Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri

. 2021 Jul 22 ; 19 (1) : 142. [epub] 20210722

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34294116
Odkazy

PubMed 34294116
PubMed Central PMC8296547
DOI 10.1186/s12915-021-01078-1
PII: 10.1186/s12915-021-01078-1
Knihovny.cz E-zdroje

BACKGROUND: The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely. RESULTS: Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system. CONCLUSIONS: In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.

Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology Cincinnati Children's Hospital Medical Center Cincinnati OH USA

Centre for Genomic Regulation 08003 Barcelona Catalonia Spain

Centre for Organelle Research Department of Chemistry Bioscience and Environmental Engineering University of Stavanger Stavanger Norway

CSIRO Indian Oceans Marine Research Centre Environomics Future Science Platform Crawley WA Australia

CSIRO Land and Water Black Mountain Laboratories Canberra Australia

CSIRO Land and Water Centre for Environment and Life Sciences Private Bag No 5 Wembley Western Australia 6913 Australia

Department of Agricultural Food and Nutritional Science University of Alberta Edmonton Alberta Canada

Department of Biochemistry and Molecular Biology Centre for Comparative Genomics and Evolutionary Bioinformatics Dalhousie University Halifax Canada

Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic

Department of Biology University of Massachusetts Amherst UK

Department of Cardiology Hospital Clinico Universitario Virgen de la Arrixaca Instituto Murciano de Investigación Biosanitaria Centro de Investigación Biomedica en Red Enfermedades Cardiovasculares Madrid Spain

Department of Laboratory Medicine University of Washington Medical Center Montlake USA

Department of Life Sciences The Natural History Museum London UK

Department of Medicine Faculty of Medicine and Dentistry University of Alberta Edmonton Canada

Department of Microbiology and Immunology Virginia Commonwealth University School of Medicine Richmond Virginia USA

Department of Ophthalmology Inselspital Bern University Hospital University of Bern Bern Switzerland

Department of Pediatrics University of Cincinnati College of Medicine Cincinnati USA

Division of Infectious Disease Department of Medicine Faculty of Medicine and Dentistry University of Alberta Edmonton Canada

Faculty of Science Charles University BIOCEV Prague Czech Republic

Institut de Biologia Evolutiva Barcelona Spain

Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic

Institute of Parasitology Vetsuisse Faculty Bern University of Bern Bern Switzerland

Laboratory Medicine and Medicine Infectious Diseases UCSF Abbott Viral Diagnostics and Discovery Center UCSF Clinical Microbiology Laboratory UCSF School of Medicine San Francisco USA

School of Applied Sciences Department of Biological and Geographical Sciences University of Huddersfield Huddersfield UK

School of Biosciences University of Kent Canterbury UK

Spiez Laboratory Federal Office for Civil Protection Austrasse Spiez Switzerland

Zobrazit více v PubMed

Carter RF. Description of a Naegleria sp. isolated from two cases of primary amoebic meningo-encephalitis, and of the experimental pathological changes induced by it. J Pathol. 1970;100:217–244. doi: 10.1002/path.1711000402. PubMed DOI

Puzon GJ, Wylie JT, Walsh T, Braun K, Morgan MJ. Comparison of biofilm ecology supporting growth of individual Naegleria species in a drinking water distribution system. FEMS Microbiol Ecol. 2017;93:1–8. doi: 10.1093/femsec/fix017. PubMed DOI

Puzon GJ, Lancaster JA, Wylie JT, Plumb JJ. Rapid detection of Naegleria fowleri in water distribution pipeline biofilms and drinking water samples. Environ Sci Technol. 2009;43:6691–6696. doi: 10.1021/es900432m. PubMed DOI

Morgan MJ, Halstrom S, Wylie JT, Walsh T, Kaksonen AH, Sutton D, Braun K, Puzon GJ. Characterization of a drinking water distribution pipeline terminally colonized by Naegleria fowleri. Environ Sci Technol. 2016;50(6):2890–2898. doi: 10.1021/acs.est.5b05657. PubMed DOI

Kazi AN, Riaz T. Deaths from rare protozoan encephalitis in Karachi blamed on unchlorinated water. BMJ. 2013;346:4461. PubMed

Mahmood K. Naegleria fowleri in Pakistan - an emerging catastrophe. J Coll Physicians Surg Pak. 2015;25:159–160. PubMed

Naqvi AA, Yazdani N, Ahmad R, Zehra F, Ahmad N. Epidemiology of primary amoebic meningoencephalitis-related deaths due to Naegleria fowleri infections from freshwater in Pakistan: An analysis of 8-year dataset. Arch Pharm Pract. 2016;7:119–129. doi: 10.4103/2045-080X.191924. DOI

Dorsch MM. Primary amoebic meningoencephalitis: an historical and epidemiological perspective with particular reference to South Australia. Adelaide: Epidemiology Branch, South Australian Health Commission; 1982.

Cope JR, Ratard RC, Hill VR, Sokol T, Causey JJ, Yoder JS, Mirani G, Mull B, Mukerjee KA, Narayanan J, Doucet M, Qvarnstrom Y, Poole CN, Akingbola OA, Ritter JM, Xiong Z, da Silva AJ, Roellig D, van Dyke RB, Stern H, Xiao L, Beach MJ. The first association of a primary amebic meningoencephalitis death with culturable Naegleria fowleri in tap water from a US treated public drinking water system. Clin Infect Dis. 2015;60(8):e36–e42. doi: 10.1093/cid/civ017. PubMed DOI PMC

Yoder JS, Straif-Bourgeois S, Roy SL, Moore TA, Visvesvara GS, Ratard RC, et al. Primary amebic meningoencephalitis deaths associated with sinus irrigation using contaminated tap water. Clin Infect Dis. 2012;55:79–85. doi: 10.1093/cid/cis626. PubMed DOI PMC

Linam WM, Ahmed M, Cope JR, Chu C, Visvesvara GS, Da Silva AJ, et al. Successful treatment of an adolescent with Naegleria fowleri primary amebic meningoencephalitis. Pediatrics. 2015;135(3):e744–e748. doi: 10.1542/peds.2014-2292. PubMed DOI PMC

Cope JR, Conrad DA, Cohen N, Cotilla M, Dasilva A, Jackson J, et al. Use of the novel therapeutic agent miltefosine for the treatment of primary amebic meningoencephalitis: report of 1 fatal and 1 surviving case. Clin Infect Dis. 2016;62(6):774–776. doi: 10.1093/cid/civ1021. PubMed DOI PMC

Gharpure R, Bliton J, Goodman A, Ali IKM, Yoder JS, Cope JR. Epidemiology and clinical characteristics of primary amebic meningoencephalitis caused by Naegleria fowleri: a global review. Clin Infect Dis. 2020:ciaa520. PubMed PMC

Matanock A, Mehal JM, Liu L, Blau DM, Cope JR. Estimation of undiagnosed Naegleria fowleri primary amebic meningoencephalitis, United States. Emerg Infect Dis. 2018;24(1):162–164. doi: 10.3201/eid2401.170545. PubMed DOI PMC

Maciver SK, Piñero JE, Lorenzo-Morales J. Is Naegleria fowleri an emerging parasite? Trends Parasitol. 2019. PubMed

Gharpure R, Gleason M, Salah Z, Blackstock A, Hess-Homeier D, Yoder J, et al. Geographic range of recreational water–associated primary amebic meningoencephalitis, United States, 1978–2018. Emerg Infect Dis J. 2021;27(1):271–274. doi: 10.3201/eid2701.202119. PubMed DOI PMC

Baral R, Vaidya B. Fatal case of amoebic encephalitis masquerading as herpes. Oxford Med Case Rep. 2018;2018:134–137. doi: 10.1093/omcr/omy010. PubMed DOI PMC

Kemble SK, Lynfield R, DeVries AS, Drehner DM, Pomputius WF, Beach MJ, et al. Fatal Naegleria fowleri infection acquired in Minnesota: possible expanded range of a deadly thermophilic organism. Clin Infect Dis. 2012;54(6):805–809. doi: 10.1093/cid/cir961. PubMed DOI

Siddiqui R, Khan NA. Primary amoebic meningoencephalitis caused by Naegleria fowleri: an old enemy presenting new challenges. PLoS Negl Trop Dis. 2014;8. PubMed PMC

De Jonckheere JF. What do we know by now about the genus Naegleria? Exp Parasitol. 2014;145:S2–S9. doi: 10.1016/j.exppara.2014.07.011. PubMed DOI

Aldape K, Huizinga H, Bouvier J, McKerrow J. Naegleria fowleri: characterization of a secreted histolytic cysteine protease. Exp Pathol. 1994;78:230–241. PubMed

Herbst R, Ott C, Jacobs T, Marti T, Marciano-Cabral F, Leippe M. Pore-forming polypeptides of the pathogenic protozoon Naegleria fowleri. J Biol Chem. 2002;277(25):22353–22360. doi: 10.1074/jbc.M201475200. PubMed DOI

Hu WN, Band RN, Kopachik WJ. Virulence-related protein synthesis in Naegleria fowleri. Infect Immun. 1991;59(11):4278–4282. doi: 10.1128/iai.59.11.4278-4282.1991. PubMed DOI PMC

Serrano-Luna J, Cervantes-Sandoval I, Tsutsumi V, Shibayama M. A biochemical comparison of proteases from pathogenic Naegleria fowleri and non-pathogenic Naegleria gruberi. J Eukaryot Microbiol. 2007;54(5):411–417. doi: 10.1111/j.1550-7408.2007.00280.x. PubMed DOI

Toney DM, Marciano-Cabral F. Alterations in protein expression and complement resistance of pathogenic Naegleria amoebae. Infect Immun. 1992;60(7):2784–2790. doi: 10.1128/iai.60.7.2784-2790.1992. PubMed DOI PMC

Barbour SE, Marciano-Cabral F. Naegleria fowleri amoebae express a membrane-associated calcium-independent phospholipase A2. Biochim Biophys Acta Mol Cell Biol Lipids. 2001;1530(2-3):123–133. doi: 10.1016/S1388-1981(00)00069-X. PubMed DOI

Fritz-Laylin LKLK, Prochnik SESE, Ginger MLML, Dacks JB, Carpenter MLML, Field MCMC, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010;140:631–642. doi: 10.1016/j.cell.2010.01.032. PubMed DOI

Zysset-Burri DC, Müller N, Beuret C, Heller M, Schürch N, Gottstein B, et al. Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri. BMC Genomics. 2014;15:496. doi: 10.1186/1471-2164-15-496. PubMed DOI PMC

Liechti N, Schürch N, Bruggmann R, Wittwer M. Nanopore sequencing improves the draft genome of the human pathogenic amoeba Naegleria fowleri. Sci Rep. 2019;9:16040. doi: 10.1038/s41598-019-52572-0. PubMed DOI PMC

Baverstock PR, Illana S, Christy PE, Robinson BS, Johnson AM. srRNA evolution and phylogenetic relationships of the genus Naegleria (Protista: Rhizopoda) Mol Biol Evol. 1989;6(3):243–257. doi: 10.1093/oxfordjournals.molbev.a040549. PubMed DOI

Koonin EV. The Incredible Expanding Ancestor of Eukaryotes. Cell. 2010;140(5):606–608. doi: 10.1016/j.cell.2010.02.022. PubMed DOI PMC

Weirauch MT, Hughes TR. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. Subcell Biochem. 2011;52:25–73. doi: 10.1007/978-90-481-9069-0_3. PubMed DOI

Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell. 2014;158:1431–1443. doi: 10.1016/j.cell.2014.08.009. PubMed DOI PMC

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M. Pfam: The protein families database. Nucleic Acids Res. 2014;42(D1):D222–D230. doi: 10.1093/nar/gkt1223. PubMed DOI PMC

Eddy SR. Genome Informatics. 2009. A new generation of homology search tools based on probabilistic inference; p. 2009. PubMed

Desmond E, Gribaldo S. Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol Evol. 2009;1:364–381. doi: 10.1093/gbe/evp036. PubMed DOI PMC

Choi JY, Podust LM, Roush WR. Drug strategies targeting CYP51 in neglected tropical diseases. Chem Rev. 2014;114(22):11242–11271. doi: 10.1021/cr5003134. PubMed DOI PMC

Fu C, Xiong J, Miao W. Genome-wide identification and characterization of cytochrome P450 monooxygenase genes in the ciliate Tetrahymena thermophila. BMC Genomics. 2009;10(1):208. doi: 10.1186/1471-2164-10-208. PubMed DOI PMC

Raederstorff D, Rohmer M. Sterol biosynthesis via cycloartenol and other biochemical features related to photosynthetic phyla in the amoeba Naegleria lovaniensis and Naegleria gruberi. Eur J Biochem. 1987;164(2):427–434. doi: 10.1111/j.1432-1033.1987.tb11075.x. PubMed DOI

Debnath A, Calvet CM, Jennings G, Zhou W, Aksenov A, Luth MR, Abagyan R, Nes WD, McKerrow JH, Podust LM. CYP51 is an essential drug target for the treatment of primary amoebic meningoencephalitis (PAM) PLoS Negl Trop Dis. 2017;11(12):e0006104. doi: 10.1371/journal.pntd.0006104. PubMed DOI PMC

Yoshiyama-Yanagawa T, Enya S, Shimada-Niwa Y, Yaguchi S, Haramoto Y, Matsuya T, et al. The conserved Rieske oxygenase DAF-36/Neverland is a novel cholesterol-metabolizing enzyme. J Biol Chem. 2011;286:25756–25762. doi: 10.1074/jbc.M111.244384. PubMed DOI PMC

Wollam J, Magomedova L, Magner DB, Shen Y, Rottiers V, Motola DL, Mangelsdorf DJ, Cummins CL, Antebi A. The Rieske oxygenase DAF-36 functions as a cholesterol 7-desaturase in steroidogenic pathways governing longevity. Aging Cell. 2011;10(5):879–884. doi: 10.1111/j.1474-9726.2011.00733.x. PubMed DOI PMC

Najle SR, Nusblat AD, Nudel CB, Uttaro AD. The sterol-C7 desaturase from the ciliate tetrahymena thermophila is a rieske oxygenase, which is highly conserved in animals. Mol Biol Evol. 2013;30:1630–1643. doi: 10.1093/molbev/mst076. PubMed DOI

Najle SR, Molina MC, Ruiz-Trillo I, Uttaro AD. Sterol metabolism in the filasterean Capsaspora owczarzaki has features that resemble both fungi and animals. Open Biol. 2016;6(7). 10.1098/rsob.160029. PubMed PMC

Kodner RB, Summons RE, Pearson A, King N, Knoll AH. Sterols in a unicellular relative of the metazoans. Proc Natl Acad Sci U S A. 2008;105(29):9897–9902. doi: 10.1073/pnas.0803975105. PubMed DOI PMC

Najle SR, Hernandez J, Ocana-Pallares E, Garcia Siburu N, Nusblat AD, Nudel CB, et al. Genome-wide transcriptional analysis of tetrahymena thermophila response to exogenous cholesterol. J Eukaryot Microbiol. 2019. PubMed

Lai EY, Walsh C, Wardell D, Fulton C. Programmed appearance of translatable flagellar tubulin mRNA during cell differentiation in Naegleria. Cell. 1979;17(4):867–878. doi: 10.1016/0092-8674(79)90327-1. PubMed DOI

Patterson M, Woodworth TW, Marciano-Cabral F, Bradley SG. Ultrastructure of Naegleria fowleri enflagellation. J Bacteriol. 1981;147(1):217–226. doi: 10.1128/jb.147.1.217-226.1981. PubMed DOI PMC

González-Robles A, Cristóbal-Ramos AR, González-Lázaro M, Omaña-Molina M, Martínez-Palomo A. Naegleria fowleri: light and electron microscopy study of mitosis. Exp Parasitol. 2009;122:212–217. doi: 10.1016/j.exppara.2009.03.016. PubMed DOI

Walsh CJ. The structure of the mitotic spindle and nucleolus during mitosis in the amebo-flagellate Naegleria. PLoS One. 2012;7:e34763. doi: 10.1371/journal.pone.0034763. PubMed DOI PMC

Jamerson M, Schmoyer JA, Park J, Marciano-Cabral F, Cabral GA. Identification of Naegleria fowleri proteins linked to primary amoebic meningoencephalitis. Microbiology. 2017;163(3):322–332. doi: 10.1099/mic.0.000428. PubMed DOI

Campellone KG, Welch MD. A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol. 2010;11(4):237–251. doi: 10.1038/nrm2867. PubMed DOI PMC

Dominguez R. The WH2 domain and actin nucleation: necessary but insufficient. Trends Biochem Sci. 2016;41:478–490. doi: 10.1016/j.tibs.2016.03.004. PubMed DOI PMC

Rotty JD, Wu C, Bear JE. New insights into the regulation and cellular functions of the ARP2/3 complex. Nat Rev Mol Cell Biol. 2013;14(1):7–12. doi: 10.1038/nrm3492. PubMed DOI

Fritz-Laylin LK, Lord SJ, Mullins RD. WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility. J Cell Biol. 2017;216:1673–1688. doi: 10.1083/jcb.201701074. PubMed DOI PMC

Sohn HJ, Kim JH, Shin MH, Song KJ, Shin HJ. The Nf-actin gene is an important factor for food-cup formation and cytotoxicity of pathogenic Naegleria fowleri. Parasitol Res. 2010;106:917–924. doi: 10.1007/s00436-010-1760-y. PubMed DOI

Walsh CJ. The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of Naegleria amebae into flagellates. Eur J Cell Biol. 2007;86:85–98. doi: 10.1016/j.ejcb.2006.10.003. PubMed DOI

Breitsprecher D, Goode BL. Formins at a glance. J Cell Sci. 2013;126(Pt 1):1–7. doi: 10.1242/jcs.107250. PubMed DOI PMC

Siddiqui R, Ali IKM, Cope JR, Khan NA. Biology and pathogenesis of Naegleria fowleri. Acta Trop. 2016;164:375–394. doi: 10.1016/j.actatropica.2016.09.009. PubMed DOI

Rojas-Hernández S, Jarillo-Luna A, Rodríguez-Monroy M, Moreno-Fierros L, Campos-Rodríguez R. Immunohistochemical characterization of the initial stages of Naegleria fowleri meningoencephalitis in mice. Parasitol Res. 2004;94(1):31–36. doi: 10.1007/s00436-004-1177-6. PubMed DOI

Brown T. Observations by light microscopy on the cytopathogenicity of Naegleria fowleri in mouse embryo-cell cultures. J Med Microbiol. 1978;11(3):249–259. doi: 10.1099/00222615-11-3-249. PubMed DOI

Visvesvara GS, Callaway CS. Light and electron microsopic observations on the pathogenesis of Naegleria fowleri in mouse brain and tissue culture. J Protozool. 1974;21:239–250. doi: 10.1111/j.1550-7408.1974.tb03648.x. PubMed DOI

Martínez-Castillo M, Cárdenas-Guerra RE, Arroyo R, Debnath A, Rodríguez MA, Sabanero M, Flores-Sánchez F, Navarro-Garcia F, Serrano-Luna J, Shibayama M. Nf-GH, a glycosidase secreted by Naegleria fowleri, causes mucin degradation: an in vitro and in vivo study. Future Microbiol. 2017;12(9):781–799. doi: 10.2217/fmb-2016-0230. PubMed DOI PMC

Fritz-Laylin LK, Cande WZ. Ancestral centriole and flagella proteins identified by analysis of Naegleria differentiation. J Cell Sci. 2010;123(Pt 23):4024–4031. doi: 10.1242/jcs.077453. PubMed DOI PMC

Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci. 2005;118(Pt 5):843–846. doi: 10.1242/jcs.01660. PubMed DOI

Görlich D, Mattaj IW. Nucleocytoplasmic transport. Science. 1996;271(5255):1513–1518. doi: 10.1126/science.271.5255.1513. PubMed DOI

Vlahou G, Eliáš M, von Kleist-Retzow J-C, Wiesner RJ, Rivero F. The Ras related GTPase Miro is not required for mitochondrial transport in Dictyostelium discoideum. Eur J Cell Biol. 2011;90(4):342–355. doi: 10.1016/j.ejcb.2010.10.012. PubMed DOI

Kipreos ET, Pagano M. The F-box protein family. Genome Biol. 2000;1:REVIEWS3002. doi: 10.1186/gb-2000-1-5-reviews3002. PubMed DOI PMC

Perez-Torrado R, Yamada D, Defossez P-A. Born to bind: the BTB protein-protein interaction domain. Bioessays. 2006;28(12):1194–1202. doi: 10.1002/bies.20500. PubMed DOI

Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Feasley CL, Dalin E, Tu H, Huang E, Barry K, Lindquist E, Shapiro H, Bruce D, Schmutz J, Salamov A, Fey P, Gaudet P, Anjard C, Babu MM, Basu S, Bushmanova Y, van der Wel H, Katoh-Kurasawa M, Dinh C, Coutinho PM, Saito T, Elias M, Schaap P, Kay RR, Henrissat B, Eichinger L, Rivero F, Putnam NH, West CM, Loomis WF, Chisholm RL, Shaulsky G, Strassmann JE, Queller DC, Kuspa A, Grigoriev IV. Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol. 2011;12(2):R20. doi: 10.1186/gb-2011-12-2-r20. PubMed DOI PMC

Liu Y, Lacal J, Firtel RA, Kortholt A. Connecting G protein signaling to chemoattractant-mediated cell polarity and cytoskeletal reorganization. Small GTPases. 2018;9(4):360–364. doi: 10.1080/21541248.2016.1235390. PubMed DOI PMC

Elias M, Brighouse A, Gabernet-Castello C, Field MC, Dacks JB. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci. 2012;125(Pt 10):2500–2508. doi: 10.1242/jcs.101378. PubMed DOI PMC

Marín I, van Egmond WN, van Haastert PJM. The Roco protein family: a functional perspective. FASEB J Off Publ Fed Am Soc Exp Biol. 2008;22:3103–3110. PubMed

van Dam TJP, Zwartkruis FJT, Bos JL, Snel B. Evolution of the TOR pathway. J Mol Evol. 2011;73:209–220. doi: 10.1007/s00239-011-9469-9. PubMed DOI PMC

Záhonová K, Petrželková R, Valach M, Yazaki E, Tikhonenkov DV, Butenko A, Janouškovec J, Hrdá Š, Klimeš V, Burger G, Inagaki Y, Keeling PJ, Hampl V, Flegontov P, Yurchenko V, Eliáš M. Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase. Sci Rep. 2018;8(1):5239. doi: 10.1038/s41598-018-23575-0. PubMed DOI PMC

Leung KF, Baron R, Seabra MC. Thematic review series: lipid posttranslational modifications. Geranylgeranylation of Rab GTPases. J Lipid Res. 2006;47:467–475. doi: 10.1194/jlr.R500017-JLR200. PubMed DOI

Elias M, Novotny M. cpRAS: a novel circularly permuted RAS-like GTPase domain with a highly scattered phylogenetic distribution. Biol Direct. 2008;3:21. doi: 10.1186/1745-6150-3-21. PubMed DOI PMC

van Dam TJP, Bos JL, Snel B. Evolution of the Ras-like small GTPases and their regulators. Small GTPases. 2011;2(1):4–16. doi: 10.4161/sgtp.2.1.15113. PubMed DOI PMC

Ji W, Rivero F. Atypical Rho GTPases of the RhoBTB subfamily: roles in vesicle trafficking and tumorigenesis. Cells. 2016;5. PubMed PMC

Whiteman LY, Marciano-Cabral F. Susceptibility of pathogenic and nonpathogenic Naegleria spp. to complement-mediated lysis. Infect Immun. 1987;55:2442–2447. doi: 10.1128/iai.55.10.2442-2447.1987. PubMed DOI PMC

Hu WN, Kopachik W, Band RN. Cloning and characterization of transcripts showing virulence-related gene expression in Naegleria fowleri. Infect Immun. 1992;60:2418–2424. doi: 10.1128/iai.60.6.2418-2424.1992. PubMed DOI PMC

Sussman DJ, Lai EY, Fulton C. Rapid disappearance of translatable actin mRNA during cell differentiation in Naegleria. J Biol Chem. 1984;259(11):7355–7360. doi: 10.1016/S0021-9258(17)39879-4. PubMed DOI

Nag S, Larsson M, Robinson RC, Burtnick LD. Gelsolin: the tail of a molecular gymnast. Cytoskeleton. 2013;70:360–384. doi: 10.1002/cm.21117. PubMed DOI

Kayman SC, Clarke M. Relationship between axenic growth of Dictyostelium discoideum strains and their track morphology on substrates coated with gold particles. J Cell Biol. 1983;97(4):1001–1010. doi: 10.1083/jcb.97.4.1001. PubMed DOI PMC

Sillo A, Bloomfield G, Balest A, Balbo A, Pergolizzi B, Peracino B, et al. Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium. BMC Genomics. 2008;9:291. doi: 10.1186/1471-2164-9-291. PubMed DOI PMC

Jamerson M, da Rocha-Azevedo B, Cabral GA, Marciano-Cabral F. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins. Microbiology. 2012;158(3):791–803. doi: 10.1099/mic.0.055020-0. PubMed DOI PMC

Kang S-Y, Song K-J, Jeong S-R, Kim J-H, Park S, Kim K, et al. Role of the Nfa1 protein in pathogenic Naegleria fowleri cocultured with CHO target cells. Clin Vaccine Immunol. 2005;12:873–876. doi: 10.1128/CDLI.12.7.873-876.2005. PubMed DOI PMC

Bexkens ML, Zimorski V, Sarink MJ, Wienk H, Brouwers JF, De Jonckheere JF, et al. Lipids are the preferred substrate of the protist Naegleria gruberi, relative of a human brain pathogen. Cell Rep. 2018;25:537–543.e3. doi: 10.1016/j.celrep.2018.09.055. PubMed DOI PMC

Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65:1–105. doi: 10.1016/S0301-0082(00)00067-8. PubMed DOI

Featherstone DE, Shippy SA. Regulation of synaptic transmission by ambient extracellular glutamate. Neuroscientist. 2008;14(2):171–181. doi: 10.1177/1073858407308518. PubMed DOI PMC

Holtze M, Mickiené A, Atlas A, Lindquist L, Schwieler L. Elevated cerebrospinal fluid kynurenic acid levels in patients with tick-borne encephalitis. J Intern Med. 2012;272:394–401. doi: 10.1111/j.1365-2796.2012.02539.x. PubMed DOI

Opperdoes FR, De Jonckheere JF, Tielens AGM. Naegleria gruberi metabolism. Int J Parasitol. 2011;41:915–924. doi: 10.1016/j.ijpara.2011.04.004. PubMed DOI

Colotti G, Ilari A. Polyamine metabolism in Leishmania: from arginine to trypanothione. Amino Acids. 2011;40(2):269–285. doi: 10.1007/s00726-010-0630-3. PubMed DOI

Fairlamb AH, Cerami A. Metabolism and functions of trypanothione in the Kinetoplastea. Annu Rev Microbiol. 1992;46(1):695–729. doi: 10.1146/annurev.mi.46.100192.003403. PubMed DOI

Ondarza RN, Hurtado G, Tamayo E, Iturbe A, Hernández E. Naegleria fowleri: a free-living highly pathogenic amoeba contains trypanothione/trypanothione reductase and glutathione/glutathione reductase systems. Exp Parasitol. 2006;114(3):141–146. doi: 10.1016/j.exppara.2006.03.001. PubMed DOI

Steiger RF, Steiger E. Cultivation of Leishmania donovani and Leishmania braziliensis in defined media: nutritional requirements. J Protozool. 1977;24:437–441. doi: 10.1111/j.1550-7408.1977.tb04771.x. PubMed DOI

Krassner SM, Flory B. Essential amino acids in the culture of Leishmania tarentolae. J Parasitol. 1971;57:917–920. doi: 10.2307/3277829. PubMed DOI

de Jonckheere JF. Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri. Infect Genet Evol. 2011;11(7):1520–1528. doi: 10.1016/j.meegid.2011.07.023. PubMed DOI

Miller HC, Wylie J, Dejean G, Kaksonen AH, Sutton D, Braun K, Puzon GJ. Reduced efficiency of chlorine disinfection of Naegleria fowleri in a drinking water distribution biofilm. Environ Sci Technol. 2015;49(18):11125–11131. doi: 10.1021/acs.est.5b02947. PubMed DOI

Miller HC, Morgan MJ, Wylie JT, Kaksonen AH, Sutton D, Braun K, Puzon GJ. Elimination of Naegleria fowleri from bulk water and biofilm in an operational drinking water distribution system. Water Res. 2017;110:15–26. doi: 10.1016/j.watres.2016.11.061. PubMed DOI

Miller HC, Wylie JT, Kaksonen AH, Sutton D, Puzon GJ. Competition between Naegleria fowleri and free living amoeba colonizing laboratory scale and operational drinking water distribution systems. Environ Sci Technol. 2018;52:2549–2557. doi: 10.1021/acs.est.7b05717. PubMed DOI

Herman EK, Greninger AL, Visvesvara GS, Marciano-Cabral F, Dacks JB, Chiu CY. The mitochondrial genome and a 60-kb nuclear DNA segment from Naegleria fowleri, the causative agent of primary amoebic meningoencephalitis. J Eukaryot Microbiol. 2013;60(2):179–191. doi: 10.1111/jeu.12022. PubMed DOI PMC

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27(4):578–579. doi: 10.1093/bioinformatics/btq683. PubMed DOI

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv e-prints; 2013. p. arXiv:1303.3997.

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013. PubMed PMC

Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010.

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. doi: 10.1186/gb-2013-14-4-r36. PubMed DOI PMC

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–515. doi: 10.1038/nbt.1621. PubMed DOI PMC

Roberts A, Pimentel H, Trapnell C, Pachter L. Identification of novel transcripts in annotated genomes using RNA-seq. Bioinformatics. 2011;27:2325–2329. doi: 10.1093/bioinformatics/btr355. PubMed DOI

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7(3):562–578. doi: 10.1038/nprot.2012.016. PubMed DOI PMC

Li B, Dewey C. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12(1):323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Stanke M, Steinkamp R, Waack S, Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 2004;32(suppl 2):W309–W312. doi: 10.1093/nar/gkh379. PubMed DOI PMC

Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19(suppl 2):ii215–ii225. doi: 10.1093/bioinformatics/btg1080. PubMed DOI

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Richter DJ, Berney C, Strassert JFH, Burki F, de Vargas C. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotic life. bioRxiv. 2020:2020.06.30.180687. 10.1101/2020.06.30.180687.

Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996;241:779–786. doi: 10.1111/j.1432-1033.1996.00779.x. PubMed DOI

Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000;300(4):1005–1016. doi: 10.1006/jmbi.2000.3903. PubMed DOI

Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35(suppl_2):W585–W587. doi: 10.1093/nar/gkm259. PubMed DOI PMC

Millar AH, Sweetlove LJ, Giegé P, Leaver CJ. Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol. 2001;127(4):1711–1727. doi: 10.1104/pp.010387. PubMed DOI PMC

Atteia A, Adrait A, Brugière S, Tardif M, van Lis R, Deusch O, et al. A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Mol Biol Evol. 2009;26(7):1533–1548. doi: 10.1093/molbev/msp068. PubMed DOI

Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong S-E, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008;134(1):112–123. doi: 10.1016/j.cell.2008.06.016. PubMed DOI PMC

Smith DGS, Gawryluk RMR, Spencer DF, Pearlman RE, Siu KWM, Gray MW. Exploring the mitochondrial proteome of the ciliate protozoon Tetrahymena thermophila: direct analysis by tandem mass spectrometry. J Mol Biol. 2007;374(3):837–863. doi: 10.1016/j.jmb.2007.09.051. PubMed DOI

Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, Meisinger C. The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A. 2003;100(23):13207–13212. doi: 10.1073/pnas.2135385100. PubMed DOI PMC

Jedelský PL, Doležal P, Rada P, Pyrih J, Smíd O, Hrdý I, et al. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One. 2011;6(2):e17285. doi: 10.1371/journal.pone.0017285. PubMed DOI PMC

Mi-ichi F, Abu Yousuf M, Nakada-Tsukui K, Nozaki T. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A. 2009;106(51):21731–21736. doi: 10.1073/pnas.0907106106. PubMed DOI PMC

Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, Loo JA, Johnson PJ. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol. 2011;41(13-14):1421–1434. doi: 10.1016/j.ijpara.2011.10.001. PubMed DOI PMC

Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, et al. The Pfam protein families database. Nucleic Acids Res. 2004;32(Database issue):D138–D141. doi: 10.1093/nar/gkh121. PubMed DOI PMC

Bairoch A, Apweiler R. The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucleic Acids Res. 1996;24:21–25. doi: 10.1093/nar/24.1.21. PubMed DOI PMC

Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol. 2013;30(4):772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–98.

Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Procedings of the Gateway Computing Environments Workshop (GCE) 2010. New Orleans; 2010. p. 1–8.

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI

Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 2015;43(Database issue):D257–D260. doi: 10.1093/nar/gku949. PubMed DOI PMC

Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43(Database issue):D222–D226. doi: 10.1093/nar/gku1221. PubMed DOI PMC

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. 2015.

Darriba D, Taboada GL, Doallo R, Posada D. ProtTest-HPC: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;6586(LNCS):177–184. PubMed PMC

Lartillot N, Lepage T, Blanquart S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009;25:2286–2288. doi: 10.1093/bioinformatics/btp368. PubMed DOI

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC

Waterhouse RM, Seppey M, Simao FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2018;35(3):543–548. doi: 10.1093/molbev/msx319. PubMed DOI PMC

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI

Li L, Stoeckert CJ, Roos DS. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Res. 2003;13(9):2178–2189. doi: 10.1101/gr.1224503. PubMed DOI PMC

Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen. J Mol Biol. 2001;305(3):567–580. doi: 10.1006/jmbi.2000.4315. PubMed DOI

Sonnhammer EL, von Heijne G, Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Sixth Int Conf Intell Syst Mol Biol. 1998;6:175–182. PubMed

Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, et al. BioProject PRJNA643799-N. fowleri strain V212 Genomic sequence and predicted proteins. Genomics and transcriptomics yields a systems-level view of the biology of the pathogen Naegleria fowleri. 2021. PubMed PMC

Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, et al. BioProject PRJNA734907 -N. fowleri strain 986 Genomic sequence and predicted proteins. Genomics and transcriptomics yields a systems-level view of the biology of the pathogen Naegleria fowleri. PubMed PMC

Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, et al. Genomes and predicted proteins of Naegleria fowleri strains CDC:V212, 986, and ATCC30863. 2021.

Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, et al. BioProject PRJNA647238 -LEE RNASeq Reads. A comparative ’omics approach to candidate pathogenicity factor discovery in the brain-eating amoeba Naegleria fowleri. 2021.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...