Evolution of factors shaping the endoplasmic reticulum
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
204697/Z/16/Z
Wellcome Trust - United Kingdom
PubMed
36040076
PubMed Central
PMC9804665
DOI
10.1111/tra.12863
Knihovny.cz E-zdroje
- Klíčová slova
- comparative genomics, endomembrane system, endoplasmic reticulum, eukaryogenesis, evolution, last eukaryotic common ancestor, phylogeny, reticulons, vesicular traffic,
- MeSH
- endoplazmatické retikulum * metabolismus MeSH
- eukaryotické buňky * MeSH
- transport proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Endomembrane system compartments are significant elements in virtually all eukaryotic cells, supporting functions including protein synthesis, post-translational modifications and protein/lipid targeting. In terms of membrane area the endoplasmic reticulum (ER) is the largest intracellular organelle, but the origins of proteins defining the organelle and the nature of lineage-specific modifications remain poorly studied. To understand the evolution of factors mediating ER morphology and function we report a comparative genomics analysis of experimentally characterized ER-associated proteins involved in maintaining ER structure. We find that reticulons, REEPs, atlastins, Ufe1p, Use1p, Dsl1p, TBC1D20, Yip3p and VAPs are highly conserved, suggesting an origin at least as early as the last eukaryotic common ancestor (LECA), although many of these proteins possess additional non-ER functions in modern eukaryotes. Secondary losses are common in individual species and in certain lineages, for example lunapark is missing from the Stramenopiles and the Alveolata. Lineage-specific innovations include protrudin, Caspr1, Arl6IP1, p180, NogoR, kinectin and CLIMP-63, which are restricted to the Opisthokonta. Hence, much of the machinery required to build and maintain the ER predates the LECA, but alternative strategies for the maintenance and elaboration of ER shape and function are present in modern eukaryotes. Moreover, experimental investigations for ER maintenance factors in diverse eukaryotes are expected to uncover novel mechanisms.
Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Division of Infectious Diseases Department of Medicine University of Alberta Edmonton Alberta Canada
Genetics Laboratory Department of Biotechnology Agricultural University of Athens Athens Greece
Zobrazit více v PubMed
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. 4th ed. New York: Garland Science; 2002. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21054/
Lee MCS, Miller EA, Goldberg J, Orci L, Schekman R. Bi‐directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol. 2004;20:87‐123. PubMed
Gatica D, Lahiri VV, Klionsky DJ. Cargo recognition and degradation by selective autophagy. Nat Cell Biol. 2018;20:233‐242. PubMed PMC
Bonifacino JS, Glick BS. The mechanisms of vesicle budding and fusion. Cell. 2004;116:153‐166. PubMed
Field MC, Dacks JB. First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr Opin Cell Biol. 2009;21:4‐13. PubMed
Koumandou VL, Dacks JB, Coulson R, Field MC. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol Biol. 2007;17:1‐17. PubMed PMC
Elias M, Brighouse A, Gabernet‐Castello C, Field MC, Dacks JB. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci. 2012;125:2500‐2508. PubMed PMC
Koumandou VL, Wickstead B, Ginger ML, Van Der Giezen M, Dacks JB, Field MC. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol. 2013;48:373‐396. PubMed PMC
