BACKGROUND: Genetically divergent cryptic species are frequently detected by molecular methods. These discoveries are often a byproduct of molecular barcoding studies in which fragments of a selected marker are used for species identification. Highly divergent mitochondrial lineages and putative cryptic species are even detected in intensively studied animal taxa, such as the crustacean genus Daphnia. Recently, eleven such lineages, exhibiting genetic distances comparable to levels observed among well-defined species, were recorded in the D. longispina species complex, a group that contains several key taxa of freshwater ecosystems. We tested if three of those lineages represent indeed distinct species, by analyzing patterns of variation of ten nuclear microsatellite markers in six populations. RESULTS: We observed a discordant pattern between mitochondrial and nuclear DNA, as all individuals carrying one of the divergent mitochondrial lineages grouped at the nuclear level with widespread, well-recognized species coexisting at the same localities (Daphnia galeata, D. longispina, and D. cucullata). CONCLUSIONS: A likely explanation for this pattern is the introgression of the mitochondrial genome of undescribed taxa into the common species, either in the distant past or after long-distance dispersal. The occurrence of highly divergent but rare mtDNA lineages in the gene pool of widespread species would suggest that hybridization and introgression in the D. longispina species complex is frequent even across large phylogenetic distances, and that discoveries of such distinct clades must be interpreted with caution. However, maintenance of ancient polymorphisms through selection is another plausible alternative that may cause the observed discordance and cannot be entirely excluded.
- MeSH
- Cell Nucleus genetics MeSH
- Daphnia genetics MeSH
- Species Specificity MeSH
- Phylogeny * MeSH
- Genetic Variation * MeSH
- Hybridization, Genetic MeSH
- Microsatellite Repeats genetics MeSH
- DNA, Mitochondrial genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Biogeographical and ecological barriers strongly affect the course of micro-evolutionary processes in free living organisms. Here we assess the impact of a recently emerged barrier on populations of limnic fauna. Genetic diversity and population structure in a host-parasite system (Wenyonia virilis tapeworm, Synodontis schall catfish) are analyzed in the recently divided Turkana and Nile basins. The two basins, were repeatedly connected during the Holocene wet/dry climatic oscillations, following late Pleistocene dessication of the Turkana basin. Mitochondrial DNA sequences for cytochrome oxidase I gene (cox I) and a whole genome scanning method-amplified fragment length polymorphism (AFLP) were employed. A total of 347 cox I sequences (representing 209 haplotypes) and 716 AFLP fragments, as well as 120 cox I sequences (20 haplotypes) and 532 AFLP fragments were obtained from parasites and hosts, respectively. Although results indicate that host and parasite populations share some formative traits (bottlenecks, Nilotic origin), their population histories/patterns differ markedly. Mitochondrial analysis revealed that parasite populations evolve significantly faster and show remarkably higher genetic variability. Analyses of both markers confirmed that the parasites undergo lineage fission, forming new clusters specific for either freshwater or saline parts of Lake Turkana. In congruence with the geological history, these clusters apparently indicate multiple colonisations of Lake Turkana from the Nile. In contrast, the host population pattern indicates fusion of different colonisation waves. Although fish host populations remain connected, saline habitats in Lake Turkana (absent in the Nile), apparently pose a barrier to the gene flow in the parasite, possibly due to its multihost lifecycle, which involves freshwater annelids. Despite partially corroborating mitochondrial results, AFLP data was not sufficiently informative for analyzing populations with recently mixed biogeographic histories.
- MeSH
- Cestoda genetics MeSH
- Cestode Infections genetics parasitology veterinary MeSH
- Ecosystem MeSH
- Extreme Environments * MeSH
- Phylogeny MeSH
- Haplotypes MeSH
- Host-Parasite Interactions genetics MeSH
- Lakes MeSH
- DNA, Mitochondrial MeSH
- Evolution, Molecular * MeSH
- Fish Diseases genetics parasitology MeSH
- Polymorphism, Genetic MeSH
- Helminth Proteins genetics MeSH
- Electron Transport Complex IV genetics MeSH
- Saline Waters MeSH
- Catfishes genetics parasitology MeSH
- Models, Theoretical MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Kenya MeSH
Phylogenetics benefits from using a large number of putatively independent nuclear loci and their combination with other sources of information, such as the plastid and mitochondrial genomes. To facilitate the selection of orthologous low-copy nuclear (LCN) loci for phylogenetics in nonmodel organisms, we created an automated and interactive script to select hundreds of LCN loci by a comparison between transcriptome and genome skim data. We used our script to obtain LCN genes for southern African Oxalis (Oxalidaceae), a speciose plant lineage in the Greater Cape Floristic Region. This resulted in 1164 LCN genes greater than 600 bp. Using target enrichment combined with genome skimming (Hyb-Seq), we obtained on average 1141 LCN loci, nearly the whole plastid genome and the nrDNA cistron from 23 southern African Oxalis species. Despite a wide range of gene trees, the phylogeny based on the LCN genes was very robust, as retrieved through various gene and species tree reconstruction methods as well as concatenation. Cytonuclear discordance was strong. This indicates that organellar phylogenies alone are unlikely to represent the species tree and stresses the utility of Hyb-Seq in phylogenetics.
