Migration of repetitive DNAs during evolution of the permanent translocation heterozygosity in the oyster plant (Tradescantia section Rhoeo)
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35896680
PubMed Central
PMC9470650
DOI
10.1007/s00412-022-00776-1
PII: 10.1007/s00412-022-00776-1
Knihovny.cz E-zdroje
- Klíčová slova
- Inversions, Permanent translocation heterozygosity, Rabl configuration, Repetitive DNA, Tradescantia spathacea, Translocations,
- MeSH
- heterochromatin MeSH
- hybridizace in situ fluorescenční MeSH
- Ostreidae * genetika MeSH
- repetitivní sekvence nukleových kyselin MeSH
- ribozomální DNA genetika MeSH
- Tradescantia * genetika MeSH
- translokace genetická MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heterochromatin MeSH
- ribozomální DNA MeSH
Due to translocation heterozygosity for all chromosomes in the cell complement, the oyster plant (Tradescantia spathacea) forms a complete meiotic ring. It also shows Rabl-arrangement at interphase, featured by polar centromere clustering. We demonstrate that the pericentromeric regions of the oyster plant are homogenized in concert by three subtelomeric sequences: 45S rDNA, (TTTAGGG)n motif, and TSrepI repeat. The Rabl-based clustering of pericentromeric regions may have been an excellent device to combine the subtelomere-pericentromere sequence migration (via inversions) with the pericentromere-pericentromere DNA movement (via whole arm translocations) that altogether led to the concerted homogenization of all the pericentromeric domains by the subtelomeric sequences. We also show that the repetitive sequence landscape of interstitial chromosome regions contains many loci consisting of Arabidopsis-type telomeric sequence or of TSrepI repeat, and it is extensively heterozygous. However, the sequence arrangement on some chromosomal arms suggest segmental inversions that are fully or partially homozygous, a fact that could be explained if the inversions started to create linkages already in a bivalent-forming ancestor. Remarkably, the subterminal TSrepI loci reside exclusively on the longer arms that could be due to sharing sequences between similarly-sized chromosomal arms in the interphase nucleus. Altogether, our study spotlights the supergene system of the oyster plant as an excellent model to link complex chromosome rearrangements, evolution of repetitive sequences, and nuclear architecture.
Zobrazit více v PubMed
Belling J. The attachement of chromosomes at the reduction division in flowering plants. J Genet. 1927;18:177–205. doi: 10.1007/BF02983147. DOI
Berdan EL, Blanckaert A, Butlin RK, Bank C. Deleterious mutation accumulation and the long term fate of chromosomal inversions. PLoS Genet. 2021;17:e1009411. doi: 10.1371/journal.pgen.1009411. PubMed DOI PMC
Brown SP, Levin DA. Social dilemmas among supergenes: intragenomic sexual conflict and a selfing solution in Oenothera. Evolution. 2011;65:3360–3367. doi: 10.1111/j.1558-5646.2011.01409.x. PubMed DOI PMC
Bulazel KV, Ferreri GC, Eldridge MD, O'Neill RJ (2007) Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biol:R170 10.1186/gb-2007-8-8-r170 PubMed PMC
Chandley AC. A model for effective pairing and recombination at meiosis based on early replicating sites (R-bands) along chromosomes. Hum Genet. 1986;72:50–57. doi: 10.1007/BF00278817. PubMed DOI
Cleland RE. Oenothera. Cytogenetics and evolution. London and New York: Academic Press; 1972.
Cuadrado A, Cardoso M, Jouve N. Physical organization of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenet Genome Res. 2008;120:210–219. doi: 10.1159/000121069. PubMed DOI
Cuadrado A, Golczyk H, Jouve N. A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential used and possible target structures detected. Chromosome Res. 2009;17:755–762. doi: 10.1007/s10577-009-9060-z. PubMed DOI
Darlington CD. Chromosome behaviour and structural hybridity in the Tradescantiae. II. J Genet. 1937;35:259–280. doi: 10.1007/BF02982353. DOI
Eichler EE. Repetitive conundrums of centromere structure and function. Hum Mol Genet. 1999;8:151–155. doi: 10.1093/hmg/8.2.151. PubMed DOI
Flagg RO. A mutation and inversion in Rhoeo discolor. J Hered. 1958;49:185–188. doi: 10.1093/oxfordjournals.jhered.a106801. DOI
Golczyk H. Structural heterozygosity, duplication of telomeric (TTTAGGG)n clusters and B chromosome architecture in Tradescantia virginiana L. Cytogenet Genome Res. 2011;134:234–242. doi: 10.1159/000328915. PubMed DOI
Golczyk H. Cytogenetics of the permanent translocation heterozygote Rhoeo spathacea var. variegata. Implications for complex chromosome rearrangements in Rhoeo. Caryologia. 2011;64:325–334. doi: 10.1080/00087114.2011.10589799. DOI
Golczyk H. The arrangement of pericentromeres during meiotic prophase I in the permanent translocation heterozygote Rhoeo spathacea. Caryologia. 2011;64:197–202. doi: 10.1080/00087114.2002.10589784. DOI
Golczyk H. Cytogenetics of Tradescantia spathacea (syn. Rhoeo spathacea): a review. Ann UMCS Sect C. 2013;68:39–53. doi: 10.2478/v10067-012-0023-y. DOI
Golczyk H. A simple non-toxic ethylene carbonate fluorescence in situ hybridization (EC-FISH) for simultaneous detection of repetitive DNA sequences and fluorescent bands in plants. Protoplasma. 2019;256:873–880. doi: 10.1007/s00709-019-01345-7. PubMed DOI PMC
Golczyk H, Hasterok R, Joachimiak AJ. FISH-aimed karyotyping and characterization of Renner complexes in permanent heterozygote Rhoeo spathacea. Genome. 2005;48:145–153. doi: 10.1139/g04-093. PubMed DOI
Golczyk H, Musiał K, Rauwolf U, Meurer J, Herrmann RG, Greiner S. Meiotic events in Oenothera - a non-standard pattern of chromosome behaviour. Genome. 2008;51:952–958. doi: 10.1139/G08-081. PubMed DOI
Golczyk H, Hasterok R, Szklarczyk M. Ribosomal DNA, tri- and bipartite pericentromeres in the permanent translocation heterozygote Rhoeo spathacea. Cell Mol Biol Lett. 2010;15:65–664. doi: 10.2478/s11658-010-0034-0. PubMed DOI PMC
Golczyk H, Massouh A, Greiner S. Translocations of chromosome end-segments and facultative heterochromatin promote meiotic ring formation in evening primroses. Plant Cell. 2014;26:1280–1293. doi: 10.1105/tpc.114.122655. PubMed DOI PMC
Golczyk H, Limanówka A, Uchman-Książek A. Pericentromere clustering in Tradescantia section Rhoeo involves self-associations of AT- and GC-rich heterochromatin fractions, is developmentally regulated, and increases during differentiation. Chromosoma. 2020;129:227–242. doi: 10.1007/s00412-020-00740-x. PubMed DOI PMC
Gong WJ, McKim KS, Hawley RS. All paired up with no place to go: pairing, synapsis, and DSB formation in a balancer heterozygote. PLoS Genet. 2005;1:e67. doi: 10.1371/journal.pgen.0010067. PubMed DOI PMC
Grabowska-Joachimiak A, Kula A, Gernand-Kliefoth D, Joachimiak AJ. Karyotype structure and chromosome fragility in the grass Phleum echinatum Host. Protoplasma. 2015;252:301–306. doi: 10.1007/s00709-014-0681-5. PubMed DOI PMC
Guo WJ, Ling J, Li P. Consensus features of microsatellite distribution: microsatellite contents are universally correlated with recombination rates and are preferentially depressed by centromeres in multicellular eukaryotic genomes. Genomics. 2009;93:323–331. doi: 10.1016/j.ygeno.2008.12.009. PubMed DOI
Gutiérrez-Valencia J, Hughes W, Berdan EL, Slotte T (2021) The genomic architecture and evolutionary fates of supergenes. Genome Biol Evol:evab057. 10.1093/gbe/evab057 PubMed PMC
Hollister JD, Greiner S, Johnson MTJ, Wright SI. Hybridization and a loss of sex shape genome-wide diversity and the origin of species in the evening primroses (Oenothera, Onagraceae) New Phytol. 2019;224:1372–1380. doi: 10.1111/nph.16053. PubMed DOI
