Climate, host and geography shape insect and fungal communities of trees
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37463904
PubMed Central
PMC10354058
DOI
10.1038/s41598-023-36795-w
PII: 10.1038/s41598-023-36795-w
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- hmyz MeSH
- klimatické změny MeSH
- lesy MeSH
- lidé MeSH
- mykobiom * MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate.
Agriculture Victoria Research Agribio Centre Bundoora Vic Australia
Biotechnical Faculty University of Montenegro Podgorica Montenegro
Central Siberian Botanical Garden Russian Academy of Sciences Siberian Branch Novosibirsk Russia
College of Forestry and Biotechnology Zhejiang A and F University Hangzhou China
Croatian Forest Research Institute Jastrebarsko Croatia
D B Warnell School of Forestry and Natural Resources University of Georgia Athens GA USA
Department of Agriculture Food and the Marine Dublin Ireland
Department of Environmental Biology Sapienza University of Rome Rome Italy
Department of Forest Ecosystems Protection University of Agriculture in Krakow Krakow Poland
Department of Forest Protection Forest Research Institute University of Sopron Mátrafüred Hungary
Department of Forestry and Environmental Conservation Clemson University Clemson SC USA
Department of Plant Breeding Swedish University of Agricultural Sciences Alnarp Sweden
Department of Vegetal Production and Forest Resources University of Valladolid Palencia Spain
DIBAF University of Tuscia Viterbo Italy
Faculty of Forestry Çankırı Karatekin University Cankiri Turkey
Fera Science Ltd National Agri food Innovation Campus York UK
Forest Research Institute Hellenic Agricultural Organization Demeter Thessaloniki Greece
Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
Forestry and Wood Technology Linnaeus University Växjö Sweden
GREEN IT Bioresources for Sustainability ITQB NOVA Oeiras Portugal
Institute of Agricultural Sciences ETH Zürich Zürich Switzerland
Institute of Botany at the Nature Research Centre Vilnius Lithuania
Institute of Forest Ecology Slovak Academy of Sciences Nitra Slovakia
Institute of Forestry and Engineering Estonian University of Life Sciences Tartu Estonia
Institute of Lowland Forestry and Environment University of Novi Sad Novi Sad Serbia
Institute of Plant Sciences University of Bern Bern Switzerland
Institute of Terrestrial Ecosystems ETH Zürich Zürich Switzerland
Instituto de Investigaciones Forestales y Agropecuarias Bariloche Bariloche Argentina
Instituto Nacional de Investigação Agrária e Veterinária 1 P Oeiras Portugal
Isparta University of Applied Sciences Isparta Turkey
Meise Botanic Garden Meise Belgium
Murdoch University Perth Australia
National Forest Centre Forest Research Institute Zvolen Slovakia
National Research Council C N R Institute for Sustainable Plant Protection Sesto Fiorentino Italy
National Research Institute of Rural Engineering Water and Forests Ariana Tunisia
Natural Resources Institute Finland Suonenjoki Finland
NIBIO Norwegian Institute of Bioeconomy Research Ås Norway
NMBU Norwegian University of Life Sciences Ås Norway
Royal Botanic Gardens Victoria Melbourne Vic Australia
School of Applied Systems Biology La Trobe University Melbourne Vic Australia
Siberian Federal University Krasnoyarsk Russia
Silva Tarouca Research Institute for Landscape and Ornamental Gardening Pruhonice Czech Republic
Slovenian Forestry Institute Ljubljana Slovenia
Southern Swedish Forest Research Centre Swedish University of Agricultural Sciences Alnarp Sweden
Sustainable Forest Management Research Institute University of Valladolid INIA Palencia Spain
Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland
Tanzania Forestry Research Institute Lushoto Tanzania
Ukrainian National Forestry University Lviv Ukraine
Ukrainian Research Institute of Forestry and Forest Melioration Kharkiv Ukraine
Ukrainian Research Institute of Mountain Forestry Ivano Frankivsk Ukraine
Zobrazit více v PubMed
Feld CK, et al. Indicators of biodiversity and ecosystem services: A synthesis across ecosystems and spatial scales. Oikos. 2009;118:1862–1871. doi: 10.1111/j.1600-0706.2009.17860.x. DOI
Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ. The consequence of tree pests and diseases for ecosystem services. Science (80–) 2013;342:1235773. doi: 10.1126/science.1235773. PubMed DOI
Shankar Naik B. Functional roles of fungal endophytes in host fitness during stress conditions. Symbiosis. 2019;79:99–115. doi: 10.1007/s13199-019-00635-1. DOI
Bamisile BS, Dash CK, Akutse KS, Keppanan R, Wang L. Fungal endophytes: Beyond herbivore management. Front. Microbiol. 2018;9:1–11. doi: 10.3389/fmicb.2018.00544. PubMed DOI PMC
Wardle DA, Lindahl BD. Ecology. Disentangling global soil fungal diversity. Science. 2014;346:1052–1053. doi: 10.1126/science.aaa1185. PubMed DOI
Santini A, et al. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol. 2013;197:238–250. doi: 10.1111/j.1469-8137.2012.04364.x. PubMed DOI
Eschen R, Roques A, Santini A. Taxonomic dissimilarity in patterns of interception and establishment of alien arthropods, nematodes and pathogens affecting woody plants in Europe. Divers. Distrib. 2015;21:36–45. doi: 10.1111/ddi.12267. DOI
Desprez-Loustau ML, et al. The fungal dimension of biological invasions. Trends Ecol. Evol. 2007;22:472–480. doi: 10.1016/j.tree.2007.04.005. PubMed DOI
Loo J. Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biol. Invasions. 2009;11:81–96. doi: 10.1007/s10530-008-9321-3. DOI
Seebens H, et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017;8:14435. doi: 10.1038/ncomms14435. PubMed DOI PMC
Sturrock RN, et al. Climate change and forest diseases. Plant Pathol. 2011;60:133–149. doi: 10.1111/j.1365-3059.2010.02406.x. DOI
Jactel H, et al. Drought effects on damage by forest insects and pathogens: A meta-analysis. Glob. Chang. Biol. 2012;18:267–276. doi: 10.1111/j.1365-2486.2011.02512.x. DOI
Marsberg A, et al. Botryosphaeria dothidea: A latent pathogen of global importance to woody plant health. Mol. Plant Pathol. 2017;18:477–488. doi: 10.1111/mpp.12495. PubMed DOI PMC
Nekola JC, White PS. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 1999;26:867–878. doi: 10.1046/j.1365-2699.1999.00305.x. DOI
Soininen J, McDonald R, Hillebrand H. The distance decay of similarity in ecological communities. Ecography (Cop.) 2007;30:3–12. doi: 10.1111/j.0906-7590.2007.04817.x. DOI
Cornell HV, Lawton JH. Species interactions, local and regional processes, and limits to the richness of ecological communities: A theoretical perspective. J. Anim. Ecol. 1992;61:1. doi: 10.2307/5503. DOI
Oita S, et al. Climate and seasonality drive the richness and composition of tropical fungal endophytes at a landscape scale. Commun. Biol. 2021;4:5. doi: 10.1038/s42003-021-01826-7. PubMed DOI PMC
Chesters D, et al. Climatic and vegetational drivers of insect beta diversity at the continental scale. Ecol. Evol. 2019;9:13764–13775. doi: 10.1002/ece3.5795. PubMed DOI PMC
Gougherty AV, Davies TJ. Host phylogenetic diversity predicts the global extent and composition of tree pests. Ecol. Lett. 2022;25:101–112. doi: 10.1111/ele.13908. PubMed DOI
Christian N, et al. Host affinity of endophytic fungi and the potential for reciprocal interactions involving host secondary chemistry. Am. J. Bot. 2020;107:219–228. doi: 10.1002/ajb2.1436. PubMed DOI
Zunjarrao SS, Tellis MB, Joshi SN, Joshi RS. Plant–insect interaction: The saga of molecular coevolution. In: Mérillon J-M, Ramawat KG, editors. Co-Evolution of Secondary Metabolites. Springer; 2020. pp. 19–45.
Sieber TN. Endophytic fungi in forest trees: Are they mutualists? Fungal Biol. Rev. 2007;21:75–89. doi: 10.1016/j.fbr.2007.05.004. DOI
Gilbert GS, Webb CO. Phylogenetic signal in plant pathogen-host range. Proc. Natl. Acad. Sci. USA. 2007;104:4979–4983. doi: 10.1073/pnas.0607968104. PubMed DOI PMC
Schroeder JW, et al. Host plant phylogeny and abundance predict root-associated fungal community composition and diversity of mutualists and pathogens. J. Ecol. 2019;107:1557–1566. doi: 10.1111/1365-2745.13166. DOI
Pellitier PT, Zak DR, Salley SO. Environmental filtering structures fungal endophyte communities in tree bark. Mol. Ecol. 2019;28:5188–5198. doi: 10.1111/mec.15237. PubMed DOI
Cirtwill AR, et al. Related plants tend to share pollinators and herbivores, but strength of phylogenetic signal varies among plant families. New Phytol. 2020;226:909–920. doi: 10.1111/nph.16420. PubMed DOI
Cornwell WK, et al. Plant traits and wood fates across the globe: Rotted, burned, or consumed? Glob. Chang. Biol. 2009;15:2431–2449. doi: 10.1111/j.1365-2486.2009.01916.x. DOI
Chave J, et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009;12:351–366. doi: 10.1111/j.1461-0248.2009.01285.x. PubMed DOI
Leslie AB, et al. Hemisphere-scale differences in conifer evolutionary dynamics. Proc. Natl. Acad. Sci. USA. 2012;109:16217–16221. doi: 10.1073/pnas.1213621109. PubMed DOI PMC
Chown SL, Sinclair BJ, Leinaas HP, Gaston KJ. Hemispheric asymmetries in biodiversity—a serious matter for ecology. PLoS Biol. 2004;2:25. doi: 10.1371/journal.pbio.0020406. PubMed DOI PMC
Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D. Eukaryotic microbes, species recognition and the geographic limits of species: Examples from the kingdom Fungi. Philos. Trans. R. Soc. B Biol. Sci. 2006;361:1947–1963. doi: 10.1098/rstb.2006.1923. PubMed DOI PMC
Branco M, Brockerhoff EG, Castagneyrol B, Orazio C, Jactel H. Host range expansion of native insects to exotic trees increases with area of introduction and the presence of congeneric native trees. J. Appl. Ecol. 2015;52:69–77. doi: 10.1111/1365-2664.12362. DOI
Mitchell CE, Blumenthal D, Jarosik V, Puckett EE, Pysek P. Controls on pathogen species richness in plants’ introduced and native ranges: Roles of residence time, range size and host traits. Ecol. Lett. 2010;13:1525–1535. doi: 10.1111/j.1461-0248.2010.01543.x. PubMed DOI PMC
Novotny V, et al. Low beta diversity of herbivorous insects in tropical forests. Nature. 2007;448:692–695. doi: 10.1038/nature06021. PubMed DOI
Novotny V, Basset Y. Host specificity of insect herbivores in tropical forests. Proc. Biol. Sci. 2005;272:1083–1090. PubMed PMC
U’Ren JM, et al. Host availability drives distributions of fungal endophytes in the imperilled boreal realm. Nat. Ecol. Evol. 2019;3:1430–1437. doi: 10.1038/s41559-019-0975-2. PubMed DOI
Franić I, et al. Are traded forest tree seeds a potential source of nonnative pests? Ecol. Appl. 2019;29:e01971. doi: 10.1002/eap.1971. PubMed DOI
Franić I, et al. Drivers of richness and community composition of fungal endophytes of tree seeds. FEMS Microbiol. Ecol. 2020;96:1–10. doi: 10.1093/femsec/fiaa166. PubMed DOI
U’Ren JM, et al. Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am. J. Bot. 2012;99:898–914. doi: 10.3732/ajb.1100459. PubMed DOI
Franić I, et al. Worldwide diversity of endophytic fungi and insects associated with dormant tree twigs. Sci. Data. 2022;9:62. doi: 10.1038/s41597-022-01162-3. PubMed DOI PMC
Jost L, Chao A, Chazdon RL. Compositional similarity and ß (beta) diversity. In: McGill AE, Magurran BJ, editors. Biological Diversity. Frontiers in Measurement and Assessment. Oxford University Press; 2011. pp. 66–84.
Novotny V, Basset Y. Rare species in communities of tropical insect herbivores: Pondering the mystery of singletons. Oikos. 2000;89:564–572. doi: 10.1034/j.1600-0706.2000.890316.x. DOI
Maynard DS, et al. Consistent trade-offs in fungal trait expression across broad spatial scales. Nat. Microbiol. 2019;4:846–853. doi: 10.1038/s41564-019-0361-5. PubMed DOI
Gilbert GS, Magarey R, Suiter K, Webb CO. Evolutionary tools for phytosanitary risk analysis: Phylogenetic signal as a predictor of host range of plant pests and pathogens. Evol. Appl. 2012;5:869–878. doi: 10.1111/j.1752-4571.2012.00265.x. PubMed DOI PMC
Ødegaard F, Diserud OH, Østbye K. The importance of plant relatedness for host utilization among phytophagous insects. Ecol. Lett. 2005;8:612–617. doi: 10.1111/j.1461-0248.2005.00758.x. DOI
Ishida TA, Nara K, Hogetsu T. Host effects on ectomycorrhizal fungal communities: Insight from eight host species in mixed conifer—broadleaf forests. New Phytol. 2006;174:430–440. doi: 10.1111/j.1469-8137.2007.02016.x. PubMed DOI
Zhou L, Dai Y, Heilmann-clausen J. Recognizing ecological patterns of wood-decaying polypores on gymnosperm and angiosperm trees in northeast China. Fungal Ecol. 2011;5:230–235. doi: 10.1016/j.funeco.2011.09.005. DOI
Kalnay E, Cai M. Impact of urbanization and land-use. Nature. 2003;425:528–531. doi: 10.1038/nature01675. PubMed DOI
Magura T, Lövei GL, Tóthmérész B. Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Glob. Ecol. Biogeogr. 2010;19:16–26. doi: 10.1111/j.1466-8238.2009.00499.x. DOI
Gundale MJ, et al. Differences in endophyte communities of introduced trees depend on the phylogenetic relatedness of the receiving forest. J. Ecol. 2016;104:1219–1232. doi: 10.1111/1365-2745.12595. DOI
Oono R, Rasmussen A, Lefèvre E. Distance decay relationships in foliar fungal endophytes are driven by rare taxa. Environ. Microbiol. 2017;19:2794–2805. doi: 10.1111/1462-2920.13799. PubMed DOI
Bowman EA, Arnold AE. Drivers and implications of distance decay differ for ectomycorrhizal and foliar endophytic fungi across an anciently fragmented landscape. ISME J. 2021;20:8–12. doi: 10.1038/s41396-021-01006-9. PubMed DOI PMC
Vincent JB, Weiblen GD, May G. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees. Mol. Ecol. 2016;25:825–841. doi: 10.1111/mec.13510. PubMed DOI
Brown JKM, Hovmøll MS. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science (80–) 2002;297:537–541. doi: 10.1126/science.1072678. PubMed DOI
Peay KG, Garbelotto M, Bruns TD. Evidence of dispersal limitation in soil microorganisms: Isolation reduces species richness on mycorrhizal tree islands. Ecology. 2010;91:3631–3640. doi: 10.1890/09-2237.1. PubMed DOI
Norros V, Penttilä R, Suominen M, Ovaskainen O. Dispersal may limit the occurrence of specialist wood decay fungi already at small spatial scales. Oikos. 2012;121:961–974. doi: 10.1111/j.1600-0706.2012.20052.x. DOI
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 2016;10:1–22. PubMed PMC
Herzog C, et al. Microbial succession on decomposing root litter in a drought-prone Scots pine forest. ISME J. 2019;13:2346–2362. doi: 10.1038/s41396-019-0436-6. PubMed DOI PMC
Edgar R. SINTAX: A simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv. 2016 doi: 10.1101/074161. DOI
Abarenkov K, et al. The UNITE database for molecular identification of fungi—recent updates and future perspectives Rationale. New Phytol. 2010;186:281–285. doi: 10.1111/j.1469-8137.2009.03160.x. PubMed DOI
Nguyen NH, et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–248. doi: 10.1016/j.funeco.2015.06.006. DOI
Ratnasingham S, Hebert PDN. BOLD: The barcode of life data system. Mol. Ecol. Notes. 2007;7:355–364. doi: 10.1111/j.1471-8286.2007.01678.x. PubMed DOI PMC
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC
Fick SE, Hijmans RJ. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI
Webb CO, Donoghue MJ. Phylomatic: Tree assembly for applied phylogenetics. Mol. Ecol. Notes. 2005;5:181–183. doi: 10.1111/j.1471-8286.2004.00829.x. DOI
Chamberlain, S. brranching: Fetch ‘Phylogenies’ from Many Sources. R Packag. version 0.5.0. (2019).
R Core Team . R: A Language and Environment for Statistical Computing. Springer; 2020.
Zanne AE, et al. Three keys to the radiation of angiosperms into freezing environments. Nature. 2014;506:89–92. doi: 10.1038/nature12872. PubMed DOI
Zanne AE, 2009. Data from: Towards a worldwide wood economics spectrum. Dryad. PubMed DOI
Hill MO. Diversity and eveness: Unifying notations and its consequences. Ecology. 1973;54:25. doi: 10.2307/1934352. DOI
Baselga, A., Orme, D., Villeger, S., Bortoli, J. De & Leprieur, F. betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R Packag. version 1.5.1. (2018).
Ferrier S, Manion G, Elith J, Richardson K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 2007;13:252–264. doi: 10.1111/j.1472-4642.2007.00341.x. DOI
Manion, G. et al. gdm: Generalized Dissimilarity Modeling. R Packag. version 1.3.11. (2018).
Clarke KR, Somerfield PJ, Chapman MG. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. J. Exp. Mar. Bio. Ecol. 2006;330:55–80. doi: 10.1016/j.jembe.2005.12.017. DOI
Hartmann M. 2021. Martin-hartmann/metabarcoding: Metabarcoding_20211019. Zenodo. DOI