- MeSH
- Phylogeny MeSH
- Genetic Variation * MeSH
- Genetic Markers * MeSH
- Genome MeSH
- Genotyping Techniques methods MeSH
- Oxalidaceae classification genetics MeSH
- Sequence Analysis, DNA MeSH
- Transcriptome MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Geographicals
- Africa, Southern MeSH
We investigated genetic variation and evolutionary history of closely related taxa of Picris subsect. Hieracioides with major focus on the widely distributed P. hieracioides and its closely related congeners, P. hispidissima, P. japonica, P. olympica, and P. nuristanica. Accessions from 140 sample sites of the investigated Picris taxa were analyzed on the infra- and the inter-specific level using nuclear (ITS1-5.8S-ITS2 region) and chloroplast (rpl32-trnL(UAG) region) DNA sequences. Genetic patterns of P. hieracioides, P. hispidissima, and P. olympica were shown to be incongruent and, in several cases, both plastid and nuclear alleles transcended borders of the taxa and genetic lineages. The widespread P. hieracioides was genetically highly variable and non-monophyletic across both markers, with allele groups having particular geographic distributions. Generally, all gene trees and networks displayed only a limited and statistically rather unsupported resolution among ingroup taxa causing their phylogenetic relationships to remain rather unresolved. More light on these intricate evolutionary relationships was cast by the Bayesian coalescent-based analysis, although some relationships were still left unresolved. A combination of suite of phylogenetic analyses revealed the ingroup taxa to represent a complex of genetically closely related and morphologically similar entities that have undergone a highly dynamic and recent evolution. This has been especially affected by the extensive and recurrent gene flow among and within the studied taxa and/or by the maintenance of ancestral variation. Paucity of phylogenetically informative signal further hampers the reconstruction of relationships on the infra- as well as on the inter-specific level. In the present study, we have demonstrated that a combination of various phylogenetic analyses of datasets with extremely complex and incongruent phylogenetic signal may shed more light on the interrelationships and evolutionary history of analysed species groups.
- MeSH
- Amplified Fragment Length Polymorphism Analysis MeSH
- Asteraceae classification genetics MeSH
- Biodiversity MeSH
- Datasets as Topic MeSH
- DNA, Plant MeSH
- Phylogeny MeSH
- Phylogeography MeSH
- Genetic Linkage * MeSH
- Genetic Markers MeSH
- Hybridization, Genetic * MeSH
- DNA, Intergenic MeSH
- Evolution, Molecular * MeSH
- Molecular Sequence Data MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The North American ecological species Daphniapulicaria and Daphniapulex are thought to have diverged from a common ancestor by adaptation to sympatric but ecologically distinct lake and pond habitats respectively. Based on mtDNA relationships, European D. pulicaria is considered a different species only distantly related to its North American counterpart, but both species share a lactate dehydrogenase (Ldh) allele F supposedly involved in lake adaptation in North America, and the same allele is also carried by the related Holarctic Daphniatenebrosa. The correct inference of the species' ancestral relationships is therefore critical for understanding the origin of their adaptive divergence. Our species tree inferred from unlinked nuclear loci for D. pulicaria and D. pulex resolved the European and North American D. pulicaria as sister clades, and we argue that the discordant mtDNA gene tree is best explained by capture of D. pulex mtDNA by D. pulicaria in North America. The Ldh gene tree shows that F-class alleles in D. pulicaria and D. tenebrosa are due to common descent (as opposed to introgression), with D. tenebrosa alleles paraphyletic with respect to D. pulicaria alleles. That D. tenebrosa still segregates the ancestral and derived amino acids at the two sites distinguishing the pond and lake alleles suggests that D. pulicaria inherited the derived states from the D. tenebrosa ancestry. Our results suggest that some adaptations restricting the gene flow between D. pulicaria and D. pulex might have evolved in response to selection in ancestral environments rather than in the species' current sympatric habitats. The Arctic (D. tenebrosa) populations are likely to provide important clues about these issues.
- MeSH
- Daphnia classification genetics MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- Phylogeography MeSH
- DNA, Mitochondrial chemistry MeSH
- Recombination, Genetic MeSH
- Sequence Analysis, DNA MeSH
- Gene Flow MeSH
- Genetic Speciation * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH