteiliosis. In: Kibenge FSB, Baldisserotto B, Chong RS-M, editors. Aquaculture pathophysiology. Cambridge, MA: Academic Press; 2022. p. 555–63. https://www.sciencedirect.com/book/9780323954341/aquaculturepathophysiology.
Rapoport TA. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature. 2007;450:663–669. doi: 10.1038/nature06384. PubMed DOI
Jackson AP. Gene family phylogeny and the evolution of parasite cell surfaces. Mol Biochem Parasitol. 2016;209:64–75. doi: 10.1016/j.molbiopara.2016.03.007. PubMed DOI
Karlsbakk E, Køie M. Morphology and SSU rDNA sequences of Ortholinea orientalis (Shul’man and Shul’man-Albova, 1953) (Myxozoa, Ortholineidae) from Clupea harengus and Sprattus sprattus (Clupeidae) from Denmark. Parasitol Res. 2011;109:139–145. doi: 10.1007/s00436-010-2237-8. PubMed DOI
World Organisation for Animal Health. Manual of Diagnostic Tests for Aquatic Animals, Tenth edition, Chapter 2.3.0: General information. 2023. https://www.woah.org/fileadmin/Home/eng/Health_standards/aahm/current/2.3.0_General_info.pdf. Accessed 18 Aug 2023.
Robledo JAF, Mialhe E, Figueras A. Purification of several phases of the parasite Marteilia (Protozoa: Ascetospora) from mussels (Mytilus galloprovincialis) Tech Fish Immunol. 1995;4:117–122.
Mialhe E, Bachère E, Chagot D, Grizel H. Isolation and purification of the protozoan Bonamia ostreae (Pichot et al. 1980), a parasite affecting the flat oyster Ostrea edulis L. Aquaculture. 1988;71:293–299. doi: 10.1016/0044-8486(88)90198-6. DOI
Zarsky V, Karnkowska A, Boscaro V, Trznadel, Whelan TA, Hiltunen M, et al. Mikrocytos mackini isolate CA8384, whole genome shotgun sequencing project. GenBank. 2023. https://identifiers.org/ncbi/insdc:JASNJN010000000.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res. 2017;27:768–777. doi: 10.1101/gr.214346.116. PubMed DOI PMC
Morga B, Jacquot M, Pelletier C, Chevignon G, Dégremont L, Biétry A, et al. Genomic diversity of the ostreid herpesvirus type 1 across time and location and among host species. Front Microbiol. 2021;12:711377. doi: 10.3389/fmicb.2021.711377. PubMed DOI PMC
Rodríguez-Juíz AM, Torrado M, Méndez J. Genome-size variation in bivalve molluscs determined by flow cytometry. Mar Biol. 1996;126:489–497. doi: 10.1007/BF00354631. DOI
Cahais V, Gayral P, Tsagkogeorga G, Melo-Ferreira J, Ballenghien M, Weinert L, et al. Reference-free transcriptome assembly in non-model animals from next generation sequencing data. Dryad; 2012. 10.5061/dryad.5g32f94b. PubMed
Gutierrez A, Penaloza C. Crassostrea gigas, whole genome shotgun sequencing project. GenBank. 2020. https://identifiers.org/ncbi/insdc:CADCXH010000000.
Regan T, Hori TS, Bean TP. Mytilus edulis isolate Foxley, whole genome shotgun sequencing project. GenBank. 2020. https://identifiers.org/ncbi/insdc:JAHUZM000000000.
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. Direct determination of diploid genome sequences. Genome Res. 2017;27:757–767. doi: 10.1101/gr.214874.116. PubMed DOI PMC
Laetsch D, Blaxter M. BlobTools: interrogation of genome assemblies [version 1; peer review: 2 approved with reservations] F1000Research. 2017;6:1287. doi: 10.12688/f1000research.12232.1. DOI
Hiltunen M, Ryberg M, Johannesson H. ARBitR: an overlap-aware genome assembly scaffolder for linked reads. Bioinformatics. 2020;37:2203–2205. doi: 10.1093/bioinformatics/btaa975. PubMed DOI PMC
Hiltunen M. n50.py. 2021. https://github.com/markhilt/genome_analysis_tools/blob/master/n50.py.
Mapleson D, Garcia Accinelli G, Kettleborough G, Wright J, Clavijo BJ. KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies. Bioinformatics. 2017;33:574–576. doi: 10.1093/bioinformatics/btw663. PubMed DOI PMC
Fogelqvist J. Plasmodiophora brassicae genome assembly, organelle: mitochondrion. GenBank. 2018. https://identifiers.org/ncbi/insdc:LS992577.
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69:313–319. doi: 10.1016/j.ympev.2012.08.023. PubMed DOI
Jin J-J, Yu W-B, Yang J-B, Song Y, dePamphilis CW, Yi T-S, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020;21:241. doi: 10.1186/s13059-020-02154-5. PubMed DOI PMC
Palmer J, Stajich J. Funannotate v1.8.3: Eukaryotic genome annotation (Version 1.8.3). Zenodo. 10.5281/zenodo.1134477. Accessed 12 Jan 2022.
Smit A, Hubley R. RepeatModeler Open-1.0. 2008. http://www.repeatmasker.org.
Smit A, Hubley R, Green P. RepeatMasker Open-4.0. 2013. http://www.repeatmasker.org.
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC
Käll L, Krogh A, Sonnhammer ELL. A combined transmembrane topology and signal peptide prediction method. J Mol Biol. 2004;338:1027–1036. doi: 10.1016/j.jmb.2004.03.016. PubMed DOI
Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–5829. doi: 10.1093/molbev/msab293. PubMed DOI PMC
Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19 suppl_2:ii215–ii225. doi: 10.1093/bioinformatics/btg1080. PubMed DOI
Hall B, DeRego T, Geib S. GAG: the Genome Annotation Generator (Version 1.0). 2014. http://genomeannotation.github.io/GAG.
Quinlan AR. BEDTools: The Swiss-army tool for genome feature analysis. Curr Protoc Bioinforma. 2014;47:11.12.1–11.12.34. doi: 10.1002/0471250953.bi1112s47. PubMed DOI PMC
Schön ME. Picozoa: cleaned single genes, initial supermatrix tree. figshare. 2021. 10.6084/m9.figshare.14413712.v1.
Schön ME. Picozoa: 67 taxa alignments and trees. figshare. 2021. 10.6084/m9.figshare.14413592.v2.
Richter DJ, Berney C, Strassert JFH, Poh Y-P, Herman EK, Muñoz-Gómez SA, et al. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2022;2:e56.
Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Geneious v. 10.2.6. 2017. https://www.geneious.com.
Hiltunen M. merge_transcripts.py. 2022. https://github.com/markhilt/genome_analysis_tools/blob/master/merge_transcripts.py.
Ament-Velásquez SL. fastaconcat.py. 2019. https://github.com/johannessonlab/SpokPaper/blob/master/Fig1_3SppNetwork/scripts/fastaconcat.py.
Tice AK, Žihala D, Pánek T, Jones RE, Salomaki ED, Nenarokov S, et al. PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 2021;19:e3001365. doi: 10.1371/journal.pbio.3001365. PubMed DOI PMC
Wang H-C, Minh BQ, Susko E, Roger AJ. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst Biol. 2018;67:216–235. doi: 10.1093/sysbio/syx068. PubMed DOI
Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics. 2018;19:153. doi: 10.1186/s12859-018-2129-y. PubMed DOI PMC
Schön ME. ALE-pipeline. 2021. https://github.com/maxemil/ALE-pipeline.
Martijn J, Schön ME, Lind AE, Vosseberg J, Williams TA, Spang A, et al. Hikarchaeia demonstrate an intermediate stage in the methanogen-to-halophile transition. Nat Commun. 2020;11:5490. doi: 10.1038/s41467-020-19200-2. PubMed DOI PMC
Klopfenstein DV, Zhang L, Pedersen BS, Ramírez F, Warwick Vesztrocy A, Naldi A, et al. GOATOOLS: a python library for gene ontology analyses. Sci Rep. 2018;8:10872. doi: 10.1038/s41598-018-28948-z. PubMed DOI PMC
Reijnders MJMF, Waterhouse RM. Summary visualizations of gene ontology terms with GO-figure! Front Bioinforma. 2021;1:638255. doi: 10.3389/fbinf.2021.638255. PubMed DOI PMC
Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–423. doi: 10.1038/s41587-019-0036-z. PubMed DOI
Hiltunen Thorén M, Onut-Brannstrom I, Burki F. Comparative genomics of Ascetosporea (Rhizaria). 2024. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1051017. PubMed
Hiltunen Thorén M, Onut-Brannstrom I. Ascetosporea phylogenomics. figshare. 2023. 10.6084/m9.figshare.24874638.