Tempo and drivers of plant diversification in the European mountain system
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35585056
PubMed Central
PMC9117672
DOI
10.1038/s41467-022-30394-5
PII: 10.1038/s41467-022-30394-5
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- ekosystém MeSH
- fylogeneze MeSH
- Magnoliopsida * MeSH
- podnebí MeSH
- vznik druhů (genetika) MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
There is still limited consensus on the evolutionary history of species-rich temperate alpine floras due to a lack of comparable and high-quality phylogenetic data covering multiple plant lineages. Here we reconstructed when and how European alpine plant lineages diversified, i.e., the tempo and drivers of speciation events. We performed full-plastome phylogenomics and used multi-clade comparative models applied to six representative angiosperm lineages that have diversified in European mountains (212 sampled species, 251 ingroup species total). Diversification rates remained surprisingly steady for most clades, even during the Pleistocene, with speciation events being mostly driven by geographic divergence and bedrock shifts. Interestingly, we inferred asymmetrical historical migration rates from siliceous to calcareous bedrocks, and from higher to lower elevations, likely due to repeated shrinkage and expansion of high elevation habitats during the Pleistocene. This may have buffered climate-related extinctions, but prevented speciation along elevation gradients as often documented for tropical alpine floras.
CNRS Lautaret Jardin du Lautaret Université Grenoble Alpes FR 38000 Grenoble France
Czech Academy of Sciences Institute of Botany CZ 25243 Průhonice Czech Republic
Department of Botany Faculty of Science Charles University CZ 12801 Prague Czech Republic
Swiss Federal Research Institute WSL CH 8903 Birmensdorf Switzerland
UiT The Arctic University of Norway The Arctic University Museum of Norway N 9037 Tromsø Norway
Univ Grenoble Alpes Univ Savoie Mont Blanc CNRS LECA FR 38000 Grenoble France
Zobrazit více v PubMed
Hughes CE, Atchinson GW. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. N. Phytol. 2015;207:275–282. doi: 10.1111/nph.13230. PubMed DOI
Rahbek C, et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science. 2019;365:1108–1113. doi: 10.1126/science.aax0149. PubMed DOI
Antonelli A, et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 2018;11:718–725. doi: 10.1038/s41561-018-0236-z. DOI
Quintero I, Jetz W. Global elevational diversity and diversification of birds. Nature. 2018;555:246–250. doi: 10.1038/nature25794. PubMed DOI
Merckx VSFT, et al. Evolution of endemism on a young tropical mountain. Nature. 2015;524:347–350. doi: 10.1038/nature14949. PubMed DOI
Körner, C. Alpine Plant Life (Springer, 1999).
Smyčka J, et al. Reprint of: Disentangling drivers of plant endemism and diversification in the European Alps - a phylogenetic and spatially explicit approach. Perspect. Plant Ecol. Evol. Syst. 2018;30:31–40. doi: 10.1016/j.ppees.2017.08.003. DOI
Schönswetter P, Stehlik I, Holderegger R, Tribsch A. Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol. Ecol. 2005;14:3547–3555. doi: 10.1111/j.1365-294X.2005.02683.x. PubMed DOI
Haller, A. von. Enumeratio Methodica Stirpium Helvetiae indigenarum. (Officina Academica Abrami Vandenhoek, 1742).
de Candolle, A. Sur les causes de l’inégale distribution des plantes rares dans la chaîne des Alpes. Atti del Congr. Internazionale Bot. Tenuto Firenze. 92–104 (1875).
Boucher FC, Zimmermann NE, Conti E. Allopatric speciation with little niche divergence is common among alpine Primulaceae. J. Biogeogr. 2016;43:591–602. doi: 10.1111/jbi.12652. DOI
Schneeweiss GM, et al. Molecular phylogenetic analyses identify Alpine differentiation and dysploid chromosome number changes as major forces for the evolution of the European endemic Phyteuma (Campanulaceae) Mol. Phylogenet. Evol. 2013;69:634–652. doi: 10.1016/j.ympev.2013.07.015. PubMed DOI
Tkach N, et al. Molecular phylogenetics, morphology and a revised classification of the complex genus Saxifraga (Saxifragaceae) Taxon. 2015;64:1159–1187. doi: 10.12705/646.4. DOI
Favre A, et al. Out-of-Tibet: the spatio-temporal evolution of Gentiana (Gentianaceae) J. Biogeogr. 2016;43:1967–1978. doi: 10.1111/jbi.12840. DOI
Kadereit JW, Griebeler EM, Comes H. Quaternary diversification in European alpine plants: pattern and process. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2004;359:265–274. doi: 10.1098/rstb.2003.1389. PubMed DOI PMC
Xing Y, Ree RH. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl Acad. Sci. 2017;114:E3444–E3451. PubMed PMC
Lagomarsino LP, Condamine FL, Antonelli A, Mulch A, Davis CC. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae) N. Phytol. 2016;210:1430–1442. doi: 10.1111/nph.13920. PubMed DOI PMC
Ding WN, Ree RH, Spicer RA, Xing YW. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science. 2020;369:578–581. doi: 10.1126/science.abb4484. PubMed DOI
Roquet C, Boucher FC, Thuiller W, Lavergne S. Replicated radiations of the alpine genus Androsace (Primulaceae) driven by range expansion and convergent key innovations. J. Biogeogr. 2013;40:1874–1886. doi: 10.1111/jbi.12135. PubMed DOI PMC
Luebert, F. & Muller, L. A. H. Biodiversity from mountain building. Front. Genet. 6, (2015). PubMed PMC
Zachos JC, Dickens GR, Zeebe RE. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature. 2008;451:279–283. doi: 10.1038/nature06588. PubMed DOI
Haffer, J. Speciation in Colombian forest birds west of the Andes. Am. Museum Novit. 2294, 1–58 (1967).
Aguilée R, Claessen D, Lambert A. Adaptive radiation driven by the interplay of eco-evolutionary and landscape dynamics. Evolution. 2013;67:1291–1306. doi: 10.1111/j.1558-5646.2012.01816.x. PubMed DOI
Feng G, Mao L, Sandel B, Swenson NG, Svenning JC. High plant endemism in China is partially linked to reduced glacial-interglacial climate change. J. Biogeogr. 2016;43:145–154. doi: 10.1111/jbi.12613. DOI
Molina-Venegas R, Aparicio A, Lavergne S, Arroyo J. Climatic and topographical correlates of plant palaeo- and neoendemism in a Mediterranean biodiversity hotspot. Ann. Bot. 2017;119:229–238. doi: 10.1093/aob/mcw093. PubMed DOI PMC
Saladin B, et al. Rapid climate change results in long-lasting spatial homogenization of phylogenetic diversity. Nat. Commun. 2020;11:1–8. doi: 10.1038/s41467-020-18343-6. PubMed DOI PMC
Hughes C, Eastwood R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl Acad. Sci. 2006;103:10334–10339. doi: 10.1073/pnas.0601928103. PubMed DOI PMC
Pouchon C, et al. Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the tropical Andes. Syst. Biol. 2018;67:1041–1060. doi: 10.1093/sysbio/syy022. PubMed DOI
Kadereit JW. The role of in situ species diversification for the evolution of high vascular plant species diversity in the European Alps—a review and interpretation of phylogenetic studies of the endemic flora of the Alps. Perspect. Plant Ecol. Evol. Syst. 2017;26:28–38. doi: 10.1016/j.ppees.2017.03.002. DOI
Escobar García P, et al. Extensive range persistence in peripheral and interior refugia characterizes Pleistocene range dynamics in a widespread Alpine plant species (Senecio carniolicus, Asteraceae) Mol. Ecol. 2012;21:1255–1270. doi: 10.1111/j.1365-294X.2012.05456.x. PubMed DOI PMC
Lohse K, Nicholls JA, Stone GN. Inferring the colonization of a mountain range-refugia vs. nunatak survival in high alpine ground beetles. Mol. Ecol. 2011;20:394–408. doi: 10.1111/j.1365-294X.2010.04929.x. PubMed DOI
Stehlik I. Resistance or emigration? Response of alpine plants to the ice ages. Taxon. 2003;52:499–510. doi: 10.2307/3647448. DOI
Schneeweiss GM, Schönswetter P. A re-appraisal of nunatak survival in arctic-alpine phylogeography. Mol. Ecol. 2011;20:190–192. doi: 10.1111/j.1365-294X.2010.04927.x. PubMed DOI
Westergaard KB, et al. Glacial survival may matter after all: Nunatak signatures in the rare European populations of two west-arctic species. Mol. Ecol. 2011;20:376–393. doi: 10.1111/j.1365-294X.2010.04928.x. PubMed DOI
Bettin O, Cornejo C, Edwards PJ, Holderegger R. Phylogeography of the high alpine plant Senecio halleri (Asteraceae) in the European Alps: In situ glacial survival with postglacial stepwise dispersal into peripheral areas. Mol. Ecol. 2007;16:2517–2524. doi: 10.1111/j.1365-294X.2007.03273.x. PubMed DOI
Tomasello S, Karbstein K, Hodač L, Paetzold C, Hörandl E. Phylogenomics unravels Quaternary vicariance and allopatric speciation patterns in temperate-montane plant species: a case study on the Ranunculus auricomus species complex. Mol. Ecol. 2020;29:2031–2049. doi: 10.1111/mec.15458. PubMed DOI
Ozenda P. L’endémisme au niveau de l’ensemble du Système alpin. Acta Bot. Gall. 1995;142:753–762. doi: 10.1080/12538078.1995.10515302. DOI
Rolland J, Lavergne S, Manel S. Combining niche modelling and landscape genetics to study local adaptation: A novel approach illustrated using alpine plants. Perspect. Plant Ecol. Evol. Syst. 2015;17:491–499. doi: 10.1016/j.ppees.2015.07.005. DOI
Alvarez N, et al. History or ecology? Substrate type as a major driver of spatial genetic structure in Alpine plants. Ecol. Lett. 2009;12:632–640. doi: 10.1111/j.1461-0248.2009.01312.x. PubMed DOI
Gao Y-D, Gao X-F, Harris A. Species boundaries and parapatric speciation in the complex of alpine shrubs, Rosa sericea (Rosaceae), based on population genetics and ecological tolerances. Front. Plant Sci. 2019;10:1–16. doi: 10.3389/fpls.2019.00001. PubMed DOI PMC
Knox, E. B. Adaptive radiation of African montane plants. In Adaptive Speciation (eds. Dieckmann, U., Doebeli, M., Metz, J. A. J. & Tautz, D.) 345–361 (Cambridge University Press, 2004).
Segar ST, et al. Speciation in a keystone plant genus is driven by elevation: a case study in New Guinean Ficus. J. Evol. Biol. 2017;30:512–523. doi: 10.1111/jeb.13020. PubMed DOI
Pouchon C, et al. Phylogenetic signatures of ecological divergence and leapfrog adaptive radiation in Espeletia. Am. J. Bot. 2021;108:113–128. doi: 10.1002/ajb2.1591. PubMed DOI
Luebert F, Weigend M. Phylogenetic insights into Andean plant diversification. Front. Ecol. Evol. 2014;2:1–17. doi: 10.3389/fevo.2014.00027. DOI
Nagy, L. & Grabherr, G. The Biology of Alpine Habitats (Oxford University Press, 2009).
Louca S, Pennell MW. Extant timetrees are consistent with a myriad of diversification histories. Nature. 2020;580:502–505. doi: 10.1038/s41586-020-2176-1. PubMed DOI
Goldberg EE, Lancaster LT, Ree RH. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst. Biol. 2011;60:451–465. doi: 10.1093/sysbio/syr046. PubMed DOI
Goldberg EE, Igić B. Tempo and mode in plant breeding system evolution. Evolution. 2012;66:3701–3709. doi: 10.1111/j.1558-5646.2012.01730.x. PubMed DOI
Gitzendanner, M., Soltis, P., Yi, T.-S., Li, D.-Z. & Soltis, D. Plastome Phylogenetics: 30 years of inferences into plant evolution. In Advances in Botanical Research 293–313 (Elsevier, 2018).
Birks HH. The late-quaternary history of arctic and alpine plants. Plant Ecol. Divers. 2008;1:135–146. doi: 10.1080/17550870802328652. DOI
Mai, D. Tertiäre Vegetationsgeschichte Europas—Metoden und Ergebnisse. (Gustav Fischer Verlag, 1995).
Svenning JC. Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecol. Lett. 2003;6:646–653. doi: 10.1046/j.1461-0248.2003.00477.x. DOI
Fauquette, S. et al. The Alps: a geological, climatic and human perspective on vegetation history and modern plant diversity. In Mountains, Climate and Biodiversity (eds. Hoorn, C., Perrigo, A. & Antonelli, A.) 413 (Wiley-Blackwell, 2018).
Mráz P, et al. Vascular plant endemism in the Western Carpathians: spatial patterns, environmental correlates and taxon traits. Biol. J. Linn. Soc. 2016;119:630–648. doi: 10.1111/bij.12792. DOI
Puşcaş M, et al. Post-glacial history of the dominant alpine sedge Carex curvula in the European Alpine System inferred from nuclear and chloroplast markers. Mol. Ecol. 2008;17:2417–2429. doi: 10.1111/j.1365-294X.2008.03751.x. PubMed DOI
Puşcaş M, Taberlet P, Choler P. No positive correlation between species and genetic diversity in European alpine grasslands dominated by Carex curvula. Divers. Distrib. 2008;14:852–861. doi: 10.1111/j.1472-4642.2008.00489.x. DOI
Magyari EK, et al. Late Pleniglacial vegetation in eastern-central Europe: are there modern analogues in Siberia? Quat. Sci. Rev. 2014;95:60–79. doi: 10.1016/j.quascirev.2014.04.020. DOI
Prodon R, Thibault JC, Dejaifve PA. Expansion vs. compression of bird altitudinal ranges on a Mediterranean island. Ecology. 2002;83:1294–1306. doi: 10.1890/0012-9658(2002)083[1294:EVCOBA]2.0.CO;2. DOI
Moen D, Morlon H. Why does diversification slow down? Trends Ecol. Evol. 2014;29:190–197. doi: 10.1016/j.tree.2014.01.010. PubMed DOI
Aguilée R, Gascuel F, Lambert A, Ferriere R. Clade diversification dynamics and the biotic and abiotic controls of speciation and extinction rates. Nat. Commun. 2018;9:1–13. doi: 10.1038/s41467-018-05419-7. PubMed DOI PMC
Vargas P. Molecular evidence for multiple diversification patterns of alpine plants in Mediterranean Europe. Taxon. 2003;52:463–476. doi: 10.2307/3647383. DOI
Kruckeberg AR. An essay: the stimulus of unusual geologies for plant speciation. Syst. Bot. 1986;11:455–463. doi: 10.2307/2419082. DOI
Cowling RM, Holmes PM. Endemism and speciation in a lowland flora from the Cape Floristic Region. Biol. J. Linn. Soc. 1992;47:367–383. doi: 10.1111/j.1095-8312.1992.tb00675.x. DOI
Lexer C, et al. Genomics of the divergence continuum in an African plant biodiversity hotspot, I: drivers of population divergence in Restio capensis (Restionaceae) Mol. Ecol. 2014;23:4373–4386. doi: 10.1111/mec.12870. PubMed DOI
Anacker BL, Strauss SY. The geography and ecology of plant speciation: range overlap and niche divergence in sister species. Proc. R. Soc. B Biol. Sci. 2014;281:20132980. doi: 10.1098/rspb.2013.2980. PubMed DOI PMC
Moore AJ, Kadereit JW. The evolution of substrate differentiation in Minuartia series Laricifoliae (Caryophyllaceae) in the European Alps: in situ origin or repeated colonization? Am. J. Bot. 2013;100:2412–2425. doi: 10.3732/ajb.1300225. PubMed DOI
Guggisberg A, et al. The genomic basis of adaptation to calcareous and siliceous soils in Arabidopsis lyrata. Mol. Ecol. 2018;27:5088–5103. doi: 10.1111/mec.14930. PubMed DOI
Gigon, A. Vergleich alpiner Rasen auf Silikat- und auf Karbonatboden—Konkurrenz—und Stickstofformenversuche sowie standortskundliche Untersuchungen im Nardetum und im Seslerietum bei Davos. (ETH Zuerich, 1971).
Davies MS, Snaydon RW. Physiological differences among populations of Anthoxanthum odoratum L. collected from the park grass experiment, Rothamsted. I. Response to calcium. J. Appl. Ecol. 1973;10:33–45. doi: 10.2307/2404713. DOI
Snaydon RW. Rapid population differentiation in mosaic environment. I. The response of Anthoxantum odoratum populations to soils. Evolution. 1970;24:257–269. doi: 10.1111/j.1558-5646.1970.tb01759.x. PubMed DOI
Zohlen A, Tyler G. Soluble inorganic tissue phosphorus and calcicole-calcifuge behaviour of plants. Ann. Bot. 2004;94:427–432. doi: 10.1093/aob/mch162. PubMed DOI PMC
Kassen R, Llewellyn M, Rainey PB. Ecological contraints on diversification in a model adaptive radiation. Nature. 2004;431:984–988. doi: 10.1038/nature02923. PubMed DOI
MacLean RC, Bell G, Rainey PB. The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens. Proc. Natl Acad. Sci. USA. 2004;101:8072–8077. doi: 10.1073/pnas.0307195101. PubMed DOI PMC
Rabosky DL, Goldberg EE. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 2015;64:340–355. doi: 10.1093/sysbio/syu131. PubMed DOI
Kolář F, et al. Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa. Mol. Ecol. 2016;25:3929–3949. doi: 10.1111/mec.13721. PubMed DOI
Dentant C, Lavergne S. Plantes de haute montagne: état des lieux, évolution et analyse diachronique dans le massif des Écrins (France) Bull. Soc. linn. Provence. 2013;64:83–98.
Dentant C. The highest vascular plants on Earth. Alp. Bot. 2018;128:97–106. doi: 10.1007/s00035-018-0208-3. DOI
Boucher FC, et al. Reconstructing the origins of high‐alpine niches and cushion life form in the genus Androsace sl (Primulaceae) Evolution. 2012;66:1255–1268. doi: 10.1111/j.1558-5646.2011.01483.x. PubMed DOI PMC
Boucher FC, Lavergne S, Basile M, Choler P, Aubert S. Evolution and biogeography of the cushion life form in angiosperms. Perspect. Plant Ecol. Evol. Syst. 2016;20:22–31. doi: 10.1016/j.ppees.2016.03.002. DOI
Schönswetter P, Schneeweiss GM. Is the incidence of survival in interior Pleistocene refugia (nunataks) underestimated? Phylogeography of the high mountain plant Androsace alpina (Primulaceae) in the European Alps revisited. Ecol. Evol. 2019;9:4078–4086. doi: 10.1002/ece3.5037. PubMed DOI PMC
Aeschimann D, Rasolofo N, Theurillat JP. Analyse de la flore des Alpes. 2: Diversité et chorologie. Candollea. 2011;66:225–253. doi: 10.15553/c2011v662a1. DOI
Ebersbach J, et al. In and out of the Qinghai-Tibet Plateau: divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L. J. Biogeogr. 2017;44:900–910. doi: 10.1111/jbi.12899. DOI
Hannon, G. FASTX. http://hannonlab.cshl.edu/fastx_toolkit/ (2014).
Coissac, E. The ORGanelle ASseMbler 1.0.3. https://git.metabarcoding.org/org-asm/org-asm/wikis/home (2016).
Shaw J, et al. Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms: the tortoise and the hare IV. Am. J. Bot. 2014;101:1987–2004. doi: 10.3732/ajb.1400398. PubMed DOI
Mansion, G. et al. How to handle speciose clades? Mass taxon-sampling as a strategy towards illuminating the natural history of Campanula (Campanuloideae). PLoS ONE7, e50076 (2012). PubMed PMC
Rossi, M. Taxonomy, phylogeny and reproductive ecology of Gentiana lutea L (University in Bologna, 2011).
Hämmerli, M. Molecular Aspects in Systematics of Gentiana Sect. Calathianae Froel (Université de Neuchâtel, 2007).
Hungerer KB, Kadereit JW. The phylogeny and biogeography of Gentiana L. sect. Ciminalis (Adans.) Dumort.: A historical interpretation of distribution ranges in the European high mountains. Perspect. Plant Ecol. Evol. Syst. 1998;1:121–135. doi: 10.1078/1433-8319-00055. DOI
Ranwez, V., Harispe, S., Delsuc, F. & Douzery, E. J. P. MACSE: Multiple alignment of coding SEquences accounting for frameshifts and stop codons. PLoS One6, e22594 (2011). PubMed PMC
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI
Kück P, Meusemann K. FASconCAT: convenient handling of data matrices. Mol. Phylogenet. Evol. 2010;56:1115–1118. doi: 10.1016/j.ympev.2010.04.024. PubMed DOI
Katoh K, Kuma KI, Toh H, Miyata T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33:511–518. doi: 10.1093/nar/gki198. PubMed DOI PMC
Bouckaert R, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014;10:1–6. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC
Bouckaert RR, Drummond AJ. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 2017;17:1–11. doi: 10.1186/s12862-017-0890-6. PubMed DOI PMC
Morlon H. Phylogenetic approaches for studying diversification. Ecol. Lett. 2014;17:508–525. doi: 10.1111/ele.12251. PubMed DOI
Aeschimann, D., Lauber, K., Moser, D. M. & Theurillat, J. P. Flora Alpina (Editions Belin, 2004).
