Structure and dynamics of the contractile vacuole complex in Tetrahymena thermophila
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM105783
NIGMS NIH HHS - United States
GM105783
NIH HHS - United States
PubMed
37902010
PubMed Central
PMC10729820
DOI
10.1242/jcs.261511
PII: 334473
Knihovny.cz E-zdroje
- Klíčová slova
- Tetrahymena, Contractile vacuole complex, Organelle biogenesis, Organelle dynamics, Osmotic regulation,
- MeSH
- endozomy MeSH
- mitóza MeSH
- proteiny metabolismus MeSH
- Tetrahymena thermophila * MeSH
- vakuoly * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- proteiny MeSH
The contractile vacuole complex (CVC) is a dynamic and morphologically complex membrane organelle, comprising a large vesicle (bladder) linked with a tubular reticulum (spongiome). CVCs provide key osmoregulatory roles across diverse eukaryotic lineages, but probing the mechanisms underlying their structure and function is hampered by the limited tools available for in vivo analysis. In the experimentally tractable ciliate Tetrahymena thermophila, we describe four proteins that, as endogenously tagged constructs, localize specifically to distinct CVC zones. The DOPEY homolog Dop1p and the CORVET subunit Vps8Dp localize both to the bladder and spongiome but with different local distributions that are sensitive to osmotic perturbation, whereas the lipid scramblase Scr7p colocalizes with Vps8Dp. The H+-ATPase subunit Vma4 is spongiome specific. The live imaging permitted by these probes revealed dynamics at multiple scales including rapid exchange of CVC-localized and soluble protein pools versus lateral diffusion in the spongiome, spongiome extension and branching, and CVC formation during mitosis. Although the association with DOP1 and VPS8D implicate the CVC in endosomal trafficking, both the bladder and spongiome might be isolated from bulk endocytic input.
Biotechnology Biomedicine Centre of the Academy of Sciences České Budějovice 370 05 Czech Republic
Department of Molecular Genetics and Cell Biology University of Chicago Chicago IL 60637 USA
Department of Pharmacology University of Minnesota Minneapolis MN 55455 USA
Institute of Molecular Biology Academia Sinica Taipei 115 Taiwan
Zobrazit více v PubMed
Allen, R. D. (2000). The contractile vacuole and its membrane dynamics. BioEssays 22, 1035-1042. 10.1002/1521-1878(200011)22:11<1035::AID-BIES10>3.0.CO;2-A PubMed DOI
Allen, R. D. and Naitoh, Y. (2002). Osmoregulation and contractile vacuoles of protozoa. Int. Rev. Cytol. 215, 351-394. 10.1016/S0074-7696(02)15015-7 PubMed DOI
Ashworth, J. M. and Watts, D. J. (1970). Metabolism of the cellular slime mould Dictyostelium discoideum grown in axenic culture. Biochem. J. 119, 175-182. 10.1042/bj1190175 PubMed DOI PMC
Balderhaar, H. J. and Ungermann, C. (2013). CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J. Cell Sci. 126, 1307-1316. 10.1242/jcs.107805 PubMed DOI
Becker, M., Matzner, M. and Gerisch, G. (1999). Drainin required for membrane fusion of the contractile vacuole in Dictyostelium is the prototype of a protein family also represented in man. EMBO J. 18, 3305-3316. 10.1093/emboj/18.12.3305 PubMed DOI PMC
Betz, W. J. and Bewick, G. S. (1992). Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255, 200-203. 10.1126/science.1553547 PubMed DOI
Betz, W. J., Mao, F. and Smith, C. B. (1996). Imaging exocytosis and endocytosis. Curr. Opin. Neurobiol. 6, 365-371. 10.1016/S0959-4388(96)80121-8 PubMed DOI
Bolte, S. and Cordelières, F. P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213-232. 10.1111/j.1365-2818.2006.01706.x PubMed DOI
Bowman, G. R. and Turkewitz, A. P. (2001). Analysis of a mutant exhibiting conditional sorting to dense core secretory granules in Tetrahymena thermophila. Genetics 159, 1605-1616. 10.1093/genetics/159.4.1605 PubMed DOI PMC
Bright, L. J., Kambesis, N., Nelson, S. B., Jeong, B. and Turkewitz, A. P. (2010). Comprehensive analysis reveals dynamic and evolutionary plasticity of Rab GTPases and membrane traffic in Tetrahymena thermophila. PLoS Genet. 6, e1001155. 10.1371/journal.pgen.1001155 PubMed DOI PMC
Briguglio, J. S., Kumar, S. and Turkewitz, A. P. (2013). Lysosomal sorting receptors are essential for secretory granule biogenesis in Tetrahymena. J. Cell Biol. 203, 537-550. 10.1083/jcb.201305086 PubMed DOI PMC
Bush, J., Nolta, K., Rodriguez-Paris, J., Kaufmann, N., O'halloran, T., Ruscetti, T., Temesvari, L., Steck, T. and Cardelli, J. (1994). A Rab4-like GTPase in Dictyostelium discoideum colocalizes with V-H(+)-ATPases in reticular membranes of the contractile vacuole complex and in lysosomes. J. Cell Sci. 107, 2801-2812. 10.1242/jcs.107.10.2801 PubMed DOI
Cassidy-Hanley, D., Bowen, J., Lee, J. H., Cole, E., Verplank, L. A., Gaertig, J., Gorovsky, M. A. and Bruns, P. J. (1997). Germline and somatic transformation of mating Tetrahymena thermophila by particle bombardment. Genetics 146, 135-147. 10.1093/genetics/146.1.135 PubMed DOI PMC
Cheng, C. Y., Young, J. M., Lin, C. G., Chao, J. L., Malik, H. S. and Yao, M. C. (2016). The piggyBac transposon-derived genes TPB1 and TPB6 mediate essential transposon-like excision during the developmental rearrangement of key genes in Tetrahymena thermophila. Genes Dev. 30, 2724-2736. 10.1101/gad.290460.116 PubMed DOI PMC
Cole, E. and Gaertig, J. (2022). Anterior-posterior pattern formation in ciliates. J. Eukaryot. Microbiol. 69, e12890. 10.1111/jeu.12890 PubMed DOI PMC
Collins, M. P. and Forgac, M. (2020). Regulation and function of V-ATPases in physiology and disease. Biochim. Biophys. Acta Biomembr. 1862, 183341. 10.1016/j.bbamem.2020.183341 PubMed DOI PMC
Cox, J. and Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367-1372. 10.1038/nbt.1511 PubMed DOI
Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N. and Mann, M. (2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513-2526. 10.1074/mcp.M113.031591 PubMed DOI PMC
Damstra, H. G. J., Mohar, B., Eddison, M., Akhmanova, A., Kapitein, L. C. and Tillberg, P. W. (2022). Visualizing cellular and tissue ultrastructure using Ten-fold Robust Expansion Microscopy (TREx). Elife 11, e73775. 10.7554/eLife.73775 PubMed DOI PMC
Docampo, R., Jimenez, V., Lander, N., Li, Z. H. and Niyogi, S. (2013). New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists. Int. Rev. Cell Mol. Biol. 305, 69-113. 10.1016/B978-0-12-407695-2.00002-0 PubMed DOI PMC
Du, F., Edwards, K., Shen, Z., Sun, B., De Lozanne, A., Briggs, S. and Firtel, R. A. (2008). Regulation of contractile vacuole formation and activity in Dictyostelium. EMBO J. 27, 2064-2076. 10.1038/emboj.2008.131 PubMed DOI PMC
Eisen, J. A., Coyne, R. S., Wu, M., Wu, D., Thiagarajan, M., Wortman, J. R., Badger, J. H., Ren, Q., Amedeo, P., Jones, K. M.et al. (2006). Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 4, e286. 10.1371/journal.pbio.0040286 PubMed DOI PMC
Elde, N. C., Morgan, G., Winey, M., Sperling, L. and Turkewitz, A. P. (2005). Elucidation of clathrin-mediated endocytosis in tetrahymena reveals an evolutionarily convergent recruitment of dynamin. PLoS Genet. 1, e52. 10.1371/journal.pgen.0010052 PubMed DOI PMC
Elliott, A. M. and Bak, I. J. (1964). Contractile vacuole+related structures in tetrahymena pyriformis. J. Protozool. 11, 250-261. 10.1111/j.1550-7408.1964.tb01752.x PubMed DOI
Essid, M., Gopaldass, N., Yoshida, K., Merrifield, C. and Soldati, T. (2012). Rab8a regulates the exocyst-mediated kiss-and-run discharge of the Dictyostelium contractile vacuole. Mol. Biol. Cell 23, 1267-1282. 10.1091/mbc.e11-06-0576 PubMed DOI PMC
Fok, A. K., Clarke, M., Ma, L. and Allen, R. D. (1993). Vacuolar H(+)-ATPase of Dictyostelium discoideum. A monoclonal antibody study. J. Cell Sci. 106, 1103-1113. 10.1242/jcs.106.4.1103 PubMed DOI
Fok, A. K., Aihara, M. S., Ishida, M., Nolta, K. V., Steck, T. L. and Allen, R. D. (1995). The pegs on the decorated tubules of the contractile vacuole complex of Paramecium are proton pumps. J. Cell Sci. 108, 3163-3170. 10.1242/jcs.108.10.3163 PubMed DOI
Frankel, J. (1992). Positional information in cells and organisms. Trends Cell Biol. 2, 256-260. 10.1016/0962-8924(92)90191-O PubMed DOI
Frankel, J. (2000). Cell biology of Tetrahymena thermophila. Methods Cell Biol. 62, 27-125. 10.1016/S0091-679X(08)61528-9 PubMed DOI
Gabriel, D., Hacker, U., Kohler, J., Muller-Taubenberger, A., Schwartz, J. M., Westphal, M. and Gerisch, G. (1999). The contractile vacuole network of Dictyostelium as a distinct organelle: its dynamics visualized by a GFP marker protein. J. Cell Sci. 112, 3995-4005. 10.1242/jcs.112.22.3995 PubMed DOI
Gaertig, J., Cruz, M. A., Bowen, J., Gu, L., Pennock, D. G. and Gorovsky, M. A. (1995). Acetylation of lysine 40 in alpha-tubulin is not essential in Tetrahymena thermophila. J. Cell Biol. 129, 1301-1310. 10.1083/jcb.129.5.1301 PubMed DOI PMC
Gerald, N. J., Siano, M. and De Lozanne, A. (2002). The Dictyostelium LvsA protein is localized on the contractile vacuole and is required for osmoregulation. Traffic 3, 50-60. 10.1034/j.1600-0854.2002.30107.x PubMed DOI
Gerisch, G., Heuser, J. and Clarke, M. (2002). Tubular-vesicular transformation in the contractile vacuole system of Dictyostelium. Cell Biol. Int. 26, 845-852. 10.1006/cbir.2002.0938 PubMed DOI
Girard-Dias, W., Alcantara, C. L., Cunha-E-Silva, N., De Souza, W. and Miranda, K. (2012). On the ultrastructural organization of Trypanosoma cruzi using cryopreparation methods and electron tomography. Histochem. Cell Biol. 138, 821-831. 10.1007/s00418-012-1002-8 PubMed DOI
Gorovsky, M. A., Yao, M. C., Keevert, J. B. and Pleger, G. L. (1975). Isolation of micro- and macronuclei of Tetrahymena pyriformis. Methods Cell Biol. 9, 311-327. 10.1016/S0091-679X(08)60080-1 PubMed DOI
Gronlien, H. K., Stock, C., Aihara, M. S., Allen, R. D. and Naitoh, Y. (2002). Relationship between the membrane potential of the contractile vacuole complex and its osmoregulatory activity in Paramecium multimicronucleatum. J. Exp. Biol. 205, 3261-3270. 10.1242/jeb.205.20.3261 PubMed DOI
Hankins, H. M., Baldridge, R. D., Xu, P. and Graham, T. R. (2015). Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic 16, 35-47. 10.1111/tra.12233 PubMed DOI PMC
Harris, E., Yoshida, K., Cardelli, J. and Bush, J. (2001). Rab11-like GTPase associates with and regulates the structure and function of the contractile vacuole system in dictyostelium. J. Cell Sci. 114, 3035-3045. 10.1242/jcs.114.16.3035 PubMed DOI
Heuser, J. (2006). Evidence for recycling of contractile vacuole membrane during osmoregulation in Dictyostelium amoebae–a tribute to Gunther Gerisch. Eur. J. Cell Biol. 85, 859-871. 10.1016/j.ejcb.2006.05.011 PubMed DOI
Heuser, J., Zhu, Q. and Clarke, M. (1993). Proton pumps populate the contractile vacuoles of Dictyostelium amoebae. J. Cell Biol. 121, 1311-1327. 10.1083/jcb.121.6.1311 PubMed DOI PMC
Ishida, M., Fok, A. K., Aihara, M. S. and Allen, R. D. (1996). Hyperosmotic stress leads to reversible dissociation of the proton pump-bearing tubules from the contractile vacuole complex in Paramecium. J. Cell Sci. 109, 229-237. 10.1242/jcs.109.1.229 PubMed DOI
Ishida, M., Hori, M., Ooba, Y., Kinoshita, M., Matsutani, T., Naito, M., Hagimoto, T., Miyazaki, K., Ueda, S., Miura, K.et al. (2021). A functional Aqp1 gene product localizes on the contractile vacuole complex in paramecium multimicronucleatum. J. Eukaryot. Microbiol. 68, e12843. 10.1111/jeu.12843 PubMed DOI
Iwamoto, M., Mori, C., Hiraoka, Y. and Haraguchi, T. (2014). Puromycin resistance gene as an effective selection marker for ciliate Tetrahymena. Gene 534, 249-255. 10.1016/j.gene.2013.10.049 PubMed DOI
Jiang, Y. Y., Maier, W., Baumeister, R., Minevich, G., Joachimiak, E., Ruan, Z., Kannan, N., Clarke, D., Frankel, J. and Gaertig, J. (2017). The Hippo pathway maintains the equatorial division plane in the ciliate tetrahymena. Genetics 206, 873-888. 10.1534/genetics.117.200766 PubMed DOI PMC
Jiang, Y. Y., Maier, W., Baumeister, R., Joachimiak, E., Ruan, Z., Kannan, N., Clarke, D., Louka, P., Guha, M., Frankel, J.et al. (2019a). Two antagonistic hippo signaling circuits set the division plane at the medial position in the ciliate tetrahymena. Genetics 211, 651-663. 10.1534/genetics.118.301889 PubMed DOI PMC
Jiang, Y. Y., Maier, W., Baumeister, R., Minevich, G., Joachimiak, E., Wloga, D., Ruan, Z., Kannan, N., Bocarro, S., Bahraini, A.et al. (2019b). LF4/MOK and a CDK-related kinase regulate the number and length of cilia in Tetrahymena. PLoS Genet. 15, e1008099. 10.1371/journal.pgen.1008099 PubMed DOI PMC
Jiang, Y. Y., Maier, W., Chukka, U. N., Choromanski, M., Lee, C., Joachimiak, E., Wloga, D., Yeung, W., Kannan, N., Frankel, J.et al. (2020). Mutual antagonism between Hippo signaling and cyclin E drives intracellular pattern formation. J. Cell Biol. 219, e202002077. 10.1083/jcb.202002077 PubMed DOI PMC
Jimenez, V. and Docampo, R. (2015). TcPho91 is a contractile vacuole phosphate sodium symporter that regulates phosphate and polyphosphate metabolism in Trypanosoma cruzi. Mol. Microbiol. 97, 911-925. 10.1111/mmi.13075 PubMed DOI PMC
Jimenez, V., Miranda, K. and Augusto, I. (2022). The old and the new about the contractile vacuole of Trypanosoma cruzi. J. Eukaryot. Microbiol. 69, e12939. 10.1111/jeu.12939 PubMed DOI PMC
Kitching, J. (1939). The physiology of contractile vacuoles: IV. A note on the sources of the water evacuated, and on the function of contractile vacuoles in marine protozoa. J. Exp. Biol. 16, 34-37. 10.1242/jeb.16.1.34 DOI
Linder, J. C. and Staehelin, L. A. (1979). A novel model for fluid secretion by the trypanosomatid contractile vacuole apparatus. J. Cell Biol. 83, 371-382. 10.1083/jcb.83.2.371 PubMed DOI PMC
Mahajan, D., Tie, H. C., Chen, B. and Lu, L. (2019). Dopey1-Mon2 complex binds to dual-lipids and recruits kinesin-1 for membrane trafficking. Nat. Commun. 10, 3218. 10.1038/s41467-019-11056-5 PubMed DOI PMC
Manna, P. T., Barlow, L. D., Ramirez-Macias, I., Herman, E. K. and Dacks, J. B. (2023). Endosomal vesicle fusion machinery is involved with the contractile vacuole in Dictyostelium discoideum. J. Cell Sci. 136, jcs260477. 10.1242/jcs.260477 PubMed DOI
Marchesini, N., Ruiz, F. A., Vieira, M. and Docampo, R. (2002). Acidocalcisomes are functionally linked to the contractile vacuole of Dictyostelium discoideum. J. Biol. Chem. 277, 8146-8153. 10.1074/jbc.M111130200 PubMed DOI
Marshansky, V. and Futai, M. (2008). The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Curr. Opin. Cell Biol. 20, 415-426. 10.1016/j.ceb.2008.03.015 PubMed DOI PMC
Mckanna, J. A. (1976). Fine structure of fluid segregation organelles of Paramecium contractile vacuoles. J. Ultrastruct. Res. 54, 1-10. 10.1016/S0022-5320(76)80002-0 PubMed DOI
Mochizuki, K. (2008). High efficiency transformation of Tetrahymena using a codon-optimized neomycin resistance gene. Gene 425, 79-83. 10.1016/j.gene.2008.08.007 PubMed DOI
Moliere, A., Beer, K. B. and Wehman, A. M. (2022). Dopey proteins are essential but overlooked regulators of membrane trafficking. J. Cell Sci. 135, jcs259628. 10.1242/jcs.259628 PubMed DOI
Montalvetti, A., Rohloff, P. and Docampo, R. (2004). A functional aquaporin co-localizes with the vacuolar proton pyrophosphatase to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J. Biol. Chem. 279, 38673-38682. 10.1074/jbc.M406304200 PubMed DOI
Naitoh, Y., Tominaga, T., Ishida, M., Fok, A., Aihara, M. and Allen, R. (1997). How does the contractile vacuole of Paramecium multimicronucleatum expel fluid? Modelling the expulsion mechanism. J. Exp. Biol. 200, 713-721. 10.1242/jeb.200.4.713 PubMed DOI
Ng, S. F. (1977). Analysis of contractile vacuole pore morphogenesis in Tetrahymena pyriformis by 180 degree rotation of ciliary meridians. J. Cell Sci. 25, 233-246. 10.1242/jcs.25.1.233 PubMed DOI
Ng, S. F. and Frankel, J. (1977). 180 degrees rotation of ciliary rows and its morphogenetic implications in Tetrahymena pyriformis. Proc. Natl. Acad. Sci. USA 74, 1115-1119. 10.1073/pnas.74.3.1115 PubMed DOI PMC
Nishihara, E., Shimmen, T. and Sonobe, S. (2007). New aspects of membrane dynamics of Amoeba proteus contractile vacuole revealed by vital staining with FM 4-64. Protoplasma 231, 25-30. 10.1007/s00709-007-0247-x PubMed DOI
Nolta, K. V., Padh, H. and Steck, T. L. (1993). An immunocytochemical analysis of the vacuolar proton pump in Dictyostelium discoideum. J. Cell Sci. 105, 849-859. 10.1242/jcs.105.3.849 PubMed DOI
Obado, S. O., Field, M. C., Chait, B. T. and Rout, M. P. (2016). High-efficiency isolation of nuclear envelope protein complexes from trypanosomes. Methods Mol. Biol. 1411, 67-80. 10.1007/978-1-4939-3530-7_3 PubMed DOI
Patterson, D. J. (1980). Contractile vacuoles and associated structures: their organization and function. Biol. Rev. 55, 1-46. 10.1111/j.1469-185X.1980.tb00686.x DOI
Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D. J., Inuganti, A., Griss, J., Mayer, G., Eisenacher, M.et al. (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442-D450. 10.1093/nar/gky1106 PubMed DOI PMC
Plattner, H. (2010). Membrane trafficking in protozoa SNARE proteins, H+-ATPase, actin, and other key players in ciliates. Int. Rev. Cell Mol. Biol. 280, 79-184. 10.1016/S1937-6448(10)80003-6 PubMed DOI
Plattner, H. (2013). Contractile vacuole complex--its expanding protein inventory. Int. Rev. Cell Mol. Biol. 306, 371-416. 10.1016/B978-0-12-407694-5.00009-2 PubMed DOI
Plattner, H. (2015). The contractile vacuole complex of protists--new cues to function and biogenesis. Crit. Rev. Microbiol. 41, 218-227. 10.3109/1040841X.2013.821650 PubMed DOI
Ritter, M., Bresgen, N. and Kerschbaum, H. H. (2021). From pinocytosis to methuosis-fluid consumption as a risk factor for cell death. Front. Cell Dev. Biol. 9, 651982. 10.3389/fcell.2021.651982 PubMed DOI PMC
Rohloff, P., Montalvetti, A. and Docampo, R. (2004). Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi. J. Biol. Chem. 279, 52270-52281. 10.1074/jbc.M410372200 PubMed DOI
Ruehle, M. D., Orias, E. and Pearson, C. G. (2016). Tetrahymena as a unicellular model eukaryote: genetic and genomic tools. Genetics 203, 649-665. 10.1534/genetics.114.169748 PubMed DOI PMC
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B.et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676-682. 10.1038/nmeth.2019 PubMed DOI PMC
Schonemann, B., Bledowski, A., Sehring, I. M. and Plattner, H. (2013). A set of SNARE proteins in the contractile vacuole complex of Paramecium regulates cellular calcium tolerance and also contributes to organelle biogenesis. Cell Calcium 53, 204-216. 10.1016/j.ceca.2012.11.016 PubMed DOI
Spallanzani, L. (1776). Opuscoli di fisica animale e vegetabile. Modena: Societa Tipografica.
Sparvoli, D., Richardson, E., Osakada, H., Lan, X., Iwamoto, M., Bowman, G. R., Kontur, C., Bourland, W. A., Lynn, D. H., Pritchard, J. K.et al. (2018). Remodeling the specificity of an endosomal CORVET tether underlies formation of regulated secretory vesicles in the ciliate Tetrahymena thermophila. Curr. Biol. 28, 697-710.e13. 10.1016/j.cub.2018.01.047 PubMed DOI PMC
Sparvoli, D., Zoltner, M., Cheng, C. Y., Field, M. C. and Turkewitz, A. P. (2020). Diversification of CORVET tethers facilitates transport complexity in Tetrahymena thermophila. J. Cell Sci. 133, jcs238659. 10.1242/jcs.238659 PubMed DOI PMC
Spector, D. L., Goldman, R. D. and Leinwand, L. A. (1998). Cells: A Laboratory Manual, Volume 1, Chapter 18, Culture and Manipulation of Tetrahymena. Cold Spring Harbor Laboratory Press.
Stock, C., Allen, R. D. and Naitoh, Y. (2001). How external osmolarity affects the activity of the contractile vacuole complex, the cytosolic osmolarity and the water permeability of the plasma membrane in Paramecium multimicronucleatum. J. Exp. Biol. 204, 291-304. 10.1242/jeb.204.2.291 PubMed DOI
Stock, C., Gronlien, H. K. and Allen, R. D. (2002a). The ionic composition of the contractile vacuole fluid of Paramecium mirrors ion transport across the plasma membrane. Eur. J. Cell Biol. 81, 505-515. 10.1078/0171-9335-00272 PubMed DOI
Stock, C., Gronlien, H. K., Allen, R. D. and Naitoh, Y. (2002b). Osmoregulation in Paramecium: in situ ion gradients permit water to cascade through the cytosol to the contractile vacuole. J. Cell Sci. 115, 2339-2348. 10.1242/jcs.115.11.2339 PubMed DOI
Stover, N. A., Krieger, C. J., Binkley, G., Dong, Q., Fisk, D. G., Nash, R., Sethuraman, A., Weng, S. and Cherry, J. M. (2006). Tetrahymena Genome Database (TGD): a new genomic resource for Tetrahymena thermophila research. Nucleic Acids Res. 34, D500-D503. 10.1093/nar/gkj054 PubMed DOI PMC
Tani, T., Allen, R. D. and Naitoh, Y. (2000). Periodic tension development in the membrane of the in vitro contractile vacuole of Paramecium multimicronucleatum: modification by bisection, fusion and suction. J. Exp. Biol. 203, 239-251. 10.1242/jeb.203.2.239 PubMed DOI
Tani, T., Allen, R. D. and Naitoh, Y. (2001). Cellular membranes that undergo cyclic changes in tension: direct measurement of force generation by an in vitro contractile vacuole of Paramecium multimicronucleatum. J. Cell Sci. 114, 785-795. 10.1242/jcs.114.4.785 PubMed DOI
Tani, T., Tominaga, T., Allen, R. D. and Naitoh, Y. (2002). Development of periodic tension in the contractile vacuole complex membrane of paramecium governs its membrane dynamics. Cell Biol. Int. 26, 853-860. 10.1006/cbir.2002.0937 PubMed DOI
Temesvari, L. A., Rodriguez-Paris, J. M., Bush, J. M., Zhang, L. and Cardelli, J. A. (1996). Involvement of the vacuolar proton-translocating ATPase in multiple steps of the endo-lysosomal system and in the contractile vacuole system of Dictyostelium discoideum. J. Cell Sci. 109, 1479-1495. 10.1242/jcs.109.6.1479 PubMed DOI
Tominaga, T., Allen, R. D. and Naitoh, Y. (1998a). Cyclic changes in the tension of the contractile vacuole complex membrane control its exocytotic cycle. J. Exp. Biol. 201, 2647-2658. 10.1242/jeb.201.18.2647 PubMed DOI
Tominaga, T., Allen, R. D. and Naitoh, Y. (1998b). Electrophysiology of the in situ contractile vacuole complex of Paramecium reveals its membrane dynamics and electrogenic site during osmoregulatory activity. J. Exp. Biol. 201, 451-460. 10.1242/jeb.201.3.451 PubMed DOI
Tominaga, T., Naitoh, Y. and Allen, R. D. (1999). A key function of non-planar membranes and their associated microtubular ribbons in contractile vacuole membrane dynamics is revealed by electrophysiologically controlled fixation of Paramecium. J. Cell Sci. 112, 3733-3745. 10.1242/jcs.112.21.3733 PubMed DOI
Turkewitz, A. P. and Bright, L. J. (2011). A Rab-based view of membrane traffic in the ciliate Tetrahymena thermophila. Small GTPases 2, 222-226. 10.4161/sgtp.2.4.16706 PubMed DOI PMC
Ulrich, P. N., Jimenez, V., Park, M., Martins, V. P., Atwood, J., 3rd, Moles, K., Collins, D., Rohloff, P., Tarleton, R., Moreno, S. N.et al. (2011). Identification of contractile vacuole proteins in Trypanosoma cruzi. PLoS One 6, e18013. 10.1371/journal.pone.0018013 PubMed DOI PMC
Van Der Beek, J., Jonker, C., Van Der Welle, R., Liv, N. and Klumperman, J. (2019). CORVET, CHEVI and HOPS - multisubunit tethers of the endo-lysosomal system in health and disease. J. Cell Sci. 132, jcs189134. 10.1242/jcs.189134 PubMed DOI
Velle, K. B., Garner, R. M., Beckford, T. K., Weeda, M., Liu, C., Kennard, A. S., Edwards, M. and Fritz-Laylin, L. K. (2023). A conserved pressure-driven mechanism for regulating cytosolic osmolarity. Curr. Biol. 33, 3325-3337.e5. 10.1016/j.cub.2023.06.061 PubMed DOI PMC
Wang, J., Chitsaz, F., Derbyshire, M. K., Gonzales, N. R., Gwadz, M., Lu, S., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A.et al. (2023). The conserved domain database in 2023. Nucleic Acids Res. 51, D384-D388. 10.1093/nar/gkac1096 PubMed DOI PMC
Warren, A., Patterson, D. J., Dunthorn, M., Clamp, J. C., Achilles-Day, U. E. M., Aescht, E., Al-Farraj, S. A., Al-Quraishy, S., Al-Rasheid, K., Carr, M.et al. (2017). Beyond the “code”: a guide to the description and documentation of biodiversity in ciliated protists (Alveolata, Ciliophora). J. Eukaryot. Microbiol. 64, 539-554. 10.1111/jeu.12391 PubMed DOI PMC