Diversification of CORVET tethers facilitates transport complexity in Tetrahymena thermophila
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
203134/Z/16/Z
Wellcome Trust - United Kingdom
R01 GM105783
NIGMS NIH HHS - United States
204697/Z/16/Z
Wellcome Trust - United Kingdom
PubMed
31964712
PubMed Central
PMC7033735
DOI
10.1242/jcs.238659
PII: jcs.238659
Knihovny.cz E-zdroje
- Klíčová slova
- Backfilling, CORVET, Ciliate, Cryomilling, Endosomal trafficking, Evolutionary cell biology, Mass spectrometry, Paralogous expansion,
- MeSH
- endozomy MeSH
- lidé MeSH
- lyzozomy MeSH
- Tetrahymena thermophila * genetika MeSH
- vezikulární transportní proteiny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- vezikulární transportní proteiny MeSH
In endolysosomal networks, two hetero-hexameric tethers called HOPS and CORVET are found widely throughout eukaryotes. The unicellular ciliate Tetrahymena thermophila possesses elaborate endolysosomal structures, but curiously both it and related protozoa lack the HOPS tether and several other trafficking proteins, while retaining the related CORVET complex. Here, we show that Tetrahymena encodes multiple paralogs of most CORVET subunits, which assemble into six distinct complexes. Each complex has a unique subunit composition and, significantly, shows unique localization, indicating participation in distinct pathways. One pair of complexes differ by a single subunit (Vps8), but have late endosomal versus recycling endosome locations. While Vps8 subunits are thus prime determinants for targeting and functional specificity, determinants exist on all subunits except Vps11. This unprecedented expansion and diversification of CORVET provides a potent example of tether flexibility, and illustrates how 'backfilling' following secondary losses of trafficking genes can provide a mechanism for evolution of new pathways.This article has an associated First Person interview with the first author of the paper.
Zobrazit více v PubMed
Adl S. M., Leander B. S., Simpson A. G. B., Archibald J. M., Anderson O. R., Bass D., Bowser S. S., Brugerolle G., Farmer M. A., Karpov S. et al. (2007). Diversity, nomenclature, and taxonomy of protists. PubMed DOI
Adl S. M., Simpson A. G. B., Lane C. E., Lukeš J., Bass D., Bowser S. S., Brown M. W., Burki F., Dunthorn M., Hampl V. et al. (2012). The revised classification of eukaryotes. PubMed DOI PMC
Akematsu T., Fukuda Y., Attiq R. and Pearlman R. E. (2014). Role of class III phosphatidylinositol 3-kinase during programmed nuclear death of Tetrahymena thermophila. PubMed DOI PMC
Allen R. D. (2000). The contractile vacuole and its membrane dynamics. PubMed DOI
Asensio C. S., Sirkis D. W., Maas J. W. Jr, Egami K., To T.-L., Brodsky F. M., Shu X., Cheng Y. and Edwards R. H. (2013). Self-assembly of VPS41 promotes sorting required for biogenesis of the regulated secretory pathway. PubMed DOI PMC
Baker R. W. and Hughson F. M. (2016). Chaperoning SNARE assembly and disassembly. PubMed DOI PMC
Balderhaar H. J. and Ungermann C. (2013). CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. PubMed DOI
Balderhaar H. J., Lachmann J., Yavavli E., Brocker C., Lürick A. and Ungermann C. (2013). The CORVET complex promotes tethering and fusion of Rab5/Vps21-positive membranes. PubMed DOI PMC
Bem D., Smith H., Banushi B., Burden J. J., White I. J., Hanley J., Jeremiah N., Rieux-Laucat F., Bettels R., Ariceta G. et al. (2015). VPS33B regulates protein sorting into and maturation of alpha-granule progenitor organelles in mouse megakaryocytes. PubMed DOI PMC
Bright L. J., Kambesis N., Nelson S. B., Jeong B. and Turkewitz A. P. (2010). Comprehensive analysis reveals dynamic and evolutionary plasticity of Rab GTPases and membrane traffic in Tetrahymena thermophila. PubMed DOI PMC
Briguglio J. S., Kumar S. and Turkewitz A. P. (2013). Lysosomal sorting receptors are essential for secretory granule biogenesis in Tetrahymena. PubMed DOI PMC
Brocker C., Kuhlee A., Gatsogiannis C., Balderhaar H. J., Honscher C., Engelbrecht-Vandre S., Ungermann C. and Raunser S. (2012). Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex. PubMed DOI PMC
Chou H.-T., Dukovski D., Chambers M. G., Reinisch K. M. and Walz T. (2016). CATCHR, HOPS and CORVET tethering complexes share a similar architecture. PubMed DOI PMC
Cox J. and Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. PubMed DOI
Cox J., Hein M. Y., Luber C. A., Paron I., Nagaraj N. and Mann M. (2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. PubMed DOI PMC
Cui Y., Zhao Q., Gao C., Ding Y., Zeng Y., Ueda T., Nakano A. and Jiang L. (2014). Activation of the Rab7 GTPase by the MON1-CCZ1 complex is essential for PVC-to-vacuole trafficking and plant growth in arabidopsis. PubMed DOI PMC
Cullinane A. R., Straatman-Iwanowska A., Zaucker A., Wakabayashi Y., Bruce C. K., Luo G., Rahman F., Gürakan F., Utine E., Özkan T. B. et al. (2010). Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization. PubMed DOI PMC
Dacks J. B. and Field M. C. (2007). Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. PubMed DOI
Dai J., Lu Y., Wang C., Chen X., Fan X., Gu H., Wu X., Wang K., Gartner T. K., Zheng J. et al. (2016). Vps33b regulates Vwf-positive vesicular trafficking in megakaryocytes. PubMed DOI
Davis M. C., Ward J. G., Herrick G. and Allis C. D. (1992). Programmed nuclear death: apoptotic-like degradation of specific nuclei in conjugating Tetrahymena. PubMed DOI
Delevoye C., Hurbain I., Tenza D., Sibarita J.-B., Uzan-Gafsou S., Ohno H., Geerts W. J. C., Verkleij A. J., Salamero J., Marks M. S. et al. (2009). AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis. PubMed DOI PMC
Delevoye C., Heiligenstein X., Ripoll L., Gilles-Marsens F., Dennis M. K., Linares R. A., Derman L., Gokhale A., Morel E., Faundez V. et al. (2016). BLOC-1 brings together the actin and microtubule cytoskeletons to generate recycling endosomes. PubMed DOI PMC
Dennis M. K., Mantegazza A. R., Snir O. L., Tenza D., Acosta-Ruiz A., Delevoye C., Zorger R., Sitaram A., de Jesus-Rojas W., Ravichandran K. et al. (2015). BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery. PubMed DOI PMC
Eisen J. A., Coyne R. S., Wu M., Wu D., Thiagarajan M., Wortman J. R., Badger J. H., Ren Q., Amedeo P., Jones K. M. et al. (2006). Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PubMed DOI PMC
Elde N. C., Morgan G., Winey M., Sperling L. and Turkewitz A. P. (2005). Elucidation of clathrin-mediated endocytosis in tetrahymena reveals an evolutionarily convergent recruitment of dynamin. PubMed DOI PMC
Elias M., Brighouse A., Gabernet-Castello C., Field M. C. and Dacks J. B. (2012). Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. PubMed DOI PMC
Epp N. and Ungermann C. (2013). The N-terminal domains of Vps3 and Vps8 are critical for localization and function of the CORVET tethering complex on endosomes. PubMed DOI PMC
Frankel J. (2000). Cell biology of Tetrahymena thermophila. PubMed DOI
Fratti R. A., Jun Y., Merz A. J., Margolis N. and Wickner W. (2004). Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. PubMed DOI PMC
Gabernet-Castello C., O'Reilly A. J., Dacks J. B. and Field M. C. (2013). Evolution of Tre-2/Bub2/Cdc16 (TBC) Rab GTPase-activating proteins. PubMed DOI PMC
Gerst J. E. (1999). SNAREs and SNARE regulators in membrane fusion and exocytosis. PubMed DOI PMC
Gimmler A., Korn R., de Vargas C., Audic S. and Stoeck T. (2016). The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates. PubMed DOI PMC
Gissen P., Johnson C. A., Morgan N. V., Stapelbroek J. M., Forshew T., Cooper W. N., McKiernan P. J., Klomp L. W., Morris A. A. M., Wraith J. E. et al. (2004). Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. PubMed DOI
Gissen P., Johnson C. A., Gentle D., Hurst L. D., Doherty A. J., O'Kane C. J., Kelly D. A. and Maher E. R. (2005). Comparative evolutionary analysis of VPS33 homologues: genetic and functional insights. PubMed DOI
Guerrier S., Plattner H., Richardson E., Dacks J. B. and Turkewitz A. P. (2017). An evolutionary balance: conservation vs innovation in ciliate membrane trafficking. PubMed DOI PMC
Guo Z., Johnston W., Kovtun O., Mureev S., Bröcker C., Ungermann C. and Alexandrov K. (2013). Subunit organisation of in vitro reconstituted HOPS and CORVET multisubunit membrane tethering complexes. PubMed DOI PMC
Haddad A., Bowman G. R. and Turkewitz A. P. (2002). A new class of cargo protein in Tetrahymena thermophila dense core secretory granules. PubMed DOI PMC
Hausmann K. (1996).
Ho R. and Stroupe C. (2016). The HOPS/class C Vps complex tethers high-curvature membranes via a direct protein-membrane interaction. PubMed DOI
Horazdovsky B. F., Cowles C. R., Mustol P., Holmes M. and Emr S. D. (1996). A novel RING finger protein, Vps8p, functionally interacts with the small GTPase, Vps21p, to facilitate soluble vacuolar protein localization. PubMed DOI
Hunter M., Scourfield E. J., Emmott E. and Graham S. C. (2017). VPS18 recruits VPS41 to the human HOPS complex via a RING-RING interaction. PubMed DOI PMC
Hunter M. R., Hesketh G. G., Benedyk T. H., Gingras A.-C. and Graham S. C. (2018). Proteomic and Biochemical Comparison of the Cellular Interaction Partners of Human VPS33A and VPS33B. PubMed DOI PMC
Huotari J. and Helenius A. (2011). Endosome maturation. PubMed DOI PMC
Jacobs M. E., DeSouza L. V., Samaranayake H., Pearlman R. E., Siu K. W. M. and Klobutcher L. A. (2006). The Tetrahymena thermophila phagosome proteome. PubMed DOI PMC
Jonker C. T. H., Galmes R., Veenendaal T., ten Brink C., van der Welle R. E. N., Liv N., de Rooij J., Peden A. A., van der Sluijs P., Margadant C. et al. (2018). Vps3 and Vps8 control integrin trafficking from early to recycling endosomes and regulate integrin-dependent functions. PubMed DOI PMC
Kaur H., Sparvoli D., Osakada H., Iwamoto M., Haraguchi T. and Turkewitz A. P. (2017). An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in Tetrahymena thermophila. PubMed DOI PMC
Kiontke S., Langemeyer L., Kuhlee A., Schuback S., Raunser S., Ungermann C. and Kümmel D. (2017). Architecture and mechanism of the late endosomal Rab7-like Ypt7 guanine nucleotide exchange factor complex Mon1-Ccz1. PubMed DOI PMC
Klinger C. M., Klute M. J. and Dacks J. B. (2013). Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in Apicomplexa. PubMed DOI PMC
Kuhlee A., Raunser S. and Ungermann C. (2015). Functional homologies in vesicle tethering. PubMed DOI
Kümmel D. and Ungermann C. (2014). Principles of membrane tethering and fusion in endosome and lysosome biogenesis. PubMed DOI
LaCava J., Jiang H. and Rout M. P. (2016). Protein complex affinity capture from cryomilled mammalian cells. PubMed DOI PMC
Liu M.-L. and Yao M.-C. (2012). Role of ATG8 and autophagy in programmed nuclear degradation in Tetrahymena thermophila. PubMed DOI PMC
Lo B., Li L., Gissen P., Christensen H., McKiernan P. J., Ye C., Abdelhaleem M., Hayes J. A., Williams M. D., Chitayat D. et al. (2005). Requirement of VPS33B, a member of the Sec1/Munc18 protein family, in megakaryocyte and platelet alpha-granule biogenesis. PubMed DOI
Lobingier B. T. and Merz A. J. (2012). Sec1/Munc18 protein Vps33 binds to SNARE domains and the quaternary SNARE complex. PubMed DOI PMC
Lobingier B. T., Nickerson D. P., Lo S.-Y. and Merz A. J. (2014). SM proteins Sly1 and Vps33 co-assemble with Sec17 and SNARE complexes to oppose SNARE disassembly by Sec18. PubMed DOI PMC
Lorincz P., Lakatos Z., Varga A., Maruzs T., Simon-Vecsei Z., Darula Z., Benko P., Csordas G., Lippai M., Ando I. et al. (2016). MiniCORVET is a Vps8-containing early endosomal tether in Drosophila. PubMed DOI PMC
Lürick A., Gao J., Kuhlee A., Yavavli E., Langemeyer L., Perz A., Raunser S. and Ungermann C. (2017). Multivalent Rab interactions determine tether-mediated membrane fusion. PubMed DOI PMC
Lynch M., Field M. C., Goodson H. V., Malik H. S., Pereira-Leal J. B., Roos D. S., Turkewitz A. P. and Sazer S. (2014). Evolutionary cell biology: two origins, one objective. PubMed DOI PMC
Markgraf D. F., Ahnert F., Arlt H., Mari M., Peplowska K., Epp N., Griffith J., Reggiori F. and Ungermann C. (2009). The CORVET subunit Vps8 cooperates with the Rab5 homolog Vps21 to induce clustering of late endosomal compartments. PubMed DOI PMC
Mellman I. and Yarden Y. (2013). Endocytosis and cancer. PubMed DOI PMC
