Repeat proliferation and partial endoreplication jointly shape the patterns of genome size evolution in orchids

. 2021 Jul ; 107 (2) : 511-524. [epub] 20210525

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33960537

Although the evolutionary drivers of genome size change are known, the general patterns and mechanisms of plant genome size evolution are yet to be established. Here we aim to assess the relative importance of proliferation of repetitive DNA, chromosomal variation (including polyploidy), and the type of endoreplication for genome size evolution of the Pleurothallidinae, the most species-rich orchid lineage. Phylogenetic relationships between 341 Pleurothallidinae representatives were refined using a target enrichment hybrid capture combined with high-throughput sequencing approach. Genome size and the type of endoreplication were assessed using flow cytometry supplemented with karyological analysis and low-coverage Illumina sequencing for repeatome analysis on a subset of samples. Data were analyzed using phylogeny-based models. Genome size diversity (0.2-5.1 Gbp) was mostly independent of profound chromosome count variation (2n = 12-90) but tightly linked with the overall content of repetitive DNA elements. Species with partial endoreplication (PE) had significantly greater genome sizes, and genomic repeat content was tightly correlated with the size of the non-endoreplicated part of the genome. In PE species, repetitive DNA is preferentially accumulated in the non-endoreplicated parts of their genomes. Our results demonstrate that proliferation of repetitive DNA elements and PE together shape the patterns of genome size diversity in orchids.

Zobrazit více v PubMed

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410.

Andrews, S. (2010) FastQC: a quality control tool for high throughput sequence data. Available online at, http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Baele, G., Lemey, P., Bedford, T., Rambaut, A., Suchard, M.A. & Alekseyenko, A.V. (2012) Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Molecular Biology and Evolution, 29, 2157-2167.

Bateman, R.M., Guy, J.J., Rudall, P.J., Leitch, I.J., Pellicer, J. & Leitch, A.R. (2018) Evolutionary and functional potential of ploidy increase within individual plants: somatic ploidy mapping of the complex labellum of sexually deceptive bee orchids. Annals of Botany, 122, 133-150.

Benson, G. (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 27, 573-580.

Bilinski, P., Albert, P.S., Berg, J.J., Birchler, J.A., Grote, M.N., Lorant, A. et al. (2018) Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. PLoS Genetics, 14, e1007162.

Bogarín, D., Karremans, A.P. & Fernández, M. (2018) Genus-level taxonomical changes in the Lepanthes affinity (Orchidaceae, Pleurothallidinae). Phytotaxa, 340, 128-136.

Bogarín, D., Pérez-Escobar, O.A., Karremans, A.P., Fernández, M., Kruizinga, J., Pupulin, F. et al. (2019) Phylogenetic comparative methods improve the selection of characters for generic delimitations in a hyperdiverse Neotropical orchid clade. Scientific Reports, 9, 15098.

Bory, S., Catrice, O., Brown, S., Leitch, I.J., Gigant, R., Chiroleu, F. et al. (2008) Natural polyploidy in Vanilla planifolia (Orchidaceae). Genome, 51, 816-826.

Brown, S.C., Bourge, M., Maunoury, N., Wong, M., Wolfe Bianchi, M., Lepers-Andrzejewski, S. et al. (2017) DNA remodeling by strict partial endoreplication in orchids, an original process in the plant kingdom. Genome biology and evolution, 9, 1051-1071.

Buckley, T.R., Cordeiro, M., Marshall, D.C. & Simon, C. (2006) Differentiating between hypotheses of lineage sorting and introgression in New Zealand alpine cicadas (Maoricicada Dugdale). Systematic Biology, 55, 411-425.

Carta, A. & Peruzzi, L. (2016) Testing the large genome constraint hypothesis: plant traits, habitat and climate seasonality in Liliaceae. New Phytologist, 210, 709-716.

de Oliveira, I.G., Moraes, A.P., De Almeida, E.M., Medeiros De Assis, F.N., Cabral, J.S., De Barros, F. et al. (2015) Chromosomal evolution in Pleurothallidinae (Orchidaceae: Epidendroideae) with an emphasis on the genus Acianthera: chromosome numbers and heterochromatin. Botanical Journal of the Linnean Society, 178, 102-120.

Dodsworth, S., Chase, M.W., Kelly, L.J., Leitch, I.J., Macas, J., Novák, P. et al. (2015) Genomic repeat abundances contain phylogenetic signal. Systematic Biology, 64, 112-126.

Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969-1973.

Du, Y., Bi, Y., Zhang, M., Yang, F., Jia, G. & Zhang, X. (2017) Genome size diversity in Lilium (Liliaceae) is correlated with karyotype and environmental traits. Frontiers in Plant Science, 8, 1303.