Holsinger KE, Ellstrand NC. The evolution and ecology of permanent translocation heterozygotes. Am Nat. 1984;124:48–71. doi: 10.1086/284251. DOI
Hřibová E, Neumann P, Matsumoto T, Roux N, Macas J, Doležel J. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol. 2010;10:204. doi: 10.1186/1471-2229-10-204. PubMed DOI PMC
Huang K, Rieseberg LH. Frequency, origins, and evolutionary role of chromosomal inversions in plants. Front Plant Sci. 2020;11:296. doi: 10.3389/fpls.2020.00296. PubMed DOI PMC
Huang M, Li H, Zhang L, Gao F, Wang P, Hu Y, Yan S, Zhao L, Zhang Q, Tan J, Liu X, He S, Li L. Plant 45S rDNA clusters are fragile sites and their instability is associated with epigenetic alterations. PLoS ONE. 2012;7:e35139. doi: 10.1371/journal.pone.0035139. PubMed DOI PMC
Ijdo JW, Wells RA, Baldini A, Reeders ST. Improved telomere detection using a telomere probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19:4780. doi: 10.1093/nar/19.17.4780. PubMed DOI PMC
Loidl J. Conservation and variability of meiosis across the eukaryotes. Annu Rev Genet. 2016;50:293–316. doi: 10.1146/annurev-genet-120215-035100. PubMed DOI
Naranjo T, Corredor E. Clustering of centromeres precedes bivalent chromosome pairing of polyploid wheats. Trends Plant Sci. 2004;9:214–217. doi: 10.1016/j.tplants.2004.03.001. PubMed DOI
Natarajan AT, Natarajan S. The heterochromatin of Rhoeo discolor. Hereditas. 1972;72:323–330. doi: 10.1111/j.1601-5223.1972.tb01057.x. DOI
Pouokam M, Cruz B, Burgess S, Segal MR, Vazquez M, Arsuaga JM. The Rabl configuration limits topological entanglement of chromosomes in budding yeast. Sci Rep. 2019;9:6795. doi: 10.1038/s41598-019-42967-4. PubMed DOI PMC
Rabl C. Uber Zellteilung. Morph Jb. 1885;10:214–330.
Raskina O, Barber JC, Nevo E, Belyayev A. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res. 2008;120:351–357. doi: 10.1159/000121084. PubMed DOI
Rauwolf U, Golczyk H, Meurer J, Herrmann RG, Greiner S. Molecular marker systems for Oenothera genetics. Genetics. 2008;180:1289–1306. doi: 10.1534/genetics.108.091249. PubMed DOI PMC
Rauwolf U, Greiner S, Mracek RM, Golczyk H, Mohler V, Herrmann RG, Meurer J. Uncouping of sexual reproduction from homologous recombination in homozygous Oenothera species. Heredity. 2011;107:87–94. doi: 10.1038/hdy.2010.171. PubMed DOI PMC
Sax K. Chromosome ring formation in Rhoeo discolor. Cytologia. 1931;3:36–53. doi: 10.1508/cytologia.3.36. DOI
Schwander T, Libbrecht R, Keller L. Supergenes and complex phenotypes. Curr Biol. 2014;24:R288–R294. doi: 10.1016/j.cub.2014.01.056. PubMed DOI
Schweizer D, Loidl J. A model for heterochromatin dispersion and the evolution of C band patterns. Chromosomes Today. 1987;9:61–74. doi: 10.1007/978-94-010-9166-4_7. DOI
Snow R. Permanent translocation heterozygosity associated with an inversion system in Paeonia brownii. J Hered. 1969;60:103–106. doi: 10.1093/oxfordjournals.jhered.a107946. DOI
Sonnhammer EL, Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995;167:GC1–10. doi: 10.1016/0378-1119(95)00714-8. PubMed DOI
Stack SM, Soulliere DL. The relation between synapsis and chiasma formation in Rhoeo spathacea. Chromosoma. 1984;90:72–83. doi: 10.1007/BF00352281. DOI
Staden R. The Staden sequence analysis package. Mol Biotechnol. 1996;5:233–241. doi: 10.1007/BF02900361. PubMed DOI
Straub J. Untersuchungen über die zytologische Grundlage der Komplexheterozygotie. Chromosoma. 1941;2:64–76. doi: 10.1007/BF00325953. DOI
Therizols P, Duong T, Dujon B, Zimmer C, Fabre E. Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres. Proc Natl Acad Sci U S A. 2010;107:2025–2030. doi: 10.1073/pnas.0914187107. PubMed DOI PMC
Torgasheva AA, Borodin PM. Synapsis and recombination in inversion heterozygotes. Biochem Soc Trans. 2010;38:1676–1680. doi: 10.1042/BST0381676. PubMed DOI
Unfried I, Gruendler P. Nucleotide sequence of the 5.8S and 25S rRNA genes and the internal transcribed spacers from Arabidopsis thaliana. Nucleic Acids Res. 1990;18:4011. doi: 10.1093/nar/18.13.4011. PubMed DOI PMC
Wielstra B. Balanced lethal systems. Curr Biol. 2020;30:R742–R743. doi: 10.1016/j.cub.2020.05.011. PubMed DOI