Miao W., Xiong J., Bowen J., Wang W., Liu Y., Braguinets O., Grigull J., Pearlman R. E., Orias E. and Gorovsky M. A. (2009). Microarray analyses of gene expression during the Tetrahymena thermophila life cycle. PubMed DOI PMC
Morris C., Foster O. K., Handa S., Peloza K., Voss L., Somhegyi H., Jian Y., Vo M. V., Harp M., Rambo F. M. et al. (2018). Function and regulation of the Caenorhabditis elegans Rab32 family member GLO-1 in lysosome-related organelle biogenesis. PubMed DOI PMC
Neefjes J. and van der Kant R. (2014). Stuck in traffic: an emerging theme in diseases of the nervous system. PubMed DOI
Nickerson D. P., Brett C. L. and Merz A. J. (2009). Vps-C complexes: gatekeepers of endolysosomal traffic. PubMed DOI PMC
Nilsson J. R. (1979). Phagotrophy in tetrahymena. In
Nilsson J. R. and Van Deurs B. (1983). Coated pits and pinocytosis in Tetrahymena. PubMed
Nordmann M., Cabrera M., Perz A., Bröcker C., Ostrowicz C., Engelbrecht-Vandré S. and Ungermann C. (2010). The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. PubMed DOI
Obado S. O., Field M. C., Chait B. T. and Rout M. P. (2016). High-efficiency isolation of nuclear envelope protein complexes from trypanosomes. PubMed DOI
Oeffinger M., Wei K. E., Rogers R., DeGrasse J. A., Chait B. T., Aitchison J. D. and Rout M. P. (2007). Comprehensive analysis of diverse ribonucleoprotein complexes. PubMed DOI
Orias E., Cervantes M. D. and Hamilton E. P. (2011). Tetrahymena thermophila, a unicellular eukaryote with separate germline and somatic genomes. PubMed DOI PMC
Orr A., Song H., Rusin S. F., Kettenbach A. N. and Wickner W. (2017). HOPS catalyzes the interdependent assembly of each vacuolar SNARE into a SNARE complex. PubMed DOI PMC
Ostrowicz C. W., Bröcker C., Ahnert F., Nordmann M., Lachmann J., Peplowska K., Perz A., Auffarth K., Engelbrecht-Vandré S. and Ungermann C. (2010). Defined subunit arrangement and rab interactions are required for functionality of the HOPS tethering complex. PubMed DOI
Peplowska K., Markgraf D. F., Ostrowicz C. W., Bange G. and Ungermann C. (2007). The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. PubMed DOI
Perini E. D., Schaefer R., Stöter M., Kalaidzidis Y. and Zerial M. (2014). Mammalian CORVET is required for fusion and conversion of distinct early endosome subpopulations. PubMed DOI
Plattner H. (2010). Membrane trafficking in protozoa SNARE proteins, H+-ATPase, actin, and other key players in ciliates. PubMed DOI
Plattner H. (2015). The contractile vacuole complex of protists--new cues to function and biogenesis. PubMed DOI
Plemel R. L., Lobingier B. T., Brett C. L., Angers C. G., Nickerson D. P., Paulsel A., Sprague D. and Merz A. J. (2011). Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic. PubMed DOI PMC
Pulipparacharuvil S., Akbar M. A., Ray S., Sevrioukov E. A., Haberman A. S., Rohrer J. and Kramer H. (2005). Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules. PubMed DOI
Rogerson C. and Gissen P. (2018). VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function. PubMed DOI PMC
Saito-Nakano Y., Nakahara T., Nakano K., Nozaki T. and Numata O. (2010). Marked amplification and diversification of products of ras genes from rat brain, Rab GTPases, in the ciliates Tetrahymena thermophila and Paramecium tetraurelia. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B. et al. (2012). Fiji: an open-source platform for biological-image analysis. PubMed DOI PMC
Schwartz M. L., Nickerson D. P., Lobingier B. T., Plemel R. L., Duan M., Angers C. G., Zick M. and Merz A. J. (2017). Sec17 (alpha-SNAP) and an SM-tethering complex regulate the outcome of SNARE zippering in vitro and in vivo. PubMed DOI PMC
Solinger J. A. and Spang A. (2013). Tethering complexes in the endocytic pathway: CORVET and HOPS. PubMed DOI
