Postural Stability Evaluation of Patients Undergoing Vestibular Schwannoma Microsurgery Employing the Inertial Measurement Unit
Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29849995
PubMed Central
PMC5932418
DOI
10.1155/2018/2818063
Knihovny.cz E-zdroje
- MeSH
- akcelerometrie metody MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrochirurgie metody MeSH
- pohyb fyziologie MeSH
- posturální rovnováha fyziologie MeSH
- vestibulární schwannom * patofyziologie chirurgie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The article focuses on a noninvasive method and system of quantifying postural stability of patients undergoing vestibular schwannoma microsurgery. Recent alternatives quantifying human postural stability are rather limited. The major drawback is that the posturography system can evaluate only two physical quantities of body movement and can be measured only on a transverse plane. A complex movement pattern can be, however, described more precisely while using three physical quantities of 3-D movement. This is the reason why an inertial measurement unit (Xsens MTx unit), through which we obtained 3-D data (three Euler angles or three orthogonal accelerations), was placed on the patient's trunk. Having employed this novel method based on the volume of irregular polyhedron of 3-D body movement during quiet standing, it was possible to evaluate postural stability. To identify and evaluate pathological balance control of patients undergoing vestibular schwannoma microsurgery, it was necessary to calculate the volume polyhedron using the 3-D Leibniz method and to plot three variables against each other. For the needs of this study, measurements and statistical analysis were made on nine patients. The results obtained by the inertial measurement unit showed no evidence of improvement in postural stability shortly after surgery (4 days). The results were consistent with the results obtained by the posturography system. The evaluated translation variables (acceleration) and rotary variables (angles) measured by the inertial measurement unit correlate strongly with the results of the posturography system. The proposed method and application of the inertial measurement unit for the purpose of measuring patients with vestibular schwannoma appear to be suitable for medical practice. Moreover, the inertial measurement unit is portable and, when compared to other traditional posturography systems, economically affordable. Inertial measurement units can alternatively be implemented in mobile phones or watches.
3rd Faculty of Medicine Charles University Prague Ruská 2411 87 Prague Czech Republic
Faculty of Physical Culture Palacký University Tr Miru 115 Olomouc Czech Republic
Motol University Hospital Charles University 5 Uvalu 84 Prague Czech Republic
Zobrazit více v PubMed
Čakrt O., Chovanec M., Funda T., et al. Exercise with visual feedback improves postural stability after vestibular schwannoma surgery. European Archives of Oto-Rhino-Laryngology. 2010;267(9):1355–1360. doi: 10.1007/s00405-010-1227-x. PubMed DOI
Wiegand D. A., Ojemann R. G., Fickel V. Surgical treatment of acoustic neuroma (vestibular schwannoma) in the United States. The Laryngoscope. 1996;106(1):58–66. doi: 10.1097/00005537-199601000-00012. PubMed DOI
Choy N. L., Johnson N., Treleaven J., Jull G., Panizza B., Brown-Rothwell D. Balance, mobility and gaze stability deficits remain following surgical removal of vestibular schwannoma (acoustic neuroma): an observational study. Australian Journal of Physiotherapy. 2006;52(3):211–216. doi: 10.1016/S0004-9514(06)70030-7. PubMed DOI
Curthoys I. S. Vestibular compensation and substitution. Current Opinion in Neurology. 2000;13(1):27–30. doi: 10.1097/00019052-200002000-00006. PubMed DOI
Levo H., Blomstedt G., Pyykkö I. Postural stability after vestibular schwannoma surgery. Annals of Otology, Rhinology & Laryngology. 2004;113(12):994–999. doi: 10.1177/000348940411301210. PubMed DOI
Gago M. F., Fernandes V., Ferreira J., et al. Postural stability analysis with inertial measurement units in Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders Extra. 2014;4(1):22–30. doi: 10.1159/000357472. PubMed DOI PMC
Allum J. H. J. Recovery of vestibular ocular reflex function and balance control after a unilateral peripheral vestibular deficit. Frontiers in Neurology. 2012;3 doi: 10.3389/fneur.2012.00083. PubMed DOI PMC
Schubert P., Kirchner M., Schmidtbleicher D., Haas C. T. About the structure of posturography: sampling duration, parametrization, focus of attention (part I) Journal of Biomedical Science and Engineering. 2012;5(9):496–507. doi: 10.4236/jbise.2012.59062. DOI
Adkin A. L., Bloem B. R., Allum J. H. J. Trunk sway measurements during stance and gait tasks in Parkinson’s disease. Gait & Posture. 2005;22(3):240–249. doi: 10.1016/j.gaitpost.2004.09.009. PubMed DOI
Parietti-Winkler C., Gauchard G. C., Simon C., Perrin P. P. Pre-operative vestibular pattern and balance compensation after vestibular schwannoma surgery. Neuroscience. 2011;172:285–292. doi: 10.1016/j.neuroscience.2010.10.059. PubMed DOI
Oliveira L. F., Simpson D. M., Nadal J. Calculation of area of stabilometric signals using principal component analysis. Physiological Measurement. 1996;17(4):305–312. doi: 10.1088/0967-3334/17/4/008. PubMed DOI
Ochi F., Abe K., Ishigami S., Otsu K., Tomita H. Trunk motion analysis in walking using gyro sensors. Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th Annual International Conference of the IEEE; 1997; Chicago, IL, USA. pp. 1824–1825. DOI
Allum J. H. J., Oude Nijhuis L. B., Carpenter M. G. Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects. Experimental Brain Research. 2008;184(3):391–410. doi: 10.1007/s00221-007-1112-z. PubMed DOI
Kutilek P., Cakrt O., Socha V., Hana K. Volume of confidence ellipsoid: a technique for quantifying trunk sway during stance. Biomedical Engineering/Biomedizinische Technik. 2015;60(2):171–176. doi: 10.1515/bmt-2014-0012. PubMed DOI
Kennie T. J. M., Petrie G. Engineering Surveying Technology. Glasgow, Scotland: Thomson Science and Profesional; 1990.
Findling O., Sellner J., Meier N., et al. Trunk sway in mildly disabled multiple sclerosis patients with and without balance impairment. Experimental Brain Research. 2011;213(4):363–370. doi: 10.1007/s00221-011-2795-8. PubMed DOI
Osler C. J., Reynolds R. F. Postural reorientation does not cause the locomotor after-effect following rotary locomotion. Experimental Brain Research. 2012;220(3-4):231–237. doi: 10.1007/s00221-012-3132-6. PubMed DOI
Altun K., Barshan B. Pedestrian dead reckoning employing simultaneous activity recognition cues. Measurement Science and Technology. 2012;23(2, article 025103) doi: 10.1088/0957-0233/23/2/025103. DOI
Gil-Agudo A., de Los Reyes-Guzmán A., Dimbwadyo-Terrer I., et al. A novel motion tracking system for evaluation of functional rehabilitation of the upper limbs. Neural Regeneration Research. 2013;8(19):1773–1782. doi: 10.3969/j.issn.1673-5374.2013.19.005. PubMed DOI PMC
Honegger F., Van Spijker G. J., Allum J. H. J. Coordination of the head with respect to the trunk and pelvis in the roll and pitch planes during quiet stance. Neuroscience. 2012;213:62–71. doi: 10.1016/j.neuroscience.2012.04.017. PubMed DOI
Zadnikar M., Rugelj D. Postural stability after hippotherapy in an adolescent with cerebral palsy. Journal of Novel Physiotherapies. 2011;1(1) doi: 10.4172/2165-7025.1000106. DOI
Ying N., Kim W. Use of dual Euler angles to quantify the three-dimensional joint motion and its application to the ankle joint complex. Journal of Biomechanics. 2002;35(12):1647–1657. doi: 10.1016/S0021-9290(02)00241-5. PubMed DOI
Kutilek P., Cakrt O., Socha V., Hana K. Volume of convex hull: a technique for quantifying human postural stability. Journal of Mechanics in Medicine and Biology. 2016;16(02, article 1650013) doi: 10.1142/S0219519416500135. DOI
Chazelle B. An optimal convex hull algorithm in any fixed dimension. Discrete & Computational Geometry. 1993;10(4):377–409. doi: 10.1007/BF02573985. DOI
Knuth D. E. Axioms and hulls. Berlin, Heildelberg: Springer; 1992. DOI
Preparata F. P., Hong S. J. Convex hulls of finite sets of points in two and three dimensions. Communications of the ACM. 1977;20(2):87–93. doi: 10.1145/359423.359430. DOI
Zhou Y. Motion Control. InTech; 2010. Distributed control of multi-robot deployment motion. DOI
Grunbaum B. A., Klee V. CUPM (Committee on the Undergraduate Program in Mathematics). In: Durst L. K., editor. Geometry Conference Proceedings, Part I: Convexity and Applications. Lectures; 1967; Santa Barbara, CA, USA. Mathematical Association of America.
Ogilvy C. S. New York: Dover Books on Mathematics. Mineola, NY, USA: Dover Publications Inc.; 1990. Excursions in geometry.
Goldman R. Area of planar polygons and volume of polyhedra. In: ARVO J., editor. Graphics Gems II. Boston, MA, USA: Academic Press; 1991.
Jarque C. M., Bera A. K. A test for normality of observations and regression residuals. International Statistical Review/Revue Internationale de Statistique. 1987;55(2):163–172. doi: 10.2307/1403192. DOI
Fritz C. O., Morris P. E., Richler J. J. Effect size estimates: current use, calculations, and interpretation. Journal of Experimental Psychology: General. 2012;141(1):2–18. doi: 10.1037/a0024338. PubMed DOI
Coolican H. Research Methods and Statistics in Psychology. London, UK: Hodder & Stoughton Publisher; 2009.
Patel M., Fransson P. A., Lush D., Gomez S. The effect of foam surface properties on postural stability assessment while standing. Gait & Posture. 2008;28(4):649–656. doi: 10.1016/j.gaitpost.2008.04.018. PubMed DOI
Patel M., Fransson P. A., Lush D., et al. The effects of foam surface properties on standing body movement. Acta Oto-Laryngologica. 2008;128(9):952–960. doi: 10.1080/00016480701827517. PubMed DOI
Teranishi T., Kondo I., Sonoda S., et al. Validity study of the standing test for imbalance and disequilibrium (SIDE): is the amount of body sway in adopted postures consistent with item order? Gait & Posture. 2011;34(3):295–299. doi: 10.1016/j.gaitpost.2011.05.007. PubMed DOI
Diener H.-C., Dichgans J., Guschlbauer B., Bacher M., Rapp H., Klockgether T. The coordination of posture and voluntary movement in patients with cerebellar dysfunction. Movement Disorders. 1992;7(1):14–22. doi: 10.1002/mds.870070104. PubMed DOI
Aoki H., Demura S., Kawabata H., et al. Evaluating the effects of open/closed eyes and age-related differences on center of foot pressure sway during stepping at a set tempo. Advances in Aging Research. 2012;1(3):72–77. doi: 10.4236/aar.2012.13009. DOI
Abrahamova D., Hlavacka F. Age-related changes of human balance during quiet stance. Physiological Research. 2008;57(6):957–964. PubMed
Honegger F., Hillebrandt I. M. A., van den Elzen N. G. A., Tang K. S., Allum J. H. J. The effect of prosthetic feedback on the strategies and synergies used by vestibular loss subjects to control stance. Journal of NeuroEngineering and Rehabilitation. 2013;10(1):p. 115. doi: 10.1186/1743-0003-10-115. PubMed DOI PMC
Hanakova L., Socha V., Schlenker J., Cakrt O., Kutilek P. Assessment of postural instability in patients with a neurological disorder using a tri-axial accelerometer. Acta Polytechnica. 2015;55(4):229–236. doi: 10.14311/AP.2015.55.0229. DOI
Kusmirek S., Hana K., Socha V., Prucha J., Kutilek P., Svoboda Z. Postural instability assessment using trunk acceleration frequency analysis. European Journal of Physiotherapy. 2016;18(4):237–244. doi: 10.1080/21679169.2016.1211174. DOI