Castroviejo, S. Flora Iberica (Real Jardin Botanico CSIC, 2012).
Goliášová, K. & Michalková, E. Flóra Slovenska (Vydavateľstvo Slovenskej akadémie vied, 2012).
Speta, E. & Rákosy, L. Wildpflanzen Siebenbürgen (Naturhistorisches Museum Wien, 2010).
Sarić, M. Flora Srbije (Srpska akademija nauka i umetnosti, 1992).
Schönswetter P, Schneeweiss GM. Androsace komovensis sp. nov., a long mistaken local endemic from the southern Balkan Peninsula with biogeographic links to the Eastern Alps. Taxon. 2009;58:544–549. doi: 10.1002/tax.582018. DOI
Schönswetter P, Magauer M, Schneeweiss GM. Androsace halleri subsp. nuria Schönsw. & Schneew. (Primulaceae), a new taxon from the eastern Pyrenees (Spain, France) Phytotaxa. 2015;201:227–232. doi: 10.11646/phytotaxa.201.3.7. DOI
Schneeweiss GM, Schonswetter P. The wide but disjunct range of the European mountain plant Androsace lactea L. (Primulaceae) reflects Late Pleistocene range fragmentation and post-glacial distributional stasis. J. Biogeogr. 2010;37:2016–2025.
Webb, D. A. & Gornall, R. J. Saxifrages of Europe (Timber Press, 1989).
GBIF. https://www.gbif.org/ (2018).
Körner C, et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 2017;127:1–15. doi: 10.1007/s00035-016-0182-6. DOI
Anacker BL, Whittall JB, Goldberg EE, Harrison SP. Origins and consequences of serpentine endemism in the California flora. Evolution. 2011;65:365–376. doi: 10.1111/j.1558-5646.2010.01114.x. PubMed DOI
Morlon H, et al. RPANDA: An R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 2016;7:589–597. doi: 10.1111/2041-210X.12526. DOI
Burnham, K. & Anderson, D. Model Selection and Multimodel Inference (Springer, 2002).
Fitzjohn RG, Maddison WP, Otto SP. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 2009;58:595–611. doi: 10.1093/sysbio/syp067. PubMed DOI
O’Meara BC, Beaulieu JM. Past, future, and present of state-dependent models of diversification. Am. J. Bot. 2016;103:792–795. doi: 10.3732/ajb.1600012. PubMed DOI
Beaulieu JM, O’Meara BC. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 2016;65:583–601. doi: 10.1093/sysbio/syw022. PubMed DOI
Herrera-Alsina L, Van Els P, Etienne RS. Detecting the dependence of diversification on multiple traits from phylogenetic trees and trait data. Syst. Biol. 2019;68:317–328. doi: 10.1093/sysbio/syy057. PubMed DOI
Onstein, R. E. et al. To adapt or go extinct? The fate of megafaunal palm fruits under past global change. Proc. R. Soc. B Biol. Sci. 285, (2018). PubMed PMC
Rabosky DL, Goldberg EE. FiSSE: a simple nonparametric test for the effects of a binary character on lineage diversification rates. Evolution. 2017;71:1432–1442. doi: 10.1111/evo.13227. PubMed DOI
Holland BR, Ketelaar-Jones S, O’Mara AR, Woodhams MD, Jordan GJ. Accuracy of ancestral state reconstruction for non-neutral traits. Sci. Rep. 2020;10:1–10. doi: 10.1038/s41598-019-56847-4. PubMed DOI PMC
Ree RH, Sanmartín I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 2018;45:741–749. doi: 10.1111/jbi.13173. DOI
Schoener TW. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology. 1970;51:408–418. doi: 10.2307/1935376. DOI
Zhang, J. spaa: SPecies Association Analysis 0.2.2. https://cran.r-project.org/package=spaa (2016).
Smyčka, J. Tempo and drivers of plant diversification in the European mountain system. multidiv, 10.5281/zenodo.6341727 (2022). PubMed PMC
Tempo and drivers of plant diversification in the European mountain system