cpRAS: a novel circularly permuted RAS-like GTPase domain with a highly scattered phylogenetic distribution

. 2008 May 29 ; 3 () : 21. [epub] 20080529

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18510733

A recent systematic survey suggested that the YRG (or YawG/YlqF) family with the G4-G5-G1-G2-G3 order of the conserved GTPase motifs represents the only possible circularly permuted variation of the canonical GTPase structure. Here we show that a different circularly permuted GTPase domain actually does exist, conforming to the pattern G3-G4-G5-G1-G2. The domain, dubbed cpRAS, is a variant of RAS family GTPases and occurs in two types of larger proteins, either inserted into a region homologous to a bacterial group of proteins classified as COG2373 and potentially related to the alpha-2-macroglobulin family (so far a single protein in Dictyostelium) or in combination with a von Willebrand factor type A (VWA) domain. For the latter protein type, which was found in a few metazoans and several distantly related protists, existence in the common ancestor of opisthokonts, Amoebozoa and excavates followed by at least eight independent losses may be inferred. Our findings thus bring further evidence for the importance of parallel reduction of ancestral complexity in the eukaryotic evolution.

Zobrazit více v PubMed

Cunningham BA, Hemperly JJ, Hopp TP, Edelman GM. Favin versus concanavalin A: Circularly permuted amino acid sequences. Proc Natl Acad Sci USA. 1979;76:3218–3222. doi: 10.1073/pnas.76.7.3218. PubMed DOI PMC

Lindqvist Y, Schneider G. Circular permutations of natural protein sequences: structural evidence. Curr Opin Struct Biol. 1997;7:422–427. doi: 10.1016/S0959-440X(97)80061-9. PubMed DOI

Uliel S, Fliess A, Unger R. Naturally occurring circular permutations in proteins. Protein Eng. 2001;14:533–542. doi: 10.1093/protein/14.8.533. PubMed DOI

Fliess A, Motro B, Unger R. Swaps in protein sequences. Proteins. 2002;48:377–387. doi: 10.1002/prot.10156. PubMed DOI

Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991;349:117–127. doi: 10.1038/349117a0. PubMed DOI

Leipe DD, Wolf YI, Koonin EV, Aravind L. Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol. 2002;317:41–72. doi: 10.1006/jmbi.2001.5378. PubMed DOI

Reynaud EG, Andrade MA, Bonneau F, Ly TB, Knop M, Scheffzek K, Pepperkok R. Human Lsg1 defines a family of essential GTPases that correlates with the evolution of compartmentalization. BMC Biol. 2005;3:21. doi: 10.1186/1741-7007-3-21. PubMed DOI PMC

Levdikov VM, Blagova EV, Brannigan JA, Cladiere L, Antson AA, Isupov MN, Seror SJ, Wilkinson AJ. The crystal structure of YloQ, a circularly permuted GTPase essential for Bacillus subtilis viability. J Mol Biol. 2004;340:767–782. doi: 10.1016/j.jmb.2004.05.029. PubMed DOI

Shin DH, Lou Y, Jancarik J, Yokota H, Kim R, Kim SH. Crystal structure of YjeQ from Thermotoga maritima contains a circularly permuted GTPase domain. Proc Natl Acad Sci USA. 2004;101:13198–13203. doi: 10.1073/pnas.0405202101. PubMed DOI PMC

Daigle DM, Brown ED. Studies of the interaction of Escherichia coli YjeQ with the ribosome in vitro. J Bacteriol. 2004;186:1381–1387. doi: 10.1128/JB.186.5.1381-1387.2004. PubMed DOI PMC

Anand B, Verma SK, Prakash B. Structural stabilization of GTP-binding domains in circularly permuted GTPases: implications for RNA binding. Nucleic Acids Res. 2006;34:2196–2205. doi: 10.1093/nar/gkl178. PubMed DOI PMC

Reuther GW, Der CJ. The Ras branch of small GTPases: Ras family members don't fall far from the tree. Curr Opin Cell Biol. 2000;12:157–165. doi: 10.1016/S0955-0674(99)00071-X. PubMed DOI

Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev. 2001;81:153–208. PubMed

Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P. SMART 5: domains in the context of genomes and networks. Nucleic Acids. 2006;34:D257–60. doi: 10.1093/nar/gkj079. PubMed DOI PMC

Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A. The Pfam protein families database. Nucleic Acids Res. 2008;36:D281–8. doi: 10.1093/nar/gkm960. PubMed DOI PMC

Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD, Ke Z, Krylov D, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Thanki N, Yamashita RA, Yin JJ, Zhang D, Bryant SH. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res. 2007;35:D237–240. doi: 10.1093/nar/gkl951. PubMed DOI PMC

Entry COG2373 in the CDD database of conserveddomains

Dictyostelium purpureum sequence data at JGI-DOE FTP server

Kortschak RD, Samuel G, Saint R, Miller DJ. EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr Biol. 2003;13:2190–2195. doi: 10.1016/j.cub.2003.11.030. PubMed DOI

Dacks JB, Walker G, Field MC. Implications of the new eukaryotic systematics for parasitologists. Parasitol Int. 57:97–104. doi: 10.1016/j.parint.2007.11.004. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri

. 2021 Jul 22 ; 19 (1) : 142. [epub] 20210722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...