Fér, T. & Schmickl, R.E. (2018) HybPhyloMaker: target enrichment data analysis from raw reads to species trees. Evol. Bioinforma., 14, 1-9.

Gernandt, D.S., Aguirre Dugua, X., Vázquez-Lobo, A., Willyard, A., Moreno Letelier, A., Pérez de la Rosa, J.A. et al. (2018) Multi-locus phylogenetics, lineage sorting, and reticulation in Pinus subsection Australes. American Journal of Botany, 105, 711-725.

Gorelick, R., Fraser, D., Zonneveld, B.J.M. & Little, D.P. (2014) Cycad (Cycadales) chromosome numbers are not correlated with genome size. International Journal of Plant Sciences, 175, 986-997.

Grover, C.E. & Wendel, J.F. (2010) Recent insights into mechanisms of genome size change in plants. Journal of Botany, 2010, e382732.

Heled, J. & Drummond, A.J. (2010) Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27, 570-580.

Hloušková, P., Mandáková, T., Pouch, M., Trávníček, P. & Lysak, M.A. (2019) The large genome size variation in the Hesperis clade was shaped by the prevalent proliferation of DNA repeats and rarer genome downsizing. Annals of Botany, 124, 103-120.

Hodcroft, E. (2016) TreeCollapserCL4 (http://emmahodcroft.com/TreeCollapseCL.html), Available at: http://emmahodcroft.com/TreeCollapseCL.html [Accessed February 2, 2020].

Holder, M.T., Anderson, J.A. & Holloway, A.K. (2001) Difficulties in detecting hybridization. Systematic Biology, 50, 978-982.

Holland, B.R., Benthin, S., Lockhart, P.J., Moulton, V. & Huber, K.T. (2008) Using supernetworks to distinguish hybridization from lineage-sorting. BMC Evolutionary Biology, 8, 202.

Hřibová, E., Holušová, K., Trávníček, P., Petrovská, B., Ponert, J., Šimková, H. et al. (2016) The enigma of progressively partial endoreplication: new insights provided by flow cytometry and next-generation sequencing. Genome Biology and Evolution, 8, 1996-2005.

Huerta-Cepas, J., Serra, F. & Bork, P. (2016) ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Molecular Biology and Evolution, 33, 1635-1638.

Joly, S., McLenachan, P.A. & Lockhart, P.J. (2009) A statistical approach for distinguishing hybridization and incomplete lineage sorting. American Naturalist, 174, E54-E70.

Karremans, A.P. (2016) Genera Pleurothallidinarum: an updated phylogenetic overview of Pleurothallidinae. Lankesteriana, 16, 219-241.

Karremans, A.P., Albertazzi, F.J., Bakker, F.T., Bogarín, D., Eurlings, M.C.M., Pridgeon, A. et al. (2016) Phylogenetic reassessment of Specklinia and its allied genera in the Pleurothallidinae (Orchidaceae). Phytotaxa, 272, 1-36.

Karremans, A. & Vieira-Uribe, S. (2020) Pleurothallids Neotropical Jewels - Volume I, Quito, Ecuador: Imprenta Mariscal.

Knight, C.A. & Beaulieu, J.M. (2008) Genome size scaling through phenotype space. Annals of Botany, 101, 759-766.

Kumar, S. & Hedges, S.B. (2016) Advances in time estimation methods for molecular data. Molecular Biology and Evolution, 33, 863-869.

Leaché, A.D., Harris, R.B., Rannala, B. & Yang, Z. (2014) The influence of gene flow on species tree estimation: a simulation study. Systematic Biology, 63, 17-30.

Leitch, I.J. & Dodsworth, S. (2017) Endopolyploidy in plants. In: eLS. Chichester: John Wiley & Sons Ltd. Available at: http://www.els.net; https://doi.org/10.1002/9780470015902.a0020097.pub2

Liu, H.-M., Ekrt, L., Koutecky, P., Pellicer, J., Hidalgo, O., Marquardt, J. et al. (2019) Polyploidy does not control all: Lineage-specific average chromosome length constrains genome size evolution in ferns. Journal of Systematics and Evolution, 57, 418-430.

Luer, C.A. (1986) Icones Pleurothallidinarum I, systematics of the Pleurothallidinae (Orchidaceae). Monographs in Systematic Botany from the Missouri Botanical Garden. St. Louis, 15, 1-81.

Luer, C.A. (1990) Icones Pleurothallidinarum VII: systematics of Platystele. Monographs in Systematic Botany from the Missouri Botanical Garden. St. Louis, 38, 1-115.

Luer, C.A. (1993) Icones Pleurothallidinarum X: systematics of Dracula. Monographs in Systematic Botany from the Missouri Botanical Garden. St. Louis, 46, