Structure and dynamics of the contractile vacuole complex in Tetrahymena thermophila

. 2023 Nov 15 ; 136 (22) : . [epub] 20231127

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37902010

Grantová podpora
R01 GM105783 NIGMS NIH HHS - United States
GM105783 NIH HHS - United States

The contractile vacuole complex (CVC) is a dynamic and morphologically complex membrane organelle, comprising a large vesicle (bladder) linked with a tubular reticulum (spongiome). CVCs provide key osmoregulatory roles across diverse eukaryotic lineages, but probing the mechanisms underlying their structure and function is hampered by the limited tools available for in vivo analysis. In the experimentally tractable ciliate Tetrahymena thermophila, we describe four proteins that, as endogenously tagged constructs, localize specifically to distinct CVC zones. The DOPEY homolog Dop1p and the CORVET subunit Vps8Dp localize both to the bladder and spongiome but with different local distributions that are sensitive to osmotic perturbation, whereas the lipid scramblase Scr7p colocalizes with Vps8Dp. The H+-ATPase subunit Vma4 is spongiome specific. The live imaging permitted by these probes revealed dynamics at multiple scales including rapid exchange of CVC-localized and soluble protein pools versus lateral diffusion in the spongiome, spongiome extension and branching, and CVC formation during mitosis. Although the association with DOP1 and VPS8D implicate the CVC in endosomal trafficking, both the bladder and spongiome might be isolated from bulk endocytic input.

Před aktualizací

PubMed

Zobrazit více v PubMed

Allen, R. D. (2000). The contractile vacuole and its membrane dynamics. BioEssays 22, 1035-1042. 10.1002/1521-1878(200011)22:11<1035::AID-BIES10>3.0.CO;2-A PubMed DOI

Allen, R. D. and Naitoh, Y. (2002). Osmoregulation and contractile vacuoles of protozoa. Int. Rev. Cytol. 215, 351-394. 10.1016/S0074-7696(02)15015-7 PubMed DOI

Ashworth, J. M. and Watts, D. J. (1970). Metabolism of the cellular slime mould Dictyostelium discoideum grown in axenic culture. Biochem. J. 119, 175-182. 10.1042/bj1190175 PubMed DOI PMC

Balderhaar, H. J. and Ungermann, C. (2013). CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J. Cell Sci. 126, 1307-1316. 10.1242/jcs.107805 PubMed DOI

Becker, M., Matzner, M. and Gerisch, G. (1999). Drainin required for membrane fusion of the contractile vacuole in Dictyostelium is the prototype of a protein family also represented in man. EMBO J. 18, 3305-3316. 10.1093/emboj/18.12.3305 PubMed DOI PMC

Betz, W. J. and Bewick, G. S. (1992). Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255, 200-203. 10.1126/science.1553547 PubMed DOI

Betz, W. J., Mao, F. and Smith, C. B. (1996). Imaging exocytosis and endocytosis. Curr. Opin. Neurobiol. 6, 365-371. 10.1016/S0959-4388(96)80121-8 PubMed DOI

Bolte, S. and Cordelières, F. P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213-232. 10.1111/j.1365-2818.2006.01706.x PubMed DOI

Bowman, G. R. and Turkewitz, A. P. (2001). Analysis of a mutant exhibiting conditional sorting to dense core secretory granules in Tetrahymena thermophila. Genetics 159, 1605-1616. 10.1093/genetics/159.4.1605 PubMed DOI PMC

Bright, L. J., Kambesis, N., Nelson, S. B., Jeong, B. and Turkewitz, A. P. (2010). Comprehensive analysis reveals dynamic and evolutionary plasticity of Rab GTPases and membrane traffic in Tetrahymena thermophila. PLoS Genet. 6, e1001155. 10.1371/journal.pgen.1001155 PubMed DOI PMC

Briguglio, J. S., Kumar, S. and Turkewitz, A. P. (2013). Lysosomal sorting receptors are essential for secretory granule biogenesis in Tetrahymena. J. Cell Biol. 203, 537-550. 10.1083/jcb.201305086 PubMed DOI PMC

Bush, J., Nolta, K., Rodriguez-Paris, J., Kaufmann, N., O'halloran, T., Ruscetti, T., Temesvari, L., Steck, T. and Cardelli, J. (1994). A Rab4-like GTPase in Dictyostelium discoideum colocalizes with V-H(+)-ATPases in reticular membranes of the contractile vacuole complex and in lysosomes. J. Cell Sci. 107, 2801-2812. 10.1242/jcs.107.10.2801 PubMed DOI

Cassidy-Hanley, D., Bowen, J., Lee, J. H., Cole, E., Verplank, L. A., Gaertig, J., Gorovsky, M. A. and Bruns, P. J. (1997). Germline and somatic transformation of mating Tetrahymena thermophila by particle bombardment. Genetics 146, 135-147. 10.1093/genetics/146.1.135 PubMed DOI PMC

Cheng, C. Y., Young, J. M., Lin, C. G., Chao, J. L., Malik, H. S. and Yao, M. C. (2016). The piggyBac transposon-derived genes TPB1 and TPB6 mediate essential transposon-like excision during the developmental rearrangement of key genes in Tetrahymena thermophila. Genes Dev. 30, 2724-2736. 10.1101/gad.290460.116 PubMed DOI PMC

Cole, E. and Gaertig, J. (2022). Anterior-posterior pattern formation in ciliates. J. Eukaryot. Microbiol. 69, e12890. 10.1111/jeu.12890 PubMed DOI PMC

Collins, M. P. and Forgac, M. (2020). Regulation and function of V-ATPases in physiology and disease. Biochim. Biophys. Acta Biomembr. 1862, 183341. 10.1016/j.bbamem.2020.183341 PubMed DOI PMC

Cox, J. and Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367-1372. 10.1038/nbt.1511 PubMed DOI

Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N. and Mann, M. (2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513-2526. 10.1074/mcp.M113.031591 PubMed DOI PMC

Damstra, H. G. J., Mohar, B., Eddison, M., Akhmanova, A., Kapitein, L. C. and Tillberg, P. W. (2022). Visualizing cellular and tissue ultrastructure using Ten-fold Robust Expansion Microscopy (TREx). Elife 11, e73775. 10.7554/eLife.73775 PubMed DOI PMC

Docampo, R., Jimenez, V., Lander, N., Li, Z. H. and Niyogi, S. (2013). New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists. Int. Rev. Cell Mol. Biol. 305, 69-113. 10.1016/B978-0-12-407695-2.00002-0 PubMed DOI PMC

Du, F., Edwards, K., Shen, Z., Sun, B., De Lozanne, A., Briggs, S. and Firtel, R. A. (2008). Regulation of contractile vacuole formation and activity in Dictyostelium. EMBO J. 27, 2064-2076. 10.1038/emboj.2008.131 PubMed DOI PMC

Eisen, J. A., Coyne, R. S., Wu, M., Wu, D., Thiagarajan, M., Wortman, J. R., Badger, J. H., Ren, Q., Amedeo, P., Jones, K. M.et al. (2006). Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 4, e286. 10.1371/journal.pbio.0040286 PubMed DOI PMC

Elde, N. C., Morgan, G., Winey, M., Sperling, L. and Turkewitz, A. P. (2005). Elucidation of clathrin-mediated endocytosis in tetrahymena reveals an evolutionarily convergent recruitment of dynamin. PLoS Genet. 1, e52. 10.1371/journal.pgen.0010052 PubMed DOI PMC

Elliott, A. M. and Bak, I. J. (1964). Contractile vacuole+related structures in tetrahymena pyriformis. J. Protozool. 11, 250-261. 10.1111/j.1550-7408.1964.tb01752.x PubMed DOI

Essid, M., Gopaldass, N., Yoshida, K., Merrifield, C. and Soldati, T. (2012). Rab8a regulates the exocyst-mediated kiss-and-run discharge of the Dictyostelium contractile vacuole. Mol. Biol. Cell 23, 1267-1282. 10.1091/mbc.e11-06-0576 PubMed DOI PMC

Fok, A. K., Clarke, M., Ma, L. and Allen, R. D. (1993). Vacuolar H(+)-ATPase of Dictyostelium discoideum. A monoclonal antibody study. J. Cell Sci. 106, 1103-1113. 10.1242/jcs.106.4.1103 PubMed DOI

Fok, A. K., Aihara, M. S., Ishida, M., Nolta, K. V., Steck, T. L. and Allen, R. D. (1995). The pegs on the decorated tubules of the contractile vacuole complex of Paramecium are proton pumps. J. Cell Sci. 108, 3163-3170. 10.1242/jcs.108.10.3163 PubMed DOI

Frankel, J. (1992). Positional information in cells and organisms. Trends Cell Biol. 2, 256-260. 10.1016/0962-8924(92)90191-O PubMed DOI

Frankel, J. (2000). Cell biology of Tetrahymena thermophila. Methods Cell Biol. 62, 27-125. 10.1016/S0091-679X(08)61528-9 PubMed DOI

Gabriel, D., Hacker, U., Kohler, J., Muller-Taubenberger, A., Schwartz, J. M., Westphal, M. and Gerisch, G. (1999). The contractile vacuole network of Dictyostelium as a distinct organelle: its dynamics visualized by a GFP marker protein. J. Cell Sci. 112, 3995-4005. 10.1242/jcs.112.22.3995 PubMed DOI

Gaertig, J., Cruz, M. A., Bowen, J., Gu, L., Pennock, D. G. and Gorovsky, M. A. (1995). Acetylation of lysine 40 in alpha-tubulin is not essential in Tetrahymena thermophila. J. Cell Biol. 129, 1301-1310. 10.1083/jcb.129.5.1301 PubMed DOI PMC

Gerald, N. J., Siano, M. and De Lozanne, A. (2002). The Dictyostelium LvsA protein is localized on the contractile vacuole and is required for osmoregulation. Traffic 3, 50-60. 10.1034/j.1600-0854.2002.30107.x PubMed DOI

Gerisch, G., Heuser, J. and Clarke, M. (2002). Tubular-vesicular transformation in the contractile vacuole system of Dictyostelium. Cell Biol. Int. 26, 845-852. 10.1006/cbir.2002.0938 PubMed DOI

Girard-Dias, W., Alcantara, C. L., Cunha-E-Silva, N., De Souza, W. and Miranda, K. (2012). On the ultrastructural organization of Trypanosoma cruzi using cryopreparation methods and electron tomography. Histochem. Cell Biol. 138, 821-831. 10.1007/s00418-012-1002-8 PubMed DOI

Gorovsky, M. A., Yao, M. C., Keevert, J. B. and Pleger, G. L. (1975). Isolation of micro- and macronuclei of Tetrahymena pyriformis. Methods Cell Biol. 9, 311-327. 10.1016/S0091-679X(08)60080-1 PubMed DOI

Gronlien, H. K., Stock, C., Aihara, M. S., Allen, R. D. and Naitoh, Y. (2002). Relationship between the membrane potential of the contractile vacuole complex and its osmoregulatory activity in Paramecium multimicronucleatum. J. Exp. Biol. 205, 3261-3270. 10.1242/jeb.205.20.3261 PubMed DOI

Hankins, H. M., Baldridge, R. D., Xu, P. and Graham, T. R. (2015). Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic 16, 35-47. 10.1111/tra.12233 PubMed DOI PMC

Harris, E., Yoshida, K., Cardelli, J. and Bush, J. (2001). Rab11-like GTPase associates with and regulates the structure and function of the contractile vacuole system in dictyostelium. J. Cell Sci. 114, 3035-3045. 10.1242/jcs.114.16.3035 PubMed DOI

Heuser, J. (2006). Evidence for recycling of contractile vacuole membrane during osmoregulation in Dictyostelium amoebae–a tribute to Gunther Gerisch. Eur. J. Cell Biol. 85, 859-871. 10.1016/j.ejcb.2006.05.011 PubMed DOI

Heuser, J., Zhu, Q. and Clarke, M. (1993). Proton pumps populate the contractile vacuoles of Dictyostelium amoebae. J. Cell Biol. 121, 1311-1327. 10.1083/jcb.121.6.1311 PubMed DOI PMC

Ishida, M., Fok, A. K., Aihara, M. S. and Allen, R. D. (1996). Hyperosmotic stress leads to reversible dissociation of the proton pump-bearing tubules from the contractile vacuole complex in Paramecium. J. Cell Sci. 109, 229-237. 10.1242/jcs.109.1.229 PubMed DOI

Ishida, M., Hori, M., Ooba, Y., Kinoshita, M., Matsutani, T., Naito, M., Hagimoto, T., Miyazaki, K., Ueda, S., Miura, K.et al. (2021). A functional Aqp1 gene product localizes on the contractile vacuole complex in paramecium multimicronucleatum. J. Eukaryot. Microbiol. 68, e12843. 10.1111/jeu.12843 PubMed DOI

Iwamoto, M., Mori, C., Hiraoka, Y. and Haraguchi, T. (2014). Puromycin resistance gene as an effective selection marker for ciliate Tetrahymena. Gene 534, 249-255. 10.1016/j.gene.2013.10.049 PubMed DOI

Jiang, Y. Y., Maier, W., Baumeister, R., Minevich, G., Joachimiak, E., Ruan, Z., Kannan, N., Clarke, D., Frankel, J. and Gaertig, J. (2017). The Hippo pathway maintains the equatorial division plane in the ciliate tetrahymena. Genetics 206, 873-888. 10.1534/genetics.117.200766 PubMed DOI PMC

Jiang, Y. Y., Maier, W., Baumeister, R., Joachimiak, E., Ruan, Z., Kannan, N., Clarke, D., Louka, P., Guha, M., Frankel, J.et al. (2019a). Two antagonistic hippo signaling circuits set the division plane at the medial position in the ciliate tetrahymena. Genetics 211, 651-663. 10.1534/genetics.118.301889 PubMed DOI PMC

Jiang, Y. Y., Maier, W., Baumeister, R., Minevich, G., Joachimiak, E., Wloga, D., Ruan, Z., Kannan, N., Bocarro, S., Bahraini, A.et al. (2019b). LF4/MOK and a CDK-related kinase regulate the number and length of cilia in Tetrahymena. PLoS Genet. 15, e1008099. 10.1371/journal.pgen.1008099 PubMed DOI PMC

Jiang, Y. Y., Maier, W., Chukka, U. N., Choromanski, M., Lee, C., Joachimiak, E., Wloga, D., Yeung, W., Kannan, N., Frankel, J.et al. (2020). Mutual antagonism between Hippo signaling and cyclin E drives intracellular pattern formation. J. Cell Biol. 219, e202002077. 10.1083/jcb.202002077 PubMed DOI PMC

Jimenez, V. and Docampo, R. (2015). TcPho91 is a contractile vacuole phosphate sodium symporter that regulates phosphate and polyphosphate metabolism in Trypanosoma cruzi. Mol. Microbiol. 97, 911-925. 10.1111/mmi.13075 PubMed DOI PMC

Jimenez, V., Miranda, K. and Augusto, I. (2022). The old and the new about the contractile vacuole of Trypanosoma cruzi. J. Eukaryot. Microbiol. 69, e12939. 10.1111/jeu.12939 PubMed DOI PMC

Kitching, J. (1939). The physiology of contractile vacuoles: IV. A note on the sources of the water evacuated, and on the function of contractile vacuoles in marine protozoa. J. Exp. Biol. 16, 34-37. 10.1242/jeb.16.1.34 DOI

Linder, J. C. and Staehelin, L. A. (1979). A novel model for fluid secretion by the trypanosomatid contractile vacuole apparatus. J. Cell Biol. 83, 371-382. 10.1083/jcb.83.2.371 PubMed DOI PMC

Mahajan, D., Tie, H. C., Chen, B. and Lu, L. (2019). Dopey1-Mon2 complex binds to dual-lipids and recruits kinesin-1 for membrane trafficking. Nat. Commun. 10, 3218. 10.1038/s41467-019-11056-5 PubMed DOI PMC

Manna, P. T., Barlow, L. D., Ramirez-Macias, I., Herman, E. K. and Dacks, J. B. (2023). Endosomal vesicle fusion machinery is involved with the contractile vacuole in Dictyostelium discoideum. J. Cell Sci. 136, jcs260477. 10.1242/jcs.260477 PubMed DOI

Marchesini, N., Ruiz, F. A., Vieira, M. and Docampo, R. (2002). Acidocalcisomes are functionally linked to the contractile vacuole of Dictyostelium discoideum. J. Biol. Chem. 277, 8146-8153. 10.1074/jbc.M111130200 PubMed DOI

Marshansky, V. and Futai, M. (2008). The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Curr. Opin. Cell Biol. 20, 415-426. 10.1016/j.ceb.2008.03.015 PubMed DOI PMC

Mckanna, J. A. (1976). Fine structure of fluid segregation organelles of Paramecium contractile vacuoles. J. Ultrastruct. Res. 54, 1-10. 10.1016/S0022-5320(76)80002-0 PubMed DOI

Mochizuki, K. (2008). High efficiency transformation of Tetrahymena using a codon-optimized neomycin resistance gene. Gene 425, 79-83. 10.1016/j.gene.2008.08.007 PubMed DOI

Moliere, A., Beer, K. B. and Wehman, A. M. (2022). Dopey proteins are essential but overlooked regulators of membrane trafficking. J. Cell Sci. 135, jcs259628. 10.1242/jcs.259628 PubMed DOI

Montalvetti, A., Rohloff, P. and Docampo, R. (2004). A functional aquaporin co-localizes with the vacuolar proton pyrophosphatase to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J. Biol. Chem. 279, 38673-38682. 10.1074/jbc.M406304200 PubMed DOI

Naitoh, Y., Tominaga, T., Ishida, M., Fok, A., Aihara, M. and Allen, R. (1997). How does the contractile vacuole of Paramecium multimicronucleatum expel fluid? Modelling the expulsion mechanism. J. Exp. Biol. 200, 713-721. 10.1242/jeb.200.4.713 PubMed DOI

Ng, S. F. (1977). Analysis of contractile vacuole pore morphogenesis in Tetrahymena pyriformis by 180 degree rotation of ciliary meridians. J. Cell Sci. 25, 233-246. 10.1242/jcs.25.1.233 PubMed DOI

Ng, S. F. and Frankel, J. (1977). 180 degrees rotation of ciliary rows and its morphogenetic implications in Tetrahymena pyriformis. Proc. Natl. Acad. Sci. USA 74, 1115-1119. 10.1073/pnas.74.3.1115 PubMed DOI PMC

Nishihara, E., Shimmen, T. and Sonobe, S. (2007). New aspects of membrane dynamics of Amoeba proteus contractile vacuole revealed by vital staining with FM 4-64. Protoplasma 231, 25-30. 10.1007/s00709-007-0247-x PubMed DOI

Nolta, K. V., Padh, H. and Steck, T. L. (1993). An immunocytochemical analysis of the vacuolar proton pump in Dictyostelium discoideum. J. Cell Sci. 105, 849-859. 10.1242/jcs.105.3.849 PubMed DOI

Obado, S. O., Field, M. C., Chait, B. T. and Rout, M. P. (2016). High-efficiency isolation of nuclear envelope protein complexes from trypanosomes. Methods Mol. Biol. 1411, 67-80. 10.1007/978-1-4939-3530-7_3 PubMed DOI

Patterson, D. J. (1980). Contractile vacuoles and associated structures: their organization and function. Biol. Rev. 55, 1-46. 10.1111/j.1469-185X.1980.tb00686.x DOI

Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D. J., Inuganti, A., Griss, J., Mayer, G., Eisenacher, M.et al. (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442-D450. 10.1093/nar/gky1106 PubMed DOI PMC

Plattner, H. (2010). Membrane trafficking in protozoa SNARE proteins, H+-ATPase, actin, and other key players in ciliates. Int. Rev. Cell Mol. Biol. 280, 79-184. 10.1016/S1937-6448(10)80003-6 PubMed DOI

Plattner, H. (2013). Contractile vacuole complex--its expanding protein inventory. Int. Rev. Cell Mol. Biol. 306, 371-416. 10.1016/B978-0-12-407694-5.00009-2 PubMed DOI

Plattner, H. (2015). The contractile vacuole complex of protists--new cues to function and biogenesis. Crit. Rev. Microbiol. 41, 218-227. 10.3109/1040841X.2013.821650 PubMed DOI

Ritter, M., Bresgen, N. and Kerschbaum, H. H. (2021). From pinocytosis to methuosis-fluid consumption as a risk factor for cell death. Front. Cell Dev. Biol. 9, 651982. 10.3389/fcell.2021.651982 PubMed DOI PMC

Rohloff, P., Montalvetti, A. and Docampo, R. (2004). Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi. J. Biol. Chem. 279, 52270-52281. 10.1074/jbc.M410372200 PubMed DOI

Ruehle, M. D., Orias, E. and Pearson, C. G. (2016). Tetrahymena as a unicellular model eukaryote: genetic and genomic tools. Genetics 203, 649-665. 10.1534/genetics.114.169748 PubMed DOI PMC

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B.et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676-682. 10.1038/nmeth.2019 PubMed DOI PMC

Schonemann, B., Bledowski, A., Sehring, I. M. and Plattner, H. (2013). A set of SNARE proteins in the contractile vacuole complex of Paramecium regulates cellular calcium tolerance and also contributes to organelle biogenesis. Cell Calcium 53, 204-216. 10.1016/j.ceca.2012.11.016 PubMed DOI

Spallanzani, L. (1776). Opuscoli di fisica animale e vegetabile. Modena: Societa Tipografica.

Sparvoli, D., Richardson, E., Osakada, H., Lan, X., Iwamoto, M., Bowman, G. R., Kontur, C., Bourland, W. A., Lynn, D. H., Pritchard, J. K.et al. (2018). Remodeling the specificity of an endosomal CORVET tether underlies formation of regulated secretory vesicles in the ciliate Tetrahymena thermophila. Curr. Biol. 28, 697-710.e13. 10.1016/j.cub.2018.01.047 PubMed DOI PMC

Sparvoli, D., Zoltner, M., Cheng, C. Y., Field, M. C. and Turkewitz, A. P. (2020). Diversification of CORVET tethers facilitates transport complexity in Tetrahymena thermophila. J. Cell Sci. 133, jcs238659. 10.1242/jcs.238659 PubMed DOI PMC

Spector, D. L., Goldman, R. D. and Leinwand, L. A. (1998). Cells: A Laboratory Manual, Volume 1, Chapter 18, Culture and Manipulation of Tetrahymena. Cold Spring Harbor Laboratory Press.

Stock, C., Allen, R. D. and Naitoh, Y. (2001). How external osmolarity affects the activity of the contractile vacuole complex, the cytosolic osmolarity and the water permeability of the plasma membrane in Paramecium multimicronucleatum. J. Exp. Biol. 204, 291-304. 10.1242/jeb.204.2.291 PubMed DOI

Stock, C., Gronlien, H. K. and Allen, R. D. (2002a). The ionic composition of the contractile vacuole fluid of Paramecium mirrors ion transport across the plasma membrane. Eur. J. Cell Biol. 81, 505-515. 10.1078/0171-9335-00272 PubMed DOI

Stock, C., Gronlien, H. K., Allen, R. D. and Naitoh, Y. (2002b). Osmoregulation in Paramecium: in situ ion gradients permit water to cascade through the cytosol to the contractile vacuole. J. Cell Sci. 115, 2339-2348. 10.1242/jcs.115.11.2339 PubMed DOI

Stover, N. A., Krieger, C. J., Binkley, G., Dong, Q., Fisk, D. G., Nash, R., Sethuraman, A., Weng, S. and Cherry, J. M. (2006). Tetrahymena Genome Database (TGD): a new genomic resource for Tetrahymena thermophila research. Nucleic Acids Res. 34, D500-D503. 10.1093/nar/gkj054 PubMed DOI PMC

Tani, T., Allen, R. D. and Naitoh, Y. (2000). Periodic tension development in the membrane of the in vitro contractile vacuole of Paramecium multimicronucleatum: modification by bisection, fusion and suction. J. Exp. Biol. 203, 239-251. 10.1242/jeb.203.2.239 PubMed DOI

Tani, T., Allen, R. D. and Naitoh, Y. (2001). Cellular membranes that undergo cyclic changes in tension: direct measurement of force generation by an in vitro contractile vacuole of Paramecium multimicronucleatum. J. Cell Sci. 114, 785-795. 10.1242/jcs.114.4.785 PubMed DOI

Tani, T., Tominaga, T., Allen, R. D. and Naitoh, Y. (2002). Development of periodic tension in the contractile vacuole complex membrane of paramecium governs its membrane dynamics. Cell Biol. Int. 26, 853-860. 10.1006/cbir.2002.0937 PubMed DOI

Temesvari, L. A., Rodriguez-Paris, J. M., Bush, J. M., Zhang, L. and Cardelli, J. A. (1996). Involvement of the vacuolar proton-translocating ATPase in multiple steps of the endo-lysosomal system and in the contractile vacuole system of Dictyostelium discoideum. J. Cell Sci. 109, 1479-1495. 10.1242/jcs.109.6.1479 PubMed DOI

Tominaga, T., Allen, R. D. and Naitoh, Y. (1998a). Cyclic changes in the tension of the contractile vacuole complex membrane control its exocytotic cycle. J. Exp. Biol. 201, 2647-2658. 10.1242/jeb.201.18.2647 PubMed DOI

Tominaga, T., Allen, R. D. and Naitoh, Y. (1998b). Electrophysiology of the in situ contractile vacuole complex of Paramecium reveals its membrane dynamics and electrogenic site during osmoregulatory activity. J. Exp. Biol. 201, 451-460. 10.1242/jeb.201.3.451 PubMed DOI

Tominaga, T., Naitoh, Y. and Allen, R. D. (1999). A key function of non-planar membranes and their associated microtubular ribbons in contractile vacuole membrane dynamics is revealed by electrophysiologically controlled fixation of Paramecium. J. Cell Sci. 112, 3733-3745. 10.1242/jcs.112.21.3733 PubMed DOI

Turkewitz, A. P. and Bright, L. J. (2011). A Rab-based view of membrane traffic in the ciliate Tetrahymena thermophila. Small GTPases 2, 222-226. 10.4161/sgtp.2.4.16706 PubMed DOI PMC

Ulrich, P. N., Jimenez, V., Park, M., Martins, V. P., Atwood, J., 3rd, Moles, K., Collins, D., Rohloff, P., Tarleton, R., Moreno, S. N.et al. (2011). Identification of contractile vacuole proteins in Trypanosoma cruzi. PLoS One 6, e18013. 10.1371/journal.pone.0018013 PubMed DOI PMC

Van Der Beek, J., Jonker, C., Van Der Welle, R., Liv, N. and Klumperman, J. (2019). CORVET, CHEVI and HOPS - multisubunit tethers of the endo-lysosomal system in health and disease. J. Cell Sci. 132, jcs189134. 10.1242/jcs.189134 PubMed DOI

Velle, K. B., Garner, R. M., Beckford, T. K., Weeda, M., Liu, C., Kennard, A. S., Edwards, M. and Fritz-Laylin, L. K. (2023). A conserved pressure-driven mechanism for regulating cytosolic osmolarity. Curr. Biol. 33, 3325-3337.e5. 10.1016/j.cub.2023.06.061 PubMed DOI PMC

Wang, J., Chitsaz, F., Derbyshire, M. K., Gonzales, N. R., Gwadz, M., Lu, S., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A.et al. (2023). The conserved domain database in 2023. Nucleic Acids Res. 51, D384-D388. 10.1093/nar/gkac1096 PubMed DOI PMC

Warren, A., Patterson, D. J., Dunthorn, M., Clamp, J. C., Achilles-Day, U. E. M., Aescht, E., Al-Farraj, S. A., Al-Quraishy, S., Al-Rasheid, K., Carr, M.et al. (2017). Beyond the “code”: a guide to the description and documentation of biodiversity in ciliated protists (Alveolata, Ciliophora). J. Eukaryot. Microbiol. 64, 539-554. 10.1111/jeu.12391 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...