Migration of repetitive DNAs during evolution of the permanent translocation heterozygosity in the oyster plant (Tradescantia section Rhoeo)

. 2022 Sep ; 131 (3) : 163-173. [epub] 20220727

Jazyk angličtina Země Rakousko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35896680
Odkazy

PubMed 35896680
PubMed Central PMC9470650
DOI 10.1007/s00412-022-00776-1
PII: 10.1007/s00412-022-00776-1
Knihovny.cz E-zdroje

Due to translocation heterozygosity for all chromosomes in the cell complement, the oyster plant (Tradescantia spathacea) forms a complete meiotic ring. It also shows Rabl-arrangement at interphase, featured by polar centromere clustering. We demonstrate that the pericentromeric regions of the oyster plant are homogenized in concert by three subtelomeric sequences: 45S rDNA, (TTTAGGG)n motif, and TSrepI repeat. The Rabl-based clustering of pericentromeric regions may have been an excellent device to combine the subtelomere-pericentromere sequence migration (via inversions) with the pericentromere-pericentromere DNA movement (via whole arm translocations) that altogether led to the concerted homogenization of all the pericentromeric domains by the subtelomeric sequences. We also show that the repetitive sequence landscape of interstitial chromosome regions contains many loci consisting of Arabidopsis-type telomeric sequence or of TSrepI repeat, and it is extensively heterozygous. However, the sequence arrangement on some chromosomal arms suggest segmental inversions that are fully or partially homozygous, a fact that could be explained if the inversions started to create linkages already in a bivalent-forming ancestor. Remarkably, the subterminal TSrepI loci reside exclusively on the longer arms that could be due to sharing sequences between similarly-sized chromosomal arms in the interphase nucleus. Altogether, our study spotlights the supergene system of the oyster plant as an excellent model to link complex chromosome rearrangements, evolution of repetitive sequences, and nuclear architecture.

Zobrazit více v PubMed

Belling J. The attachement of chromosomes at the reduction division in flowering plants. J Genet. 1927;18:177–205. doi: 10.1007/BF02983147. DOI

Berdan EL, Blanckaert A, Butlin RK, Bank C. Deleterious mutation accumulation and the long term fate of chromosomal inversions. PLoS Genet. 2021;17:e1009411. doi: 10.1371/journal.pgen.1009411. PubMed DOI PMC

Brown SP, Levin DA. Social dilemmas among supergenes: intragenomic sexual conflict and a selfing solution in Oenothera. Evolution. 2011;65:3360–3367. doi: 10.1111/j.1558-5646.2011.01409.x. PubMed DOI PMC

Bulazel KV, Ferreri GC, Eldridge MD, O'Neill RJ (2007) Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biol:R170 10.1186/gb-2007-8-8-r170 PubMed PMC

Chandley AC. A model for effective pairing and recombination at meiosis based on early replicating sites (R-bands) along chromosomes. Hum Genet. 1986;72:50–57. doi: 10.1007/BF00278817. PubMed DOI

Cleland RE. Oenothera. Cytogenetics and evolution. London and New York: Academic Press; 1972.

Cuadrado A, Cardoso M, Jouve N. Physical organization of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenet Genome Res. 2008;120:210–219. doi: 10.1159/000121069. PubMed DOI

Cuadrado A, Golczyk H, Jouve N. A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential used and possible target structures detected. Chromosome Res. 2009;17:755–762. doi: 10.1007/s10577-009-9060-z. PubMed DOI

Darlington CD. Chromosome behaviour and structural hybridity in the Tradescantiae. II. J Genet. 1937;35:259–280. doi: 10.1007/BF02982353. DOI

Eichler EE. Repetitive conundrums of centromere structure and function. Hum Mol Genet. 1999;8:151–155. doi: 10.1093/hmg/8.2.151. PubMed DOI

Flagg RO. A mutation and inversion in Rhoeo discolor. J Hered. 1958;49:185–188. doi: 10.1093/oxfordjournals.jhered.a106801. DOI

Golczyk H. Structural heterozygosity, duplication of telomeric (TTTAGGG)n clusters and B chromosome architecture in Tradescantia virginiana L. Cytogenet Genome Res. 2011;134:234–242. doi: 10.1159/000328915. PubMed DOI

Golczyk H. Cytogenetics of the permanent translocation heterozygote Rhoeo spathacea var. variegata. Implications for complex chromosome rearrangements in Rhoeo. Caryologia. 2011;64:325–334. doi: 10.1080/00087114.2011.10589799. DOI

Golczyk H. The arrangement of pericentromeres during meiotic prophase I in the permanent translocation heterozygote Rhoeo spathacea. Caryologia. 2011;64:197–202. doi: 10.1080/00087114.2002.10589784. DOI

Golczyk H. Cytogenetics of Tradescantia spathacea (syn. Rhoeo spathacea): a review. Ann UMCS Sect C. 2013;68:39–53. doi: 10.2478/v10067-012-0023-y. DOI

Golczyk H. A simple non-toxic ethylene carbonate fluorescence in situ hybridization (EC-FISH) for simultaneous detection of repetitive DNA sequences and fluorescent bands in plants. Protoplasma. 2019;256:873–880. doi: 10.1007/s00709-019-01345-7. PubMed DOI PMC

Golczyk H, Hasterok R, Joachimiak AJ. FISH-aimed karyotyping and characterization of Renner complexes in permanent heterozygote Rhoeo spathacea. Genome. 2005;48:145–153. doi: 10.1139/g04-093. PubMed DOI

Golczyk H, Musiał K, Rauwolf U, Meurer J, Herrmann RG, Greiner S. Meiotic events in Oenothera - a non-standard pattern of chromosome behaviour. Genome. 2008;51:952–958. doi: 10.1139/G08-081. PubMed DOI

Golczyk H, Hasterok R, Szklarczyk M. Ribosomal DNA, tri- and bipartite pericentromeres in the permanent translocation heterozygote Rhoeo spathacea. Cell Mol Biol Lett. 2010;15:65–664. doi: 10.2478/s11658-010-0034-0. PubMed DOI PMC

Golczyk H, Massouh A, Greiner S. Translocations of chromosome end-segments and facultative heterochromatin promote meiotic ring formation in evening primroses. Plant Cell. 2014;26:1280–1293. doi: 10.1105/tpc.114.122655. PubMed DOI PMC

Golczyk H, Limanówka A, Uchman-Książek A. Pericentromere clustering in Tradescantia section Rhoeo involves self-associations of AT- and GC-rich heterochromatin fractions, is developmentally regulated, and increases during differentiation. Chromosoma. 2020;129:227–242. doi: 10.1007/s00412-020-00740-x. PubMed DOI PMC

Gong WJ, McKim KS, Hawley RS. All paired up with no place to go: pairing, synapsis, and DSB formation in a balancer heterozygote. PLoS Genet. 2005;1:e67. doi: 10.1371/journal.pgen.0010067. PubMed DOI PMC

Grabowska-Joachimiak A, Kula A, Gernand-Kliefoth D, Joachimiak AJ. Karyotype structure and chromosome fragility in the grass Phleum echinatum Host. Protoplasma. 2015;252:301–306. doi: 10.1007/s00709-014-0681-5. PubMed DOI PMC

Guo WJ, Ling J, Li P. Consensus features of microsatellite distribution: microsatellite contents are universally correlated with recombination rates and are preferentially depressed by centromeres in multicellular eukaryotic genomes. Genomics. 2009;93:323–331. doi: 10.1016/j.ygeno.2008.12.009. PubMed DOI

Gutiérrez-Valencia J, Hughes W, Berdan EL, Slotte T (2021) The genomic architecture and evolutionary fates of supergenes. Genome Biol Evol:evab057. 10.1093/gbe/evab057 PubMed PMC

Hollister JD, Greiner S, Johnson MTJ, Wright SI. Hybridization and a loss of sex shape genome-wide diversity and the origin of species in the evening primroses (Oenothera, Onagraceae) New Phytol. 2019;224:1372–1380. doi: 10.1111/nph.16053. PubMed DOI

Holsinger KE, Ellstrand NC. The evolution and ecology of permanent translocation heterozygotes. Am Nat. 1984;124:48–71. doi: 10.1086/284251. DOI

Hřibová E, Neumann P, Matsumoto T, Roux N, Macas J, Doležel J. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol. 2010;10:204. doi: 10.1186/1471-2229-10-204. PubMed DOI PMC

Huang K, Rieseberg LH. Frequency, origins, and evolutionary role of chromosomal inversions in plants. Front Plant Sci. 2020;11:296. doi: 10.3389/fpls.2020.00296. PubMed DOI PMC

