Characterization of a phosphoinositide-binding protein containing a PHOX homology domain in the malaria parasite Plasmodium falciparum

. 2025 Oct 22 ; 15 (1) : 36867. [epub] 20251022

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41125830

Grantová podpora
R01 GM129325 NIGMS NIH HHS - United States
VEGA 2/0047/23 Slovak Academy of Sciences
RES0043758, and RES0046091 Natural Sciences and Engineering Research Council of Canada
406675 CIHR - Canada

Odkazy

PubMed 41125830
PubMed Central PMC12546714
DOI 10.1038/s41598-025-20974-y
PII: 10.1038/s41598-025-20974-y
Knihovny.cz E-zdroje

Phosphoinositides (PIPs), are key regulators of membrane identity and vesicular trafficking. By dynamically shaping the lipid composition of intracellular membranes, PIPs help ensure the specificity of cargo delivery. In apicomplexan parasites such as Plasmodium falciparum, the biogenesis of the specialized secretory organelles involved in erythrocyte invasion (named rhoptries, micronemes, and dense granules), remains poorly understood, particularly regarding how proteins are sorted and specifically targeted to their respective destinations. Our hypothesis is that PIPs might play a role in this process. We here present our characterization of the P. falciparum protein Pf3D7_0704400, a putative PIP-binding protein containing a PX domain. We named this protein PfPX2, following the previously characterized PX domain-containing protein PfPX1. In silico structural analysis revealed that the PfPX2 PX domain contains both canonical and non-canonical PIP-binding motifs and a positively charged binding pocket. Lipid binding assays showed that the PfPX2 PX domain can bind all species of PIPs with a preference for PI3P, PI5P and PI(3,5)P2. Immunofluorescence assays demonstrated that PfPX2 localized to the Golgi apparatus and the micronemes in developing schizonts. Moreover, proximity labelling enabled the identification of protein such as PfSortilin, the clathrin heavy chain and PfDyn1 as potential interactors of PfPX2. Globally, these data suggest that PfPX2 is a PIP-binding protein potentially implicated in vesicular trafficking between the Golgi apparatus and the micronemes. Our bioinformatics analyses identified PX2 orthologues across apicomplexans and indeed other alveolates, raising the possibility that this protein plays a role in a broad range of medically, agriculturally, and environmentally relevant organisms.

Zobrazit více v PubMed

Corvera, S., D’Arrigo, A. & Stenmark, H. Phosphoinositides in membrane traffic. PubMed

Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. PubMed

Balla, T. Phosphoinositides: Tiny lipids with giant impact on cell regulation. PubMed PMC

Nasuhoglu, C. et al. Nonradioactive analysis of phosphatidylinositides and other anionic phospholipids by anion-exchange high-performance liquid chromatography with suppressed conductivity detection. PubMed

Wengelnik, K., Daher, W. & Lebrun, M. Phosphoinositides and their functions in apicomplexan parasites. PubMed

Ebrahimzadeh, Z., Mukherjee, A. & Richard, D. A map of the subcellular distribution of phosphoinositides in the erythrocytic cycle of the malaria parasite Plasmodium falciparum. PubMed

Chandra, M. et al. Classification of the human phox homology (PX) domains based on their phosphoinositide binding specificities. PubMed PMC

Tawk, L. et al. Phosphatidylinositol 3-phosphate, an essential lipid in Plasmodium, localizes to the food vacuole membrane and the apicoplast. PubMed PMC

Vaid, A., Ranjan, R., Smythe, W. A., Hoppe, H. C. & Sharma, P. PfPI3K, a phosphatidylinositol-3 kinase from Plasmodium falciparum, is exported to the host erythrocyte and is involved in hemoglobin trafficking. PubMed PMC

Jakob Birnbaum, S. S. et al. A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. PubMed

Mukherjee, A. et al. A Phosphoinositide-binding protein acts in the trafficking pathway of hemoglobin in the malaria parasite Plasmodium falciparum. PubMed PMC

Jonscher, E. et al. PfVPS45 is required for host cell cytosol uptake by malaria blood stage parasites. PubMed

WHO. World malaria report 2024: Addressing inequity in the global malaria response. (2024).

Bjorkman, A., Benn, C. S., Aaby, P. & Schapira, A. RTS,S/AS01 malaria vaccine-proven safe and effective?. PubMed

Menard, D. & Fidock, D. A. Accelerated evolution and spread of multidrug-resistant Plasmodium falciparum takes down the latest first-line antimalarial drug in southeast Asia. PubMed PMC

Liffner, B. et al. Atlas of Plasmodium falciparum intraerythrocytic development using expansion microscopy. PubMed PMC

Bannister, L. H., Hopkins, J. M., Fowler, R. E., Krishna, S. & Mitchell, G. H. Ultrastructure of rhoptry development in Plasmodium falciparum erythrocytic schizonts. PubMed

Rudlaff, R. M., Kraemer, S., Marshman, J. & Dvorin, J. D. Three-dimensional ultrastructure of Plasmodium falciparum throughout cytokinesis. PubMed PMC

Healer, J., Crawford, S., Ralph, S., McFadden, G. & Cowman, A. F. Independent translocation of two micronemal proteins in developing Plasmodium falciparum merozoites. PubMed PMC

Hallee, S., Boddey, J. A., Cowman, A. F. & Richard, D. Evidence that the Plasmodium falciparum protein sortilin potentially acts as an escorter for the trafficking of the rhoptry-associated membrane antigen to the rhoptries. PubMed PMC

Hallee, S., Counihan, N. A., Matthews, K., de Koning-Ward, T. F. & Richard, D. The malaria parasite Plasmodium falciparum sortilin is essential for merozoite formation and apical complex biogenesis. PubMed

Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. PubMed PMC

Pettersen, E. F. et al. UCSF chimeraX: Structure visualization for researchers, educators, and developers. PubMed PMC

Chahar, P. et al. Genome-wide collation of the Plasmodium falciparum WDR protein superfamily reveals malarial parasite-specific features. PubMed PMC

Jain, B. P. & Pandey, S. WD40 repeat proteins: Signalling scaffold with diverse functions. PubMed

Teasdale, R. D. & Collins, B. M. Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: Structures, functions and roles in disease. PubMed

Bravo, J. et al. The Crystal Structure of the PX Domain from p40phox bound to phosphatidylinositol 3-phosphate. PubMed

Cheng, G. & Lambeth, J. D. NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain. PubMed

Birnbaum, J. et al. A genetic system to study Plasmodium falciparum protein function. PubMed

Salmon, B. L., Oksman, A. & Goldberg, D. E. Malaria parasite exit from the host erythrocyte: A two-step process requiring extraerythrocytic proteolysis. PubMed PMC

Absalon, S., Robbins, J. A. & Dvorin, J. D. An essential malaria protein defines the architecture of blood-stage and transmission-stage parasites. PubMed PMC

Ebrahimzadeh, Z. et al. A pan-apicomplexan phosphoinositide-binding protein acts in malarial microneme exocytosis. PubMed PMC

Roucheray, S., Narciso, M. R. & Richard, D. Characterization of the malaria parasite. PubMed PMC

Kimmel, J. et al. Gene-by-gene screen of the unknown proteins encoded on Plasmodium falciparum chromosome 3. PubMed

Mukherjee, A. et al. A phosphoinositide-binding protein acts in the trafficking pathway of hemoglobin in the malaria parasite Plasmodium falciparum. PubMed PMC

Zhang, M. et al. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. PubMed PMC

Elsworth, B. et al. The essential genome of. PubMed PMC

Prommana, P. et al. Inducible knockdown of Plasmodium gene expression using the glms ribozyme. PubMed PMC

Goldfless, S. J., Wagner, J. C. & Niles, J. C. Versatile control of Plasmodium falciparum gene expression with an inducible protein–RNA interaction. PubMed PMC

Ouyang, S., Jia, B., Xie, W., Yang, J. & Lv, Y. Mechanism underlying the regulation of sortilin expression and its trafficking function. PubMed

Sloves, P. J. et al. Toxoplasma sortilin-like receptor regulates protein transport and is essential for apical secretory organelle biogenesis and host infection. PubMed

Henrici, R. C. et al. The Plasmodium falciparum artemisinin susceptibility-associated AP-2 adaptin mu subunit is clathrin independent and essential for schizont maturation. PubMed PMC

Dell’Angelica, E. C. Clathrin-binding proteins: Got a motif? Join the network!. PubMed

Brodsky, F. M. Diversity of clathrin function: New tricks for an old protein. PubMed

Pieperhoff, M. S., Schmitt, M., Ferguson, D. J. & Meissner, M. The role of clathrin in post-Golgi trafficking in toxoplasma gondii. PubMed PMC

Miao, J. & Cui, L. (bioRxiv, 2024).

Krai, P., Dalal, S. & Klemba, M. Evidence for a Golgi-to-endosome protein sorting pathway in Plasmodium falciparum. PubMed PMC

Sabitzki, R. et al. Role of Rabenosyn-5 and Rab5b in host cell cytosol uptake reveals conservation of endosomal transport in malaria parasites. PubMed PMC

Sever, S., Chang, J. & Gu, C. Dynamin rings: Not just for fission. PubMed PMC

Breinich, M. S. et al. A dynamin is required for the biogenesis of secretory organelles in toxoplasma gondii. PubMed PMC

McGovern, O. L., Rivera-Cuevas, Y., Kannan, G., Narwold, A. J. Jr. & Carruthers, V. B. Intersection of endocytic and exocytic systems in toxoplasma gondii. PubMed PMC

Zhou, H. C., Gao, Y., Zhong, X. & Wang, H. Dynamin like protein 1 participated in the hemoglobin uptake pathway of Plasmodium falciparum. PubMed

Li, H. et al. Isolation and functional characterization of a dynamin-like gene from Plasmodium falciparum. PubMed

Eisenberg-Bord, M., Shai, N., Schuldiner, M. & Bohnert, M. A tether is a tether is a tether: Tethering at membrane contact sites. PubMed

Henne, W. M. et al. Mdm1/Snx13 is a novel ER-endolysosomal interorganelle tethering protein. PubMed PMC

Daher, W. et al. Lipid kinases are essential for apicoplast homeostasis in toxoplasma gondii. PubMed PMC

Milani, K. J., Schneider, T. G. & Taraschi, T. F. Defining the morphology and mechanism of the hemoglobin transport pathway in Plasmodium falciparum-infected erythrocytes. PubMed PMC

Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. PubMed

Elmendorf, H. G. & Haldar, K. Identification and localization of ERD2 in the malaria parasite Plasmodium falciparum: separation from sites of sphingomyelin synthesis and implications for organization of the Golgi. PubMed PMC

Schofield, L. et al. A rhoptry antigen of Plasmodium falciparum contains conserved and variable epitopes recognized by inhibitory monoclonal antibodies. PubMed

Coley, A. M. et al. Rapid and precise epitope mapping of monoclonal antibodies against Plasmodium falciparum AMA1 by combined phage display of fragments and random peptides. PubMed

Barlow, L. D.

Blum, M. et al. InterPro: The protein sequence classification resource in 2025. PubMed PMC

Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. PubMed PMC

Jones, P. et al. InterProScan 5: Genome-scale protein function classification. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...