Dacks JB, Field MC. Evolutionary origins and specialisation of membrane transport. Curr Opin Cell Biol. 2018;53:70‐76. PubMed PMC
Zaremba‐Niedzwiedzka K, Caceres EF, Saw JH, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature. 2017;541:353‐358. PubMed
Imachi H, Nobu MK, Nakahara N, et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature. 2020;577:519‐525. PubMed PMC
Dacks JB, Robinson MS. Outerwear through the ages: evolutionary cell biology of vesicle coats. Curr Opin Cell Biol. 2017;47:108‐116. PubMed
Roger AJ, Susko E, Leger MM. Evolution: reconstructing the timeline of eukaryogenesis. Curr Biol. 2021;31:R193‐R196. PubMed
López‐García P, Moreira D. Open questions on the origin of eukaryotes. Trends Ecol Evol. 2015;30:697‐708. PubMed PMC
Baum DA, Baum B. An inside‐out origin for the eukaryotic cell. BMC Biol. 2014;12:1‐22. PubMed PMC
Harris AJ, Goldman AD. The very early evolution of protein translocation across membranes. PLoS Comput Biol. 2021;17:1‐30. PubMed PMC
Cao TB, Saier MH. The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim Biophys Acta Biomembr. 2003;1609:115‐125. PubMed
Gould SB, Garg SG, Martin WF. Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system. Trends Microbiol. 2016;24:525‐534. PubMed
McBride HM. Mitochondria and endomembrane origins. Curr Biol. 2018;28:R367‐R372. PubMed
Lombard J. The multiple evolutionary origins of the eukaryotic N‐glycosylation pathway. Biol Direct. 2016;11:36. PubMed PMC
Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell. 2006;124:573‐586. PubMed
Urade T, Yamamoto Y, Zhang X, Ku Y, Sakisaka T. Identification and characterization of TMEM33 as a reticulon‐binding protein. Kobe J Med Sci. 2014;60:E57‐E65. PubMed
Barlowe C. Atlasin GTPases shape up ER networks. Dev Cell. 2009;17:157‐158. PubMed
Farhan H, Hauri HP. Membrane biogenesis: networking at the ER with Atlastin. Curr Biol. 2009;19:R906‐R908. PubMed
Hu J, Shibata Y, Zhu PP, et al. A class of dynamin‐like GTPases involved in the generation of the tubular ER network. Cell. 2009;138:549‐561. PubMed PMC
Orso G, Pendin D, Liu S, et al. Homotypic fusion of ER membranes requires the dynamin‐like GTPase Atlastin. Nature. 2009;460:978‐983. PubMed
Hu J, Rapoport TA. Fusion of the endoplasmic reticulum by membrane‐bound GTPases. Semin Cell Dev Biol. 2016;60:105‐111. PubMed
Park SH, Zhu P‐P, Parker RL, Blackstone C. Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin‐1 coordinate microtubule interactions with the tubular ER network. J Clin Invest. 2010;120:1097‐1110. PubMed PMC
Friedman JR, Voeltz GK. The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol. 2011;21:709‐717. PubMed PMC
Chiurchiù V, Maccarrone M, Orlacchio A. The role of reticulons in neurodegenerative diseases. Neuromolecular Med. 2014;16:3‐15. PubMed PMC
Oertle T, Schwab ME. Nogo and its paRTNers. Trends Cell Biol. 2003;13:187‐194. PubMed
Yang YS, Strittmatter SM. The reticulons: a family of proteins with diverse functions. Genome Biol. 2007;8:234. PubMed PMC
Yamamoto Y, Yoshida A, Miyazaki N, Iwasaki K, Sakisaka T. Arl6IP1 has the ability to shape the mammalian ER membrane in a reticulon‐like fashion. Biochem J. 2014;458:69‐79. PubMed
Mannan AU, Boehm J, Sauter SM, et al. Spastin, the most commonly mutated protein in hereditary spastic paraplegia interacts with Reticulon 1 an endoplasmic reticulum protein. Neurogenetics. 2006;7:93‐103. PubMed
Solowska JM, Baas PW. Hereditary spastic paraplegia SPG4: what is known and not known about the disease. Brain. 2015;138:2471‐2484. PubMed PMC
Chang J, Lee S, Blackstone C. Protrudin binds atlastins and endoplasmic reticulum‐shaping proteins and regulates network formation. Proc Natl Acad Sci U S A. 2013;110:14954‐14959. PubMed PMC
Chen S, Novick P, Ferro‐Novick S. ER network formation requires a balance of the dynamin‐like GTPase Sey1p and the Lunapark family member Lnp1p. Nat Cell Biol. 2012;14:707‐716. PubMed PMC
Anwar K, Klemm RW, Condon A, et al. The dynamin‐like GTPase Sey1p mediates homotypic ER fusion in S. cerevisiae . J Cell Biol. 2012;197:209‐217. PubMed PMC
Rogers JV, McMahon C, Baryshnikova A, Hughson FM, Rose MD. ER‐associated retrograde SNAREs and the Dsl1 complex mediate an alternative, Sey1p‐independent homotypic ER fusion pathway. Mol Biol Cell. 2014;25:3401‐3412. PubMed PMC
Shibata Y, Shemesh T, Prinz WA, Palazzo AF, Kozlov MM, Rapoport TA. Mechanisms determining the morphology of the peripheral ER. Cell. 2010;143:774‐788. PubMed PMC
Goyal U, Blackstone C. Untangling the web: mechanisms underlying ER network formation. Biochim Biophys Acta Mol Cell Res. 2013;1833:2492‐2498. PubMed PMC
Geng J, Shin ME, Gilbert PM, Collins RN, Burd CG. Saccharomyces cerevisiae Rab‐GDI displacement factor ortholog Yip3p forms distinct complexes with the Ypt1 Rab GTPase and the reticulon Rtn1p. Eukaryot Cell. 2005;4:1166‐1174. PubMed PMC
Haas AK, Yoshimura S‐i, Stephens DJ, Preisinger C, Fuchs E, Barr FA. Analysis of GTPase‐activating proteins: Rab1 and Rab43 are key Rabs required to maintain a functional Golgi complex in human cells. J Cell Sci. 2007;120:2997‐3010. PubMed
Hashimoto Y, Shirane M, Matsuzaki F, Saita S, Ohnishi T, Nakayama KI. Protrudin regulates endoplasmic reticulum morphology and function associated with the pathogenesis of hereditary spastic paraplegia. J Biol Chem. 2014;289:12946‐12961. PubMed PMC
Schmitt HD. Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules. Trends Cell Biol. 2010;20:257‐268. PubMed
Rogers JV, Arlow T, Inkellis ER, Koo TS, Rose MD. ER‐associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating. Mol Biol Cell. 2013;24:3896‐3908. PubMed PMC
Fournier AE, GrandPre T, Strittmatter SM. Identification of a receptor mediating Nogo‐66 inhibition of axonal regeneration. Nature. 2001;409:341‐346. PubMed
Nie DY, Zhou ZH, Ang BT, et al. Nogo‐A at CNS paranodes is a ligand of Caspr: possible regulation of K+channel localization. EMBO J. 2003;22:5666‐5678. PubMed PMC
Martin WF, Tielens AGM, Mentel M, Garg SG, Gould SB. The physiology of phagocytosis in the context of mitochondrial origin. Microbiol Mol Biol Rev. 2017;81:e00008‐e00017. PubMed PMC
Oertle T, Klinger M, Stuermer CAO, Schwab ME. A reticular rhapsody: phylogenic evolution and nomenclature of the RTN/Nogo gene family. FASEB J. 2003;17:1238‐1247. PubMed
Barlow LD, Dacks JB. Seeing the endomembrane system for the trees: evolutionary analysis highlights the importance of plants as models for eukaryotic membrane‐trafficking. Semin Cell Dev Biol. 2018;80:142‐152. 10.1016/j.semcdb.2017.09.027 PubMed DOI
Panchy N, Lehti‐Shiu M, Shiu SH. Evolution of gene duplication in plants. Plant Physiol. 2016;171:2294‐2316. PubMed PMC
Li Z, Baniaga AE, Sessa EB, et al. Early genome duplications in conifers and other seed plants. Sci Adv. 2015;1:e1501084.20. PubMed PMC
Jiao Y, Li J, Tang H, Paterson AH. Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell. 2014;26:2792‐2802. PubMed PMC
Kriechbaumer V, Maneta‐Peyret L, Fouillen L, et al. The odd one out: Arabidopsis reticulon 20 does not bend ER membranes but has a role in lipid regulation. Sci Rep. 2018;8:1‐15. PubMed PMC
Brooks RL, Mistry CS, Dixon AM. Curvature sensing amphipathic helix in the C‐terminus of RTNLB13 is conserved in all endoplasmic reticulum shaping reticulons in Arabidopsis thaliana . Sci Rep. 2021;11:1‐11. PubMed PMC
Huber AB, Weinmann O, Brösamle C, Oertle T, Schwab ME. Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesion. J Neurosci. 2002;22:3553‐3567. PubMed PMC
Wakefield S, Tear G. The Drosophila reticulon, Rtnl‐1, has multiple differentially expressed isoforms that are associated with a sub‐compartment of the endoplasmic reticulum. Cell Mol Life Sci. 2006;63:2027‐2038. PubMed PMC
Hurt CM, Björk S, Ho VK, Gilsbach R, Hein L, Angelotti T. REEP1 and REEP2 proteins are preferentially expressed in neuronal and neuronal‐like exocytotic tissues. Brain Res. 2014;1545:12‐22. PubMed PMC
Chen S, Desai T, McNew JA, Gerard P, Novick PJ, Ferro‐Novick S. Lunapark stabilizes nascent three‐way junctions in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 2015;112:418‐423. PubMed PMC
Shemesh T, Klemm RW, Romano FB, et al. A model for the generation and interconversion of ER morphologies. Proc Natl Acad Sci U S A. 2014;111:E5243‐E5251. PubMed PMC
Saita S, Shirane M, Natume T, Iemura SI, Nakayama KI. Promotion of neurite extension by protrudin requires its interaction with vesicle‐associated membrane protein‐associated protein. J Biol Chem. 2009;284:13766‐13777. PubMed PMC
Dong R, Zhu T, Benedetti L, et al. The inositol 5‐phosphatase INPP5K participates in the fine control of ER organization. J Cell Biol. 2018;217:3577‐3592. PubMed PMC
Kuroda M, Funasaki S, Saitoh T, et al. Determination of topological structure of ARL6ip1 in cells: identification of the essential binding region of ARL6ip1 for conophylline. FEBS Lett. 2013;587:3656‐3660. PubMed
Nizon M, Küry S, Péréon Y, et al. ARL6IP1 mutation causes congenital insensitivity to pain, acromutilation and spastic paraplegia. Clin Genet. 2018;93:169‐172. PubMed
Kuo YW, Howard J. Cutting, amplifying, and aligning microtubules with severing enzymes. Trends Cell Biol. 2021;31:50‐61. PubMed PMC
Song G, Kwon CT, Kim SH, et al. The rice SPOTTED LEAF4 (SPL4) encodes a plant spastin that inhibits ROS accumulation in LEAF development and functions in LEAF senescence. Front Plant Sci. 2019;9:1‐14. PubMed PMC
Yan L, Sun S, Wang W, et al. Structures of the yeast dynamin‐like GTPase Sey1p provide insight into homotypic ER fusion. J Cell Biol. 2015;210:961‐972. PubMed PMC
Sun J, Zheng H. Efficient ER fusion requires a dimerization and a C‐terminal tail mediated membrane anchoring of RHD3. Plant Physiol. 2018;176:406‐417. PubMed PMC
Venkatesh D, Boehm C, Barlow LD, et al. Evolution of the endomembrane systems of trypanosomatids—conservation and specialisation. J Cell Sci. 2017;130:1421‐1434. PubMed PMC
Klinger CM, Klute MJ, Dacks JB. Comparative genomic analysis of multi‐subunit tethering complexes demonstrates an ancient pan‐eukaryotic complement and sculpting in Apicomplexa. PLoS One. 2013;8:1‐15. PubMed PMC
Zheng P, Obara CJ, Szczesna E, et al. ER proteins decipher the tubulin code to regulate organelle distribution. Nature. 2021;601:132‐138. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34912111 PubMed PMC
Christodoulou A, Santarella‐Mellwig R, Santama N, Mattaj IW. Transmembrane protein TMEM170A is a newly discovered regulator of ER and nuclear envelope morphogenesis in human cells. J Cell Sci. 2016;129:1552‐1565. doi:10.1242/jcs.175273 PubMed DOI PMC
English AR, Zurek N, Voeltz GK. Peripheral ER structure and function. Curr Opin Cell Biol. 2009;21:596‐602. PubMed PMC
Karnkowska A, Treitli SC, Brzoň O, et al. The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion. Mol Biol Evol. 2019;36:2292‐2312. PubMed PMC
Teixeira JE, Huston CD. Evidence of a continuous endoplasmic reticulum in the protozoan parasite Entamoeba histolytica . Eukaryot Cell. 2008;7:1222‐1226. PubMed PMC
Perdomo D, Aït‐Ammar N, Syan S, Sachse M, Jhingan GD, Guillén N. Cellular and proteomics analysis of the endomembrane system from the unicellular Entamoeba histolytica . J Proteomics. 2015;112:125‐140. PubMed
Treitli SC, Kotyk M, Yubuki N, et al. Molecular and morphological diversity of the oxymonad genera monocercomonoides and Blattamonas gen. nov. Protist. 2018;169:744‐783. PubMed
Aury J‐M, Jaillon O, Duret L, et al. Global trends of whole‐genome duplications revealed by the ciliate Paramecium tetraurelia . Nature. 2006;444:171‐178. PubMed
Ramoino P, Diaspro A, Fato M, Beltrame F, Robello M. Changes in the endoplasmic reticulum structure of Paramecium primaurelia in relation to different cellular physiological states. J Photochem Photobiol B Biol. 2000;54:35‐42. PubMed
Zou Y, Zhang W, Liu H, et al. Structure and function of the contactin‐associated protein family in myelinated axons and their relationship with nerve diseases. Neural Regen Res. 2017;12:1551. PubMed PMC
Jorgensen EM. Animal evolution: looking for the first nervous system. Curr Biol. 2014;24:655‐658. PubMed
Dacks JB, Field MC. Eukaryotic Cell Evolution from a Comparative Genomic Perspective: The Endomembrane System. CRC Press; 2004:309‐334.
Field MC, Gabernet‐castello C, Dacks JB. Reconstructing the evolution of the endocytic system: insights from genomics and molecular cell biology. In: Jekely G, ed. Eukaryotic Membranes and Cytoskeleton. Advances in Experimental Medicine and Biology. Springer; 2007:84‐96. PubMed
Eichler J. N‐Glycosylation in Archaea—new roles for an ancient posttranslational modification. Mol Microbiol. 2020;114:735‐741. PubMed
Albers SV, Szabó Z, Driessen AJM. Protein secretion in the Archaea: multiple paths towards a unique cell surface. Nat Rev Microbiol. 2006;4:537‐547. PubMed
Adl SM, Simpson AGB, Farmer MA, et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol. 2005;52:399‐451. PubMed
Altschul S, Madden T, Schaffer A, et al. Gapped blast and psi‐blast: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389‐3402. PubMed PMC
Richter D, Berney C, Strassert J, et al. EukProt: a database of genome‐scale predicted proteins across the diversity of eukaryotes. bioRxiv. 2022. 10.1101/2020.06.30.180687 DOI
Priyam A, Woodcroft BJ, Rai V, et al. Sequenceserver: a modern graphical user Interface for custom BLAST databases. Mol Biol Evol. 2019;36:2922‐2924. PubMed PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792‐1797. PubMed PMC
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572‐1574. PubMed
Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008;25:1307‐1320. PubMed
Nguyen L‐T, Schmidt HA, von Haeseler A, Minh BQ. IQ‐TREE: a fast and effective stochastic algorithm for estimating maximum‐likelihood phylogenies. Mol Biol Evol. 2015;32:268‐274. PubMed PMC
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE). IEEE; 2010, pp. 1‐8.
Minh BQ, Nguyen MAT, Von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188‐1195. PubMed PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587‐589. PubMed PMC
Correction to: Evolution of factors shaping the endoplasmic reticulum