Huang M, Li H, Zhang L, Gao F, Wang P, Hu Y, Yan S, Zhao L, Zhang Q, Tan J, Liu X, He S, Li L. Plant 45S rDNA clusters are fragile sites and their instability is associated with epigenetic alterations. PLoS ONE. 2012;7:e35139. doi: 10.1371/journal.pone.0035139. PubMed DOI PMC

Ijdo JW, Wells RA, Baldini A, Reeders ST. Improved telomere detection using a telomere probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19:4780. doi: 10.1093/nar/19.17.4780. PubMed DOI PMC

Loidl J. Conservation and variability of meiosis across the eukaryotes. Annu Rev Genet. 2016;50:293–316. doi: 10.1146/annurev-genet-120215-035100. PubMed DOI

Naranjo T, Corredor E. Clustering of centromeres precedes bivalent chromosome pairing of polyploid wheats. Trends Plant Sci. 2004;9:214–217. doi: 10.1016/j.tplants.2004.03.001. PubMed DOI

Natarajan AT, Natarajan S. The heterochromatin of Rhoeo discolor. Hereditas. 1972;72:323–330. doi: 10.1111/j.1601-5223.1972.tb01057.x. DOI

Pouokam M, Cruz B, Burgess S, Segal MR, Vazquez M, Arsuaga JM. The Rabl configuration limits topological entanglement of chromosomes in budding yeast. Sci Rep. 2019;9:6795. doi: 10.1038/s41598-019-42967-4. PubMed DOI PMC

Rabl C. Uber Zellteilung. Morph Jb. 1885;10:214–330.

Raskina O, Barber JC, Nevo E, Belyayev A. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res. 2008;120:351–357. doi: 10.1159/000121084. PubMed DOI

Rauwolf U, Golczyk H, Meurer J, Herrmann RG, Greiner S. Molecular marker systems for Oenothera genetics. Genetics. 2008;180:1289–1306. doi: 10.1534/genetics.108.091249. PubMed DOI PMC

Rauwolf U, Greiner S, Mracek RM, Golczyk H, Mohler V, Herrmann RG, Meurer J. Uncouping of sexual reproduction from homologous recombination in homozygous Oenothera species. Heredity. 2011;107:87–94. doi: 10.1038/hdy.2010.171. PubMed DOI PMC

Sax K. Chromosome ring formation in Rhoeo discolor. Cytologia. 1931;3:36–53. doi: 10.1508/cytologia.3.36. DOI

Schwander T, Libbrecht R, Keller L. Supergenes and complex phenotypes. Curr Biol. 2014;24:R288–R294. doi: 10.1016/j.cub.2014.01.056. PubMed DOI

Schweizer D, Loidl J. A model for heterochromatin dispersion and the evolution of C band patterns. Chromosomes Today. 1987;9:61–74. doi: 10.1007/978-94-010-9166-4_7. DOI

Snow R. Permanent translocation heterozygosity associated with an inversion system in Paeonia brownii. J Hered. 1969;60:103–106. doi: 10.1093/oxfordjournals.jhered.a107946. DOI

Sonnhammer EL, Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995;167:GC1–10. doi: 10.1016/0378-1119(95)00714-8. PubMed DOI

Stack SM, Soulliere DL. The relation between synapsis and chiasma formation in Rhoeo spathacea. Chromosoma. 1984;90:72–83. doi: 10.1007/BF00352281. DOI

Staden R. The Staden sequence analysis package. Mol Biotechnol. 1996;5:233–241. doi: 10.1007/BF02900361. PubMed DOI

Straub J. Untersuchungen über die zytologische Grundlage der Komplexheterozygotie. Chromosoma. 1941;2:64–76. doi: 10.1007/BF00325953. DOI

Therizols P, Duong T, Dujon B, Zimmer C, Fabre E. Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres. Proc Natl Acad Sci U S A. 2010;107:2025–2030. doi: 10.1073/pnas.0914187107. PubMed DOI PMC

Torgasheva AA, Borodin PM. Synapsis and recombination in inversion heterozygotes. Biochem Soc Trans. 2010;38:1676–1680. doi: 10.1042/BST0381676. PubMed DOI

Unfried I, Gruendler P. Nucleotide sequence of the 5.8S and 25S rRNA genes and the internal transcribed spacers from Arabidopsis thaliana. Nucleic Acids Res. 1990;18:4011. doi: 10.1093/nar/18.13.4011. PubMed DOI PMC

Wielstra B. Balanced lethal systems. Curr Biol. 2020;30:R742–R743. doi: 10.1016/j.cub.2020.05.011. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...