A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
R01 GM105783
NIGMS NIH HHS - United States
R35 GM143052
NIGMS NIH HHS - United States
T32 GM007197
NIGMS NIH HHS - United States
Wellcome Trust - United Kingdom
204697/Z/16/Z
Wellcome Trust - United Kingdom
PubMed
35587496
PubMed Central
PMC9159632
DOI
10.1371/journal.pgen.1010194
PII: PGENETICS-D-21-01256
Knihovny.cz E-zdroje
- MeSH
- exocytóza genetika MeSH
- lyzozomy metabolismus MeSH
- organely metabolismus MeSH
- sekreční vezikuly genetika metabolismus MeSH
- Tetrahymena thermophila * genetika MeSH
- Tetrahymena * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
In the ciliate Tetrahymena thermophila, lysosome-related organelles called mucocysts accumulate at the cell periphery where they secrete their contents in response to extracellular events, a phenomenon called regulated exocytosis. The molecular bases underlying regulated exocytosis have been extensively described in animals but it is not clear whether similar mechanisms exist in ciliates or their sister lineage, the Apicomplexan parasites, which together belong to the ecologically and medically important superphylum Alveolata. Beginning with a T. thermophila mutant in mucocyst exocytosis, we used a forward genetic approach to uncover MDL1 (Mucocyst Discharge with a LamG domain), a novel gene that is essential for regulated exocytosis of mucocysts. Mdl1p is a 40 kDa membrane glycoprotein that localizes to mucocysts, and specifically to a tip domain that contacts the plasma membrane when the mucocyst is docked. This sub-localization of Mdl1p, which occurs prior to docking, underscores a functional asymmetry in mucocysts that is strikingly similar to that of highly polarized secretory organelles in other Alveolates. A mis-sense mutation in the LamG domain results in mucocysts that dock but only undergo inefficient exocytosis. In contrast, complete knockout of MDL1 largely prevents mucocyst docking itself. Mdl1p is physically associated with 9 other proteins, all of them novel and largely restricted to Alveolates, and sedimentation analysis supports the idea that they form a large complex. Analysis of three other members of this putative complex, called MDD (for Mucocyst Docking and Discharge), shows that they also localize to mucocysts. Negative staining of purified MDD complexes revealed distinct particles with a central channel. Our results uncover a novel macromolecular complex whose subunits are conserved within alveolates but not in other lineages, that is essential for regulated exocytosis in T. thermophila.
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
School of Life Sciences University of Dundee Dundee Scotland United Kingdom
Zobrazit více v PubMed
Luzio J.P., Hackmann Y., Dieckmann N.M., and Griffiths G.M. (2014). The biogenesis of lysosomes and lysosome-related organelles. Cold Spring Harb Perspect Biol 6, a016840. doi: 10.1101/cshperspect.a016840 PubMed DOI PMC
Saftig P., and Klumperman J. (2009). Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10, 623–635. doi: 10.1038/nrm2745 PubMed DOI
Marks M.S., Heijnen H.F., and Raposo G. (2013). Lysosome-related organelles: unusual compartments become mainstream. Current opinion in cell biology 25, 495–505. doi: 10.1016/j.ceb.2013.04.008 PubMed DOI PMC
Raposo G., Marks M.S., and Cutler D.F. (2007). Lysosome-related organelles: driving post-Golgi compartments into specialisation. Current opinion in cell biology 19, 394–401. doi: 10.1016/j.ceb.2007.05.001 PubMed DOI PMC
Delevoye C., Marks M.S., and Raposo G. (2019). Lysosome-related organelles as functional adaptations of the endolysosomal system. Curr Opin Cell Biol 59, 147–158. doi: 10.1016/j.ceb.2019.05.003 PubMed DOI PMC
Khawar M.B., Gao H., and Li W. (2019). Mechanism of Acrosome Biogenesis in Mammals. Front Cell Dev Biol 7, 195. doi: 10.3389/fcell.2019.00195 PubMed DOI PMC
Le L., Sires-Campos J., Raposo G., Delevoye C., and Marks M.S. (2021). Melanosome biogenesis in the pigmentation of mammalian skin. Integr Comp Biol. doi: 10.1093/icb/icab078 PubMed DOI PMC
McCormack J.J., Lopes da Silva M., Ferraro F., Patella F., and Cutler D.F. (2017). Weibel-Palade bodies at a glance. J Cell Sci 130, 3611–3617. doi: 10.1242/jcs.208033 PubMed DOI
Burgoyne R.D., and Morgan A. (2003). Secretory granule exocytosis. Physiol Rev 83, 581–632. doi: 10.1152/physrev.00031.2002 PubMed DOI
Ma C.J., Burgess J., and Brill J.A. (2021). Maturing secretory granules: Where secretory and endocytic pathways converge. Adv Biol Regul 80, 100807. doi: 10.1016/j.jbior.2021.100807 PubMed DOI
Bowman S.L., Bi-Karchin J., Le L., and Marks M.S. (2019). The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 20, 404–435. doi: 10.1111/tra.12646 PubMed DOI PMC
Ali B.R., and Seabra M.C. (2005). Targeting of Rab GTPases to cellular membranes. Biochem Soc Trans 33, 652–656. doi: 10.1042/BST0330652 PubMed DOI
Brozzi F., Lajus S., Diraison F., Rajatileka S., Hayward K., Regazzi R., Molnar E., and Varadi A. (2012). MyRIP interaction with MyoVa on secretory granules is controlled by the cAMP-PKA pathway. Mol Biol Cell 23, 4444–4455. doi: 10.1091/mbc.E12-05-0369 PubMed DOI PMC
Conte I.L., Hellen N., Bierings R., Mashanov G.I., Manneville J.B., Kiskin N.I., Hannah M.J., Molloy J.E., and Carter T. (2016). Interaction between MyRIP and the actin cytoskeleton regulates Weibel-Palade body trafficking and exocytosis. J Cell Sci 129, 592–603. doi: 10.1242/jcs.178285 PubMed DOI PMC
Lopes V.S., Ramalho J.S., Owen D.M., Karl M.O., Strauss O., Futter C.E., and Seabra M.C. (2007). The ternary Rab27a-Myrip-Myosin VIIa complex regulates melanosome motility in the retinal pigment epithelium. Traffic 8, 486–499. doi: 10.1111/j.1600-0854.2007.00548.x PubMed DOI PMC
Fan F., Matsunaga K., Wang H., Ishizaki R., Kobayashi E., Kiyonari H., Mukumoto Y., Okunishi K., and Izumi T. (2017). Exophilin-8 assembles secretory granules for exocytosis in the actin cortex via interaction with RIM-BP2 and myosin-VIIa. Elife 6. doi: 10.7554/eLife.26174 PubMed DOI PMC
Bin N.R., Ma K., Tien C.W., Wang S., Zhu D., Park S., Turlova E., Sugita K., Shirakawa R., van der Sluijs P., et al.. (2018). C2 Domains of Munc13-4 Are Crucial for Ca(2+)-Dependent Degranulation and Cytotoxicity in NK Cells. J Immunol 201, 700–713. doi: 10.4049/jimmunol.1800426 PubMed DOI
Rodarte E.M., Ramos M.A., Davalos A.J., Moreira D.C., Moreno D.S., Cardenas E.I., Rodarte A.I., Petrova Y., Molina S., Rendon L.E., et al.. (2018). Munc13 proteins control regulated exocytosis in mast cells. J Biol Chem 293, 345–358. doi: 10.1074/jbc.M117.816884 PubMed DOI PMC
Schmollinger S., Chen S., Strenkert D., Hui C., Ralle M., and Merchant S.S. (2021). Single-cell visualization and quantification of trace metals in Chlamydomonas lysosome-related organelles. Proc Natl Acad Sci U S A 118. doi: 10.1073/pnas.2026811118 PubMed DOI PMC
Docampo R., and Huang G. (2021). The IP3 receptor and Ca(2+) signaling in trypanosomes. Biochim Biophys Acta Mol Cell Res 1868, 118947. doi: 10.1016/j.bbamcr.2021.118947 PubMed DOI PMC
Templeton T.J., and Pain A. (2016). Diversity of extracellular proteins during the transition from the ’proto-apicomplexan’ alveolates to the apicomplexan obligate parasites. Parasitology 143, 1–17. doi: 10.1017/S0031182015001213 PubMed DOI
Ben Chaabene R., Lentini G., and Soldati-Favre D. (2021). Biogenesis and discharge of the rhoptries: Key organelles for entry and hijack of host cells by the Apicomplexa. Mol Microbiol 115, 453–465. doi: 10.1111/mmi.14674 PubMed DOI
Dubois D.J., and Soldati-Favre D. (2019). Biogenesis and secretion of micronemes in Toxoplasma gondii. Cell Microbiol 21, e13018. doi: 10.1111/cmi.13018 PubMed DOI
Venugopal K., and Marion S. (2018). Secretory organelle trafficking in Toxoplasma gondii: A long story for a short travel. Int J Med Microbiol 308, 751–760. doi: 10.1016/j.ijmm.2018.07.007 PubMed DOI
Gimmler A., Korn R., de Vargas C., Audic S., and Stoeck T. (2016). The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates. Sci Rep 6, 33555. doi: 10.1038/srep33555 PubMed DOI PMC
Weisse T. (2017). Functional diversity of aquatic ciliates. Eur J Protistol 61, 331–358. doi: 10.1016/j.ejop.2017.04.001 PubMed DOI
Espinoza-Vergara G., Noorian P., Silva-Valenzuela C.A., Raymond B.B.A., Allen C., Hoque M.M., Sun S., Johnson M.S., Pernice M., Kjelleberg S., et al.. (2019). Vibrio cholerae residing in food vacuoles expelled by protozoa are more infectious in vivo. Nat Microbiol 4, 2466–2474. doi: 10.1038/s41564-019-0563-x PubMed DOI PMC
Coyne R.S., Hannick L., Shanmugam D., Hostetler J.B., Brami D., Joardar V.S., Johnson J., Radune D., Singh I., Badger J.H., et al.. (2011). Comparative genomics of the pathogenic ciliate Ichthyophthirius multifiliis, its free-living relatives and a host species provide insights into adoption of a parasitic lifestyle and prospects for disease control. Genome Biol 12, R100. doi: 10.1186/gb-2011-12-10-r100 PubMed DOI PMC
Newbold C.J., de la Fuente G., Belanche A., Ramos-Morales E., and McEwan N.R. (2015). The Role of Ciliate Protozoa in the Rumen. Front Microbiol 6, 1313. doi: 10.3389/fmicb.2015.01313 PubMed DOI PMC
Rosati G., and Modeo L. (2003). Extrusomes in ciliates: diversification, distribution, and phylogenetic implications. J Eukaryot Microbiol 50, 383–402. doi: 10.1111/j.1550-7408.2003.tb00260.x PubMed DOI
Buonanno F., Anesi A., Guella G., Kumar S., Bharti D., La Terza A., Quassinti L., Bramucci M., and Ortenzi C. (2014). Chemical offense by means of toxicysts in the freshwater ciliate, Coleps hirtus. The Journal of eukaryotic microbiology 61, 293–304. doi: 10.1111/jeu.12106 PubMed DOI
Wessenberg H., and Antipa G. (1970). Capture and ingestion of Paramecium by Didinium nasutum. J Protozool 17, 250–270.
Harumoto T., and Miyake A. (1991). Defensive function of trichocysts in Paramecium. J. Exp. Zool. 260, 84–92.
Ewing M.S., and Kocan K.M. (1992). Invasion and development strategies of Ichthyophthirius multifiliis, a parasitic ciliate of fish. Parasitol Today 8, 204–208. doi: 10.1016/0169-4758(92)90265-4 PubMed DOI
Briguglio J.S., Kumar S., and Turkewitz A.P. (2013). Lysosomal sorting receptors are essential for secretory granule biogenesis in Tetrahymena. The Journal of cell biology 203, 537–550. doi: 10.1083/jcb.201305086 PubMed DOI PMC
Sloves P.J., Delhaye S., Mouveaux T., Werkmeister E., Slomianny C., Hovasse A., Dilezitoko Alayi T., Callebaut I., Gaji R.Y., Schaeffer-Reiss C., et al.. (2012). Toxoplasma Sortilin-like Receptor Regulates Protein Transport and Is Essential for Apical Secretory Organelle Biogenesis and Host Infection. Cell Host Microbe 11, 515–527. doi: 10.1016/j.chom.2012.03.006 PubMed DOI
Morlon-Guyot J., Pastore S., Berry L., Lebrun M., and Daher W. (2015). Toxoplasma gondii Vps11, a subunit of HOPS and CORVET tethering complexes, is essential for the biogenesis of secretory organelles. Cell Microbiol 17, 1157–1178. doi: 10.1111/cmi.12426 PubMed DOI
Sparvoli D., Richardson E., Osakada H., Lan X., Iwamoto M., Bowman G.R., Kontur C., Bourland W.A., Lynn D.H., Pritchard J.K., et al.. (2018). Remodeling the Specificity of an Endosomal CORVET Tether Underlies Formation of Regulated Secretory Vesicles in the Ciliate Tetrahymena thermophila. Curr Biol 28, 697–710 e613. doi: 10.1016/j.cub.2018.01.047 PubMed DOI PMC
Froissard M., Keller A.M., and Cohen J. (2001). ND9P, a novel protein with armadillo-like repeats involved in exocytosis: physiological studies using allelic mutants in paramecium. Genetics 157, 611–620. doi: 10.1093/genetics/157.2.611 PubMed DOI PMC
Froissard M., Keller A.M., Dedieu J.C., and Cohen J. (2004). Novel secretory vesicle proteins essential for membrane fusion display extracellular-matrix domains. Traffic 5, 493–502. doi: 10.1111/j.1600-0854.2004.00194.x PubMed DOI
Gogendeau D., Keller A.M., Yanagi A., Cohen J., and Koll F. (2005). Nd6p, a novel protein with RCC1-like domains involved in exocytosis in Paramecium tetraurelia. Eukaryot Cell 4, 2129–2139. doi: 10.1128/EC.4.12.2129-2139.2005 PubMed DOI PMC
Skouri F., and Cohen J. (1997). Genetic approach to regulated exocytosis using functional complementation in Paramecium: identification of the ND7 gene required for membrane fusion. Mol. Biol. Cell 8, 1063–1071. doi: 10.1091/mbc.8.6.1063 PubMed DOI PMC
Beisson J., Lefort-Tran M., Pouphile M., Rossignol M., and Satir B. (1976). Genetic analysis of membrane differentiation in Paramecium: freeze-fracture study of the trichocyst cycle in wild-type and mutant strains. J. Cell Biol. 69, 126–143. doi: 10.1083/jcb.69.1.126 PubMed DOI PMC
Aquilini E., Cova M.M., Mageswaran S.K., Dos Santos Pacheco N., Sparvoli D., Penarete-Vargas D.M., Najm R., Graindorge A., Suarez C., Maynadier M., et al.. (2021). An Alveolata secretory machinery adapted to parasite host cell invasion. Nat Microbiol. doi: 10.1038/s41564-020-00854-z PubMed DOI PMC
Miyatake Y., Yamano T., and Hanayama R. (2018). Myoferlin-Mediated Lysosomal Exocytosis Regulates Cytotoxicity by Phagocytes. J Immunol 201, 3051–3057. doi: 10.4049/jimmunol.1800268 PubMed DOI
Suarez C., Lentini G., Ramaswamy R., Maynadier M., Aquilini E., Berry-Sterkers L., Cipriano M., Chen A.L., Bradley P., Striepen B., et al.. (2019). A lipid-binding protein mediates rhoptry discharge and invasion in Plasmodium falciparum and Toxoplasma gondii parasites. Nat Commun 10, 4041. doi: 10.1038/s41467-019-11979-z PubMed DOI PMC
Orias E., Flacks M., and Satir B.H. (1983). Isolation and ultrastructural characterization of secretory mutants of Tetrahymena thermophila. J. Cell Sci. 64, 49–67. doi: 10.1242/jcs.64.1.49 PubMed DOI
Melia S.M., Cole E.S., and Turkewitz A.P. (1998). Mutational analysis of regulated exocytosis in Tetrahymena. J Cell Sci 111 (Pt 1), 131–140. doi: 10.1242/jcs.111.1.131 PubMed DOI
Bowman G.R., Elde N.C., Morgan G., Winey M., and Turkewitz A.P. (2005). Core formation and the acquisition of fusion competence are linked during secretory granule maturation in Tetrahymena. Traffic 6, 303–323. doi: 10.1111/j.1600-0854.2005.00273.x PubMed DOI PMC
Turkewitz A.P. (2004). Out with a bang! Tetrahymena as a model system to study secretory granule biogenesis. Traffic 5, 63–68. doi: 10.1046/j.1600-0854.2003.00155.x PubMed DOI
Guerrier S., Plattner H., Richardson E., Dacks J.B., and Turkewitz A.P. (2017). An evolutionary balance: conservation vs innovation in ciliate membrane trafficking. Traffic 18, 18–28. doi: 10.1111/tra.12450 PubMed DOI PMC
Cowan A.T., Bowman G.R., Edwards K.F., Emerson J.J., and Turkewitz A.P. (2005). Genetic, genomic, and functional analysis of the granule lattice proteins in Tetrahymena secretory granules. Mol Biol Cell 16, 4046–4060. doi: 10.1091/mbc.e05-01-0028 PubMed DOI PMC
Bowman G.R., Smith D.G., Michael Siu K.W., Pearlman R.E., and Turkewitz A.P. (2005). Genomic and proteomic evidence for a second family of dense core granule cargo proteins in Tetrahymena thermophila. J Eukaryot Microbiol 52, 291–297. doi: 10.1111/j.1550-7408.2005.00045.x PubMed DOI
Vayssie L., Skouri F., Sperling L., and Cohen J. (2000). Molecular genetics of regulated secretion in Paramecium. Biochimie 82, 269–288. doi: 10.1016/s0300-9084(00)00201-7 PubMed DOI
Gavelis G.S., Wakeman K.C., Tillmann U., Ripken C., Mitarai S., Herranz M., Ozbek S., Holstein T., Keeling P.J., and Leander B.S. (2017). Microbial arms race: Ballistic "nematocysts" in dinoflagellates represent a new extreme in organelle complexity. Sci Adv 3, e1602552. doi: 10.1126/sciadv.1602552 PubMed DOI PMC
Plattner H., and Kissmehl R. (2003). Dense-core secretory vesicle docking and exocytotic membrane fusion in Paramecium cells. Biochim Biophys Acta 1641, 183–193. doi: 10.1016/s0167-4889(03)00092-2 PubMed DOI
Rahaman A., Miao W., and Turkewitz A.P. (2009). Independent transport and sorting of functionally distinct protein families in Tetrahymena dense core secretory granules. Eukaryot Cell. doi: 10.1128/EC.00151-09 PubMed DOI PMC
Bowman G.R., and Turkewitz A.P. (2001). Analysis of a mutant exhibiting conditional sorting to dense core secretory granules in Tetrahymena thermophila. Genetics 159, 1605–1616. doi: 10.1093/genetics/159.4.1605 PubMed DOI PMC
Chilcoat N.D., Melia S.M., Haddad A., and Turkewitz A.P. (1996). Granule lattice protein 1 (Grl1p), an acidic, calcium-binding protein in Tetrahymena thermophila dense-core secretory granules, influences granule size, shape, content organization, and release but not protein sorting or condensation. J Cell Biol 135, 1775–1787. doi: 10.1083/jcb.135.6.1775 PubMed DOI PMC
Jiang Y.Y., Maier W., Baumeister R., Minevich G., Joachimiak E., Ruan Z., Kannan N., Clarke D., Frankel J., and Gaertig J. (2017). The Hippo Pathway Maintains the Equatorial Division Plane in the Ciliate Tetrahymena. Genetics 206, 873–888. doi: 10.1534/genetics.117.200766 PubMed DOI PMC
Kumar S., Briguglio J.S., and Turkewitz A.P. (2014). An aspartyl cathepsin, CTH3, is essential for proprotein processing during secretory granule maturation in Tetrahymena thermophila. Molecular biology of the cell. doi: 10.1091/mbc.E14-03-0833 PubMed DOI PMC
Kumar S., Briguglio J.S., and Turkewitz A.P. (2015). Secretion of Polypeptide Crystals from Tetrahymena thermophila Secretory Organelles (Mucocysts) Depends on Processing by a Cysteine Cathepsin, Cth4p. Eukaryotic cell 14, 817–833. doi: 10.1128/EC.00058-15 PubMed DOI PMC
Kaur H., Sparvoli D., Osakada H., Iwamoto M., Haraguchi T., and Turkewitz A.P. (2017). An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in Tetrahymena thermophila. Mol Biol Cell 28, 1551–1564. doi: 10.1091/mbc.E17-01-0018 PubMed DOI PMC
Miao W., Xiong J., Bowen J., Wang W., Liu Y., Braguinets O., Grigull J., Pearlman R.E., Orias E., and Gorovsky M.A. (2009). Microarray analyses of gene expression during the Tetrahymena thermophila life cycle. PLoS ONE 4, e4429. doi: 10.1371/journal.pone.0004429 PubMed DOI PMC
Xiong J., Lu Y., Feng J., Yuan D., Tian M., Chang Y., Fu C., Wang G., Zeng H., and Miao W. (2013). Tetrahymena functional genomics database (TetraFGD): an integrated resource for Tetrahymena functional genomics. Database: the journal of biological databases and curation 2013, bat008. doi: 10.1093/database/bat008 PubMed DOI PMC
Fahey B., and Degnan B.M. (2012). Origin and evolution of laminin gene family diversity. Mol Biol Evol 29, 1823–1836. doi: 10.1093/molbev/mss060 PubMed DOI
Frankel J. (2000). Cell biology of Tetrahymena thermophila. Methods Cell Biol 62, 27–125. doi: 10.1016/s0091-679x(08)61528-9 PubMed DOI
Maley F., Trimble R.B., Tarentino A.L., and Plummer T.H. Jr. (1989). Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 180, 195–204. doi: 10.1016/0003-2697(89)90115-2 PubMed DOI
Chasen N.M., Asady B., Lemgruber L., Vommaro R.C., Kissinger J.C., Coppens I., and Moreno S.N.J. (2017). A Glycosylphosphatidylinositol-Anchored Carbonic Anhydrase-Related Protein of Toxoplasma gondii Is Important for Rhoptry Biogenesis and Virulence. mSphere 2. doi: 10.1128/mSphere.00027-17 PubMed DOI PMC
Zivanov J., Nakane T., Forsberg B.O., Kimanius D., Hagen W.J., Lindahl E., and Scheres S.H. (2018). New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7. doi: 10.7554/eLife.42166 PubMed DOI PMC
Jahn R., and Fasshauer D. (2012). Molecular machines governing exocytosis of synaptic vesicles. Nature 490, 201–207. doi: 10.1038/nature11320 PubMed DOI PMC
Turkewitz A.P., Madeddu L., and Kelly R.B. (1991). Maturation of dense core granules in wild type and mutant Tetrahymena thermophila. EMBO J. 10, 1979–1987. doi: 10.1002/j.1460-2075.1991.tb07727.x PubMed DOI PMC
Adams J.C., and Lawler J. (2011). The thrombospondins. Cold Spring Harb Perspect Biol 3, a009712. doi: 10.1101/cshperspect.a009712 PubMed DOI PMC
Meng L., and Yan D. (2020). NLR-1/CASPR Anchors F-Actin to Promote Gap Junction Formation. Dev Cell 55, 574–587 e573. doi: 10.1016/j.devcel.2020.10.020 PubMed DOI PMC
Hohenester E. (2019). Laminin G-like domains: dystroglycan-specific lectins. Curr Opin Struct Biol 56, 56–63. doi: 10.1016/j.sbi.2018.11.007 PubMed DOI PMC
Hohenester E., and Yurchenco P.D. (2013). Laminins in basement membrane assembly. Cell Adh Migr 7, 56–63. doi: 10.4161/cam.21831 PubMed DOI PMC
Weide T., Herrmann L., Bockau U., Niebur N., Aldag I., Laroy W., Contreras R., Tiedtke A., and Hartmann M.W. (2006). Secretion of functional human enzymes by Tetrahymena thermophila. BMC Biotechnol 6, 19. doi: 10.1186/1472-6750-6-19 PubMed DOI PMC
Calow J., Behrens A.J., Mader S., Bockau U., Struwe W.B., Harvey D.J., Cormann K.U., Nowaczyk M.M., Loser K., Schinor D., et al.. (2016). Antibody production using a ciliate generates unusual antibody glycoforms displaying enhanced cell-killing activity. MAbs 8, 1498–1511. doi: 10.1080/19420862.2016.1228504 PubMed DOI PMC
Verbsky J.W., and Turkewitz A.P. (1998). Proteolytic processing and Ca2+-binding activity of dense-core vesicle polypeptides in Tetrahymena. Mol. Biol. Cell 9, 497–511. doi: 10.1091/mbc.9.2.497 PubMed DOI PMC
Kontur C., Kumar S., Lan X., Pritchard J.K., and Turkewitz A.P. (2016). Whole Genome Sequencing Identifies a Novel Factor Required for Secretory Granule Maturation in Tetrahymena thermophila. G3. doi: 10.1534/g3.116.028878 PubMed DOI PMC
Kissmehl R., Schilde C., Wassmer T., Danzer C., Nuehse K., Lutter K., and Plattner H. (2007). Molecular identification of 26 syntaxin genes and their assignment to the different trafficking pathways in Paramecium. Traffic 8, 523–542. doi: 10.1111/j.1600-0854.2007.00544.x PubMed DOI
Plattner H. (2010). Membrane trafficking in protozoa SNARE proteins, H+-ATPase, actin, and other key players in ciliates. Int Rev Cell Mol Biol 280, 79–184. doi: 10.1016/S1937-6448(10)80003-6 PubMed DOI
Liu L., Wyroba E., and Satir B.H. (2011). RNAi knockdown of parafusin inhibits the secretory pathway. Eur J Cell Biol 90, 844–853. doi: 10.1016/j.ejcb.2011.06.002 PubMed DOI
Satir B.H., Wyroba E., Liu L., Lethan M., Satir P., and Christensen S.T. (2015). Evolutionary implications of localization of the signaling scaffold protein parafusin to both cilia and the nucleus. Cell Biol Int 39, 136–145. doi: 10.1002/cbin.10337 PubMed DOI
Wyroba E., Widding Hoyer A., Storgaard P., and Satir B.H. (1995). Mammalian homologue of the calcium-sensitive phosphoglycoprotein, parafusin. Eur. J. Cell Biol. 68, 419–426. PubMed
Chilcoat N.D., and Turkewitz A.P. (1997). In vivo analysis of the major exocytosis-sensitive phosphoprotein in Tetrahymena. J. Cell Biol. 139, 1197–1207. doi: 10.1083/jcb.139.5.1197 PubMed DOI PMC
Orias E., and Hamilton E.P. (2000). Genetically sorting a collection of Tetrahymena mutants. Methods Cell Biol 62, 253–263. doi: 10.1016/s0091-679x(08)61535-6 PubMed DOI
Orias E., Hamilton E.P., and Orias J.D. (2000). Tetrahymena as a laboratory organism: useful strains, cell culture, and cell line maintenance. Methods Cell Biol 62, 189–211. doi: 10.1016/s0091-679x(08)61530-7 PubMed DOI
Langmead B., and Salzberg S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359. doi: 10.1038/nmeth.1923 PubMed DOI PMC
