Diversification of CORVET tethers facilitates transport complexity in Tetrahymena thermophila
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
203134/Z/16/Z
Wellcome Trust - United Kingdom
R01 GM105783
NIGMS NIH HHS - United States
204697/Z/16/Z
Wellcome Trust - United Kingdom
PubMed
31964712
PubMed Central
PMC7033735
DOI
10.1242/jcs.238659
PII: jcs.238659
Knihovny.cz E-zdroje
- Klíčová slova
- Backfilling, CORVET, Ciliate, Cryomilling, Endosomal trafficking, Evolutionary cell biology, Mass spectrometry, Paralogous expansion,
- MeSH
- endozomy MeSH
- lidé MeSH
- lyzozomy MeSH
- Tetrahymena thermophila * genetika MeSH
- vezikulární transportní proteiny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- vezikulární transportní proteiny MeSH
In endolysosomal networks, two hetero-hexameric tethers called HOPS and CORVET are found widely throughout eukaryotes. The unicellular ciliate Tetrahymena thermophila possesses elaborate endolysosomal structures, but curiously both it and related protozoa lack the HOPS tether and several other trafficking proteins, while retaining the related CORVET complex. Here, we show that Tetrahymena encodes multiple paralogs of most CORVET subunits, which assemble into six distinct complexes. Each complex has a unique subunit composition and, significantly, shows unique localization, indicating participation in distinct pathways. One pair of complexes differ by a single subunit (Vps8), but have late endosomal versus recycling endosome locations. While Vps8 subunits are thus prime determinants for targeting and functional specificity, determinants exist on all subunits except Vps11. This unprecedented expansion and diversification of CORVET provides a potent example of tether flexibility, and illustrates how 'backfilling' following secondary losses of trafficking genes can provide a mechanism for evolution of new pathways.This article has an associated First Person interview with the first author of the paper.
Zobrazit více v PubMed
Adl S. M., Leander B. S., Simpson A. G. B., Archibald J. M., Anderson O. R., Bass D., Bowser S. S., Brugerolle G., Farmer M. A., Karpov S. et al. (2007). Diversity, nomenclature, and taxonomy of protists. Syst. Biol. 56, 684-689. 10.1080/10635150701494127 PubMed DOI
Adl S. M., Simpson A. G. B., Lane C. E., Lukeš J., Bass D., Bowser S. S., Brown M. W., Burki F., Dunthorn M., Hampl V. et al. (2012). The revised classification of eukaryotes. J. Eukaryot. Microbiol. 59, 429-493. 10.1111/j.1550-7408.2012.00644.x PubMed DOI PMC
Akematsu T., Fukuda Y., Attiq R. and Pearlman R. E. (2014). Role of class III phosphatidylinositol 3-kinase during programmed nuclear death of Tetrahymena thermophila. Autophagy 10, 209-225. 10.4161/auto.26929 PubMed DOI PMC
Allen R. D. (2000). The contractile vacuole and its membrane dynamics. BioEssays 22, 1035-1042. 10.1002/1521-1878(200011)22:11<1035::AID-BIES10>3.0.CO;2-A PubMed DOI
Asensio C. S., Sirkis D. W., Maas J. W. Jr, Egami K., To T.-L., Brodsky F. M., Shu X., Cheng Y. and Edwards R. H. (2013). Self-assembly of VPS41 promotes sorting required for biogenesis of the regulated secretory pathway. Dev. Cell 27, 425-437. 10.1016/j.devcel.2013.10.007 PubMed DOI PMC
Baker R. W. and Hughson F. M. (2016). Chaperoning SNARE assembly and disassembly. Nat. Rev. Mol. Cell Biol. 17, 465-479. 10.1038/nrm.2016.65 PubMed DOI PMC
Balderhaar H. J. and Ungermann C. (2013). CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J. Cell Sci. 126, 1307-1316. 10.1242/jcs.107805 PubMed DOI
Balderhaar H. J., Lachmann J., Yavavli E., Brocker C., Lürick A. and Ungermann C. (2013). The CORVET complex promotes tethering and fusion of Rab5/Vps21-positive membranes. Proc. Natl. Acad. Sci. USA 110, 3823-3828. 10.1073/pnas.1221785110 PubMed DOI PMC
Bem D., Smith H., Banushi B., Burden J. J., White I. J., Hanley J., Jeremiah N., Rieux-Laucat F., Bettels R., Ariceta G. et al. (2015). VPS33B regulates protein sorting into and maturation of alpha-granule progenitor organelles in mouse megakaryocytes. Blood 126, 133-143. 10.1182/blood-2014-12-614677 PubMed DOI PMC
Bright L. J., Kambesis N., Nelson S. B., Jeong B. and Turkewitz A. P. (2010). Comprehensive analysis reveals dynamic and evolutionary plasticity of Rab GTPases and membrane traffic in Tetrahymena thermophila. PLoS Genet. 6, e1001155 10.1371/journal.pgen.1001155 PubMed DOI PMC
Briguglio J. S., Kumar S. and Turkewitz A. P. (2013). Lysosomal sorting receptors are essential for secretory granule biogenesis in Tetrahymena. J. Cell Biol. 203, 537-550. 10.1083/jcb.201305086 PubMed DOI PMC
Brocker C., Kuhlee A., Gatsogiannis C., Balderhaar H. J., Honscher C., Engelbrecht-Vandre S., Ungermann C. and Raunser S. (2012). Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex. Proc. Natl. Acad. Sci. USA 109, 1991-1996. 10.1073/pnas.1117797109 PubMed DOI PMC
Chou H.-T., Dukovski D., Chambers M. G., Reinisch K. M. and Walz T. (2016). CATCHR, HOPS and CORVET tethering complexes share a similar architecture. Nat. Struct. Mol. Biol. 23, 761-763. 10.1038/nsmb.3264 PubMed DOI PMC
Cox J. and Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367-1372. 10.1038/nbt.1511 PubMed DOI
Cox J., Hein M. Y., Luber C. A., Paron I., Nagaraj N. and Mann M. (2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513-2526. 10.1074/mcp.M113.031591 PubMed DOI PMC
Cui Y., Zhao Q., Gao C., Ding Y., Zeng Y., Ueda T., Nakano A. and Jiang L. (2014). Activation of the Rab7 GTPase by the MON1-CCZ1 complex is essential for PVC-to-vacuole trafficking and plant growth in arabidopsis. Plant Cell 26, 2080-2097. 10.1105/tpc.114.123141 PubMed DOI PMC
Cullinane A. R., Straatman-Iwanowska A., Zaucker A., Wakabayashi Y., Bruce C. K., Luo G., Rahman F., Gürakan F., Utine E., Özkan T. B. et al. (2010). Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization. Nat. Genet. 42, 303-312. 10.1038/ng.538 PubMed DOI PMC
Dacks J. B. and Field M. C. (2007). Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J. Cell Sci. 120, 2977-2985. 10.1242/jcs.013250 PubMed DOI
Dai J., Lu Y., Wang C., Chen X., Fan X., Gu H., Wu X., Wang K., Gartner T. K., Zheng J. et al. (2016). Vps33b regulates Vwf-positive vesicular trafficking in megakaryocytes. J. Pathol. 240, 108-119. 10.1002/path.4762 PubMed DOI
Davis M. C., Ward J. G., Herrick G. and Allis C. D. (1992). Programmed nuclear death: apoptotic-like degradation of specific nuclei in conjugating Tetrahymena. Dev. Biol. 154, 419-432. 10.1016/0012-1606(92)90080-Z PubMed DOI
Delevoye C., Hurbain I., Tenza D., Sibarita J.-B., Uzan-Gafsou S., Ohno H., Geerts W. J. C., Verkleij A. J., Salamero J., Marks M. S. et al. (2009). AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis. J. Cell Biol. 187, 247-264. 10.1083/jcb.200907122 PubMed DOI PMC
Delevoye C., Heiligenstein X., Ripoll L., Gilles-Marsens F., Dennis M. K., Linares R. A., Derman L., Gokhale A., Morel E., Faundez V. et al. (2016). BLOC-1 brings together the actin and microtubule cytoskeletons to generate recycling endosomes. Curr. Biol. 26, 1-13. 10.1016/j.cub.2015.11.020 PubMed DOI PMC
Dennis M. K., Mantegazza A. R., Snir O. L., Tenza D., Acosta-Ruiz A., Delevoye C., Zorger R., Sitaram A., de Jesus-Rojas W., Ravichandran K. et al. (2015). BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery. J. Cell Biol. 209, 563-577. 10.1083/jcb.201410026 PubMed DOI PMC
Eisen J. A., Coyne R. S., Wu M., Wu D., Thiagarajan M., Wortman J. R., Badger J. H., Ren Q., Amedeo P., Jones K. M. et al. (2006). Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 4, e286 10.1371/journal.pbio.0040286 PubMed DOI PMC
Elde N. C., Morgan G., Winey M., Sperling L. and Turkewitz A. P. (2005). Elucidation of clathrin-mediated endocytosis in tetrahymena reveals an evolutionarily convergent recruitment of dynamin. PLoS Genet. 1, e52 10.1371/journal.pgen.0010052 PubMed DOI PMC
Elias M., Brighouse A., Gabernet-Castello C., Field M. C. and Dacks J. B. (2012). Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J. Cell Sci. 125, 2500-2508. 10.1242/jcs.101378 PubMed DOI PMC
Epp N. and Ungermann C. (2013). The N-terminal domains of Vps3 and Vps8 are critical for localization and function of the CORVET tethering complex on endosomes. PLoS ONE 8, e67307 10.1371/journal.pone.0067307 PubMed DOI PMC
Frankel J. (2000). Cell biology of Tetrahymena thermophila. Methods Cell Biol. 62, 27-125. 10.1016/S0091-679X(08)61528-9 PubMed DOI
Fratti R. A., Jun Y., Merz A. J., Margolis N. and Wickner W. (2004). Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J. Cell Biol. 167, 1087-1098. 10.1083/jcb.200409068 PubMed DOI PMC
Gabernet-Castello C., O'Reilly A. J., Dacks J. B. and Field M. C. (2013). Evolution of Tre-2/Bub2/Cdc16 (TBC) Rab GTPase-activating proteins. Mol. Biol. Cell 24, 1574-1583. 10.1091/mbc.e12-07-0557 PubMed DOI PMC
Gerst J. E. (1999). SNAREs and SNARE regulators in membrane fusion and exocytosis. Cell. Mol. Life Sci. 55, 707-734. 10.1007/s000180050328 PubMed DOI PMC
Gimmler A., Korn R., de Vargas C., Audic S. and Stoeck T. (2016). The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates. Sci. Rep. 6, 33555 10.1038/srep33555 PubMed DOI PMC
Gissen P., Johnson C. A., Morgan N. V., Stapelbroek J. M., Forshew T., Cooper W. N., McKiernan P. J., Klomp L. W., Morris A. A. M., Wraith J. E. et al. (2004). Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nat. Genet. 36, 400-404. 10.1038/ng1325 PubMed DOI
Gissen P., Johnson C. A., Gentle D., Hurst L. D., Doherty A. J., O'Kane C. J., Kelly D. A. and Maher E. R. (2005). Comparative evolutionary analysis of VPS33 homologues: genetic and functional insights. Hum. Mol. Genet. 14, 1261-1270. 10.1093/hmg/ddi137 PubMed DOI
Guerrier S., Plattner H., Richardson E., Dacks J. B. and Turkewitz A. P. (2017). An evolutionary balance: conservation vs innovation in ciliate membrane trafficking. Traffic 18, 18-28. 10.1111/tra.12450 PubMed DOI PMC
Guo Z., Johnston W., Kovtun O., Mureev S., Bröcker C., Ungermann C. and Alexandrov K. (2013). Subunit organisation of in vitro reconstituted HOPS and CORVET multisubunit membrane tethering complexes. PLoS ONE 8, e81534 10.1371/journal.pone.0081534 PubMed DOI PMC
Haddad A., Bowman G. R. and Turkewitz A. P. (2002). A new class of cargo protein in Tetrahymena thermophila dense core secretory granules. Eukaryot. Cell 1, 583-593. 10.1128/EC.1.4.583-593.2002 PubMed DOI PMC
Hausmann K. (1996). Ciliates: Cells as Organisms. Stuttgart: Gustav FischerHausmann, K.