Solinger J. A. and Spang A. (2014). Loss of the Sec1/Munc18-family proteins VPS-33.2 and VPS-33.1 bypasses a block in endosome maturation in Caenorhabditis elegans. PubMed DOI PMC
Spang A. (2016). Membrane tethering complexes in the endosomal system. PubMed DOI PMC
Sparvoli D., Richardson E., Osakada H., Lan X., Iwamoto M., Bowman G. R., Kontur C., Bourland W. A., Lynn D. H., Pritchard J. K. et al. (2018). Remodeling the specificity of an endosomal CORVET tether underlies formation of regulated secretory vesicles in the ciliate tetrahymena thermophila. PubMed DOI PMC
Stover N. A., Krieger C. J., Binkley G., Dong Q., Fisk D. G., Nash R., Sethuraman A., Weng S. and Cherry J. M. (2006). Tetrahymena genome database (TGD): a new genomic resource for Tetrahymena thermophila research. PubMed DOI PMC
Strack R. L., Strongin D. E., Bhattacharyya D., Tao W., Berman A., Broxmeyer H. E., Keenan R. J. and Glick B. S. (2008). A noncytotoxic DsRed variant for whole-cell labeling. PubMed DOI PMC
Stroupe C., Collins K. M., Fratti R. A. and Wickner W. (2006). Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. PubMed DOI PMC
Takemoto K., Ebine K., Askani J. C., Krüger F., Gonzalez Z. A., Ito E., Goh T., Schumacher K., Nakano A. and Ueda T. (2018). Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis. PubMed DOI PMC
Tornieri K., Zlatic S. A., Mullin A. P., Werner E., Harrison R., L'Hernault S. W. and Faundez V. (2013). Vps33b pathogenic mutations preferentially affect VIPAS39/SPE-39-positive endosomes. PubMed DOI PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M. Y., Geiger T., Mann M. and Cox J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. PubMed DOI
van der Beek J., Jonker C., van der Welle R., Liv N. and Klumperman J. (2019). CORVET, CHEVI and HOPS - multisubunit tethers of the endo-lysosomal system in health and disease. PubMed DOI
Vizcaíno J. A., Csordas A., del-Toro N., Dianes J. A., Griss J., Lavidas I., Mayer G., Perez-Riverol Y., Reisinger F., Ternent T. et al. (2016). 2016 update of the PRIDE database and its related tools. PubMed DOI PMC
Wang Y., Wang Y., Sheng Y., Huang J., Chen X., Al-Rasheid K. A. S. and Gao S. (2017). A comparative study of genome organization and epigenetic mechanisms in model ciliates, with an emphasis on Tetrahymena, Paramecium and Oxytricha. PubMed DOI
Warren A., Patterson D. J., Dunthorn M., Clamp J. C., Achilles-Day U. E. M., Aescht E., Al-Farraj S. A., Al-Quraishy S., Al-Rasheid K., Carr M. et al. (2017). Beyond the “Code”: a guide to the description and documentation of biodiversity in ciliated protists (Alveolata, Ciliophora). PubMed DOI PMC
Weisse T. (2017). Functional diversity of aquatic ciliates. PubMed DOI
Wurmser A. E., Sato T. K. and Emr S. D. (2000). New component of the vacuolar class C-Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion. PubMed DOI PMC
Xiong J., Lu X., Lu Y., Zeng H., Yuan D., Feng L., Chang Y., Bowen J., Gorovsky M., Fu C. et al. (2011a). Tetrahymena gene expression database (TGED): a resource of microarray data and co-expression analyses for Tetrahymena. PubMed DOI
Xiong J., Yuan D., Fillingham J. S., Garg J., Lu X., Chang Y., Liu Y., Fu C., Pearlman R. E. and Miao W. (2011b). Gene network landscape of the ciliate Tetrahymena thermophila. PubMed DOI PMC
Xiong J., Lu Y., Feng J., Yuan D., Tian M., Chang Y., Fu C., Wang G., Zeng H. and Miao W. (2013). Tetrahymena functional genomics database (TetraFGD): an integrated resource for Tetrahymena functional genomics. PubMed DOI PMC
Zingel P., Agasild H., Karus K., Buholce L. and Nõges T. (2019). Importance of ciliates as food for fish larvae in a shallow sea bay and a large shallow lake. PubMed DOI
Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes
Structure and dynamics of the contractile vacuole complex in Tetrahymena thermophila
Evolution and diversification of the nuclear envelope