Jiang Y.Y., Maier W., Baumeister R., Joachimiak E., Ruan Z., Kannan N., Clarke D., Louka P., Guha M., Frankel J., et al.. (2019). Two Antagonistic Hippo Signaling Circuits Set the Division Plane at the Medial Position in the Ciliate Tetrahymena. Genetics 211, 651–663. doi: 10.1534/genetics.118.301889 PubMed DOI PMC
Afgan E., Baker D., Batut B., van den Beek M., Bouvier D., Cech M., Chilton J., Clements D., Coraor N., Gruning B.A., et al.. (2018). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46, W537–W544. doi: 10.1093/nar/gky379 PubMed DOI PMC
Eisen J.A., Coyne R.S., Wu M., Wu D., Thiagarajan M., Wortman J.R., Badger J.H., Ren Q., Amedeo P., Jones K.M., et al.. (2006). Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS biology 4, e286. doi: 10.1371/journal.pbio.0040286 PubMed DOI PMC
Cingolani P., Platts A., Wang le L., Coon M., Nguyen T., Wang L., Land S.J., Lu X., and Ruden D.M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92. doi: 10.4161/fly.19695 PubMed DOI PMC
Hamilton E.P., Kapusta A., Huvos P.E., Bidwell S.L., Zafar N., Tang H., Hadjithomas M., Krishnakumar V., Badger J.H., Caler E.V., et al.. (2016). Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. Elife 5. PubMed PMC
Mochizuki K. (2008). High efficiency transformation of Tetrahymena using a codon-optimized neomycin resistance gene. Gene 425, 79–83. doi: 10.1016/j.gene.2008.08.007 PubMed DOI
Kataoka K., Schoeberl U.E., and Mochizuki K. (2010). Modules for C-terminal epitope tagging of Tetrahymena genes. J Microbiol Methods 82, 342–346. doi: 10.1016/j.mimet.2010.07.009 PubMed DOI PMC
Cassidy-Hanley D., Bowen J., Lee J.H., Cole E., VerPlank L.A., Gaertig J., Gorovsky M.A., and Bruns P.J. (1997). Germline and somatic transformation of mating Tetrahymena thermophila by particle bombardment. Genetics 146, 135–147. doi: 10.1093/genetics/146.1.135 PubMed DOI PMC
Obado S.O., Field M.C., Chait B.T., and Rout M.P. (2016). High-Efficiency Isolation of Nuclear Envelope Protein Complexes from Trypanosomes. Methods Mol Biol 1411, 67–80. doi: 10.1007/978-1-4939-3530-7_3 PubMed DOI
Sparvoli D., Zoltner M., Cheng C.Y., Field M.C., and Turkewitz A.P. (2020). Diversification of CORVET tethers facilitates transport complexity in Tetrahymena thermophila. J Cell Sci 133. doi: 10.1242/jcs.238659 PubMed DOI PMC
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., and Mann M. (2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13, 2513–2526. doi: 10.1074/mcp.M113.031591 PubMed DOI PMC
Cox J., and Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26, 1367–1372. doi: 10.1038/nbt.1511 PubMed DOI
Stover N.A., Krieger C.J., Binkley G., Dong Q., Fisk D.G., Nash R., Sethuraman A., Weng S., and Cherry J.M. (2006). Tetrahymena Genome Database (TGD): a new genomic resource for Tetrahymena thermophila research. Nucleic Acids Res 34, D500–503. doi: 10.1093/nar/gkj054 PubMed DOI PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., and Cox J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13, 731–740. doi: 10.1038/nmeth.3901 PubMed DOI
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al.. (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47, D442–D450. doi: 10.1093/nar/gky1106 PubMed DOI PMC
Ota T. (2018). Grl1 Protein is a Candidate K Antigen in Tetrahymena thermophila. Protist 169, 321–332. doi: 10.1016/j.protis.2018.03.004 PubMed DOI