Ho R. and Stroupe C. (2016). The HOPS/class C Vps complex tethers high-curvature membranes via a direct protein-membrane interaction. Traffic 17, 1078-1090. 10.1111/tra.12421 PubMed DOI
Horazdovsky B. F., Cowles C. R., Mustol P., Holmes M. and Emr S. D. (1996). A novel RING finger protein, Vps8p, functionally interacts with the small GTPase, Vps21p, to facilitate soluble vacuolar protein localization. J. Biol. Chem. 271, 33607-33615. 10.1074/jbc.271.52.33607 PubMed DOI
Hunter M., Scourfield E. J., Emmott E. and Graham S. C. (2017). VPS18 recruits VPS41 to the human HOPS complex via a RING-RING interaction. Biochem. J. 474, 3615-3626. 10.1042/BCJ20170588 PubMed DOI PMC
Hunter M. R., Hesketh G. G., Benedyk T. H., Gingras A.-C. and Graham S. C. (2018). Proteomic and Biochemical Comparison of the Cellular Interaction Partners of Human VPS33A and VPS33B. J. Mol. Biol. 430, 2153-2163. 10.1016/j.jmb.2018.05.019 PubMed DOI PMC
Huotari J. and Helenius A. (2011). Endosome maturation. EMBO J. 30, 3481-3500. 10.1038/emboj.2011.286 PubMed DOI PMC
Jacobs M. E., DeSouza L. V., Samaranayake H., Pearlman R. E., Siu K. W. M. and Klobutcher L. A. (2006). The Tetrahymena thermophila phagosome proteome. Eukaryot. Cell 5, 1990-2000. 10.1128/EC.00195-06 PubMed DOI PMC
Jonker C. T. H., Galmes R., Veenendaal T., ten Brink C., van der Welle R. E. N., Liv N., de Rooij J., Peden A. A., van der Sluijs P., Margadant C. et al. (2018). Vps3 and Vps8 control integrin trafficking from early to recycling endosomes and regulate integrin-dependent functions. Nat. Commun. 9, 792 10.1038/s41467-018-03226-8 PubMed DOI PMC
Kaur H., Sparvoli D., Osakada H., Iwamoto M., Haraguchi T. and Turkewitz A. P. (2017). An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in Tetrahymena thermophila. Mol. Biol. Cell 28, 1551-1564. 10.1091/mbc.e17-01-0018 PubMed DOI PMC
Kiontke S., Langemeyer L., Kuhlee A., Schuback S., Raunser S., Ungermann C. and Kümmel D. (2017). Architecture and mechanism of the late endosomal Rab7-like Ypt7 guanine nucleotide exchange factor complex Mon1-Ccz1. Nat. Commun. 8, 14034 10.1038/ncomms14034 PubMed DOI PMC
Klinger C. M., Klute M. J. and Dacks J. B. (2013). Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in Apicomplexa. PLoS ONE 8, e76278 10.1371/journal.pone.0076278 PubMed DOI PMC
Kuhlee A., Raunser S. and Ungermann C. (2015). Functional homologies in vesicle tethering. FEBS Lett. 589, 2487-2497. 10.1016/j.febslet.2015.06.001 PubMed DOI
Kümmel D. and Ungermann C. (2014). Principles of membrane tethering and fusion in endosome and lysosome biogenesis. Curr. Opin. Cell Biol. 29, 61-66. 10.1016/j.ceb.2014.04.007 PubMed DOI
LaCava J., Jiang H. and Rout M. P. (2016). Protein complex affinity capture from cryomilled mammalian cells. J. Vis. Exp. 118, e54518 10.3791/54518 PubMed DOI PMC
Liu M.-L. and Yao M.-C. (2012). Role of ATG8 and autophagy in programmed nuclear degradation in Tetrahymena thermophila. Eukaryot. Cell 11, 494-506. 10.1128/EC.05296-11 PubMed DOI PMC
Lo B., Li L., Gissen P., Christensen H., McKiernan P. J., Ye C., Abdelhaleem M., Hayes J. A., Williams M. D., Chitayat D. et al. (2005). Requirement of VPS33B, a member of the Sec1/Munc18 protein family, in megakaryocyte and platelet alpha-granule biogenesis. Blood 106, 4159-4166. 10.1182/blood-2005-04-1356 PubMed DOI
Lobingier B. T. and Merz A. J. (2012). Sec1/Munc18 protein Vps33 binds to SNARE domains and the quaternary SNARE complex. Mol. Biol. Cell 23, 4611-4622. 10.1091/mbc.e12-05-0343 PubMed DOI PMC
Lobingier B. T., Nickerson D. P., Lo S.-Y. and Merz A. J. (2014). SM proteins Sly1 and Vps33 co-assemble with Sec17 and SNARE complexes to oppose SNARE disassembly by Sec18. eLife 3, e02272 10.7554/eLife.02272 PubMed DOI PMC
Lorincz P., Lakatos Z., Varga A., Maruzs T., Simon-Vecsei Z., Darula Z., Benko P., Csordas G., Lippai M., Ando I. et al. (2016). MiniCORVET is a Vps8-containing early endosomal tether in Drosophila. eLife 5, e14226 10.7554/eLife.14226.030 PubMed DOI PMC
Lürick A., Gao J., Kuhlee A., Yavavli E., Langemeyer L., Perz A., Raunser S. and Ungermann C. (2017). Multivalent Rab interactions determine tether-mediated membrane fusion. Mol. Biol. Cell 28, 322-332. 10.1091/mbc.e16-11-0764 PubMed DOI PMC
Lynch M., Field M. C., Goodson H. V., Malik H. S., Pereira-Leal J. B., Roos D. S., Turkewitz A. P. and Sazer S. (2014). Evolutionary cell biology: two origins, one objective. Proc. Natl. Acad. Sci. USA 111, 16990-16994. 10.1073/pnas.1415861111 PubMed DOI PMC
Markgraf D. F., Ahnert F., Arlt H., Mari M., Peplowska K., Epp N., Griffith J., Reggiori F. and Ungermann C. (2009). The CORVET subunit Vps8 cooperates with the Rab5 homolog Vps21 to induce clustering of late endosomal compartments. Mol. Biol. Cell 20, 5276-5289. 10.1091/mbc.e09-06-0521 PubMed DOI PMC
Mellman I. and Yarden Y. (2013). Endocytosis and cancer. Cold Spring Harbor Perspect. Biol. 5, a016949 10.1101/cshperspect.a016949 PubMed DOI PMC
Miao W., Xiong J., Bowen J., Wang W., Liu Y., Braguinets O., Grigull J., Pearlman R. E., Orias E. and Gorovsky M. A. (2009). Microarray analyses of gene expression during the Tetrahymena thermophila life cycle. PLoS ONE 4, e4429 10.1371/journal.pone.0004429 PubMed DOI PMC
Morris C., Foster O. K., Handa S., Peloza K., Voss L., Somhegyi H., Jian Y., Vo M. V., Harp M., Rambo F. M. et al. (2018). Function and regulation of the Caenorhabditis elegans Rab32 family member GLO-1 in lysosome-related organelle biogenesis. PLoS Genet. 14, e1007772 10.1371/journal.pgen.1007772 PubMed DOI PMC
Neefjes J. and van der Kant R. (2014). Stuck in traffic: an emerging theme in diseases of the nervous system. Trends Neurosci. 37, 66-76. 10.1016/j.tins.2013.11.006 PubMed DOI
Nickerson D. P., Brett C. L. and Merz A. J. (2009). Vps-C complexes: gatekeepers of endolysosomal traffic. Curr. Opin. Cell Biol. 21, 543-551. 10.1016/j.ceb.2009.05.007 PubMed DOI PMC
Nilsson J. R. (1979). Phagotrophy in tetrahymena. In Biochemistry and Physiology of Protozoa, Vol. 2 (ed. Levandowsky M. and Hutner S. H.), pp. 339-379. New York: Academic Press.
Nilsson J. R. and Van Deurs B. (1983). Coated pits and pinocytosis in Tetrahymena. J. Cell Sci. 63, 209-222. PubMed
Nordmann M., Cabrera M., Perz A., Bröcker C., Ostrowicz C., Engelbrecht-Vandré S. and Ungermann C. (2010). The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr. Biol. 20, 1654-1659. 10.1016/j.cub.2010.08.002 PubMed DOI
Obado S. O., Field M. C., Chait B. T. and Rout M. P. (2016). High-efficiency isolation of nuclear envelope protein complexes from trypanosomes. Methods Mol. Biol. 1411, 67-80. 10.1007/978-1-4939-3530-7_3 PubMed DOI
Oeffinger M., Wei K. E., Rogers R., DeGrasse J. A., Chait B. T., Aitchison J. D. and Rout M. P. (2007). Comprehensive analysis of diverse ribonucleoprotein complexes. Nat. Methods 4, 951-956. 10.1038/nmeth1101 PubMed DOI
Orias E., Cervantes M. D. and Hamilton E. P. (2011). Tetrahymena thermophila, a unicellular eukaryote with separate germline and somatic genomes. Res. Microbiol. 162, 578-586. 10.1016/j.resmic.2011.05.001 PubMed DOI PMC
Orr A., Song H., Rusin S. F., Kettenbach A. N. and Wickner W. (2017). HOPS catalyzes the interdependent assembly of each vacuolar SNARE into a SNARE complex. Mol. Biol. Cell 28, 975-983. 10.1091/mbc.e16-10-0743 PubMed DOI PMC
Ostrowicz C. W., Bröcker C., Ahnert F., Nordmann M., Lachmann J., Peplowska K., Perz A., Auffarth K., Engelbrecht-Vandré S. and Ungermann C. (2010). Defined subunit arrangement and rab interactions are required for functionality of the HOPS tethering complex. Traffic 11, 1334-1346. 10.1111/j.1600-0854.2010.01097.x PubMed DOI
Peplowska K., Markgraf D. F., Ostrowicz C. W., Bange G. and Ungermann C. (2007). The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. Dev. Cell 12, 739-750. 10.1016/j.devcel.2007.03.006 PubMed DOI
Perini E. D., Schaefer R., Stöter M., Kalaidzidis Y. and Zerial M. (2014). Mammalian CORVET is required for fusion and conversion of distinct early endosome subpopulations. Traffic 15, 1366-1389. 10.1111/tra.12232 PubMed DOI
Plattner H. (2010). Membrane trafficking in protozoa SNARE proteins, H+-ATPase, actin, and other key players in ciliates. Int. Rev. Cell Mol. Biol. 280, 79-184. 10.1016/S1937-6448(10)80003-6 PubMed DOI
Plattner H. (2015). The contractile vacuole complex of protists--new cues to function and biogenesis. Crit. Rev. Microbiol. 41, 218-227. 10.3109/1040841X.2013.821650 PubMed DOI
Plemel R. L., Lobingier B. T., Brett C. L., Angers C. G., Nickerson D. P., Paulsel A., Sprague D. and Merz A. J. (2011). Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic. Mol. Biol. Cell 22, 1353-1363. 10.1091/mbc.e10-03-0260 PubMed DOI PMC
Pulipparacharuvil S., Akbar M. A., Ray S., Sevrioukov E. A., Haberman A. S., Rohrer J. and Kramer H. (2005). Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules. J. Cell Sci. 118, 3663-3673. 10.1242/jcs.02502 PubMed DOI
Rogerson C. and Gissen P. (2018). VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function. Biochim. Biophys Acta Mol. Basis Dis. 1864, 1609-1621. 10.1016/j.bbadis.2018.01.028 PubMed DOI PMC
Saito-Nakano Y., Nakahara T., Nakano K., Nozaki T. and Numata O. (2010). Marked amplification and diversification of products of ras genes from rat brain, Rab GTPases, in the ciliates Tetrahymena thermophila and Paramecium tetraurelia. J. Eukaryot. Microbiol. 57, 389-399. 10.1111/j.1550-7408.2010.00503.x PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B. et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676-682. 10.1038/nmeth.2019 PubMed DOI PMC
Schwartz M. L., Nickerson D. P., Lobingier B. T., Plemel R. L., Duan M., Angers C. G., Zick M. and Merz A. J. (2017). Sec17 (alpha-SNAP) and an SM-tethering complex regulate the outcome of SNARE zippering in vitro and in vivo. eLife 6, e27396 10.7554/eLife.27396.020 PubMed DOI PMC
Solinger J. A. and Spang A. (2013). Tethering complexes in the endocytic pathway: CORVET and HOPS. FEBS J. 280, 2743-2757. 10.1111/febs.12151 PubMed DOI
Solinger J. A. and Spang A. (2014). Loss of the Sec1/Munc18-family proteins VPS-33.2 and VPS-33.1 bypasses a block in endosome maturation in Caenorhabditis elegans. Mol. Biol. Cell 25, 3909-3925. 10.1091/mbc.e13-12-0710 PubMed DOI PMC
Spang A. (2016). Membrane tethering complexes in the endosomal system. Front. Cell Dev. Biol. 4, 35 10.3389/fcell.2016.00035 PubMed DOI PMC
Sparvoli D., Richardson E., Osakada H., Lan X., Iwamoto M., Bowman G. R., Kontur C., Bourland W. A., Lynn D. H., Pritchard J. K. et al. (2018). Remodeling the specificity of an endosomal CORVET tether underlies formation of regulated secretory vesicles in the ciliate tetrahymena thermophila. Curr. Biol. 28, 697-710.e13. 10.1016/j.cub.2018.01.047 PubMed DOI PMC
Stover N. A., Krieger C. J., Binkley G., Dong Q., Fisk D. G., Nash R., Sethuraman A., Weng S. and Cherry J. M. (2006). Tetrahymena genome database (TGD): a new genomic resource for Tetrahymena thermophila research. Nucleic Acids Res. 34, D500-D503. 10.1093/nar/gkj054 PubMed DOI PMC
Strack R. L., Strongin D. E., Bhattacharyya D., Tao W., Berman A., Broxmeyer H. E., Keenan R. J. and Glick B. S. (2008). A noncytotoxic DsRed variant for whole-cell labeling. Nat. Methods 5, 955-957. 10.1038/nmeth.1264 PubMed DOI PMC
Stroupe C., Collins K. M., Fratti R. A. and Wickner W. (2006). Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. EMBO J. 25, 1579-1589. 10.1038/sj.emboj.7601051 PubMed DOI PMC
Takemoto K., Ebine K., Askani J. C., Krüger F., Gonzalez Z. A., Ito E., Goh T., Schumacher K., Nakano A. and Ueda T. (2018). Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis. Proc. Natl. Acad. Sci. USA 115, E2457-E2466. 10.1073/pnas.1717839115 PubMed DOI PMC
Tornieri K., Zlatic S. A., Mullin A. P., Werner E., Harrison R., L'Hernault S. W. and Faundez V. (2013). Vps33b pathogenic mutations preferentially affect VIPAS39/SPE-39-positive endosomes. Hum. Mol. Genet. 22, 5215-5228. 10.1093/hmg/ddt378 PubMed DOI PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M. Y., Geiger T., Mann M. and Cox J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731-740. 10.1038/nmeth.3901 PubMed DOI
van der Beek J., Jonker C., van der Welle R., Liv N. and Klumperman J. (2019). CORVET, CHEVI and HOPS - multisubunit tethers of the endo-lysosomal system in health and disease. J. Cell Sci. 132, jcs189134 10.1242/jcs.189134 PubMed DOI
Vizcaíno J. A., Csordas A., del-Toro N., Dianes J. A., Griss J., Lavidas I., Mayer G., Perez-Riverol Y., Reisinger F., Ternent T. et al. (2016). 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, 11033 10.1093/nar/gkw880 PubMed DOI PMC
Wang Y., Wang Y., Sheng Y., Huang J., Chen X., Al-Rasheid K. A. S. and Gao S. (2017). A comparative study of genome organization and epigenetic mechanisms in model ciliates, with an emphasis on Tetrahymena, Paramecium and Oxytricha. Eur. J. Protistol. 61, 376-387. 10.1016/j.ejop.2017.06.006 PubMed DOI
Warren A., Patterson D. J., Dunthorn M., Clamp J. C., Achilles-Day U. E. M., Aescht E., Al-Farraj S. A., Al-Quraishy S., Al-Rasheid K., Carr M. et al. (2017). Beyond the “Code”: a guide to the description and documentation of biodiversity in ciliated protists (Alveolata, Ciliophora). J. Eukaryot. Microbiol. 64, 539-554. 10.1111/jeu.12391 PubMed DOI PMC
Weisse T. (2017). Functional diversity of aquatic ciliates. Eur. J. Protistol. 61, 331-358. 10.1016/j.ejop.2017.04.001 PubMed DOI
Wurmser A. E., Sato T. K. and Emr S. D. (2000). New component of the vacuolar class C-Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion. J. Cell Biol. 151, 551-562. 10.1083/jcb.151.3.551 PubMed DOI PMC
Xiong J., Lu X., Lu Y., Zeng H., Yuan D., Feng L., Chang Y., Bowen J., Gorovsky M., Fu C. et al. (2011a). Tetrahymena gene expression database (TGED): a resource of microarray data and co-expression analyses for Tetrahymena. Sci. China Life Sci. 54, 65-67. 10.1007/s11427-010-4114-1 PubMed DOI
Xiong J., Yuan D., Fillingham J. S., Garg J., Lu X., Chang Y., Liu Y., Fu C., Pearlman R. E. and Miao W. (2011b). Gene network landscape of the ciliate Tetrahymena thermophila. PLoS ONE 6, e20124 10.1371/journal.pone.0020124 PubMed DOI PMC
Xiong J., Lu Y., Feng J., Yuan D., Tian M., Chang Y., Fu C., Wang G., Zeng H. and Miao W. (2013). Tetrahymena functional genomics database (TetraFGD): an integrated resource for Tetrahymena functional genomics. Database 2013, bat008 10.1093/database/bat008 PubMed DOI PMC
Zingel P., Agasild H., Karus K., Buholce L. and Nõges T. (2019). Importance of ciliates as food for fish larvae in a shallow sea bay and a large shallow lake. Eur. J. Protistol. 67, 59-70. 10.1016/j.ejop.2018.10.004 PubMed DOI
Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes
Structure and dynamics of the contractile vacuole complex in Tetrahymena thermophila
Evolution and diversification of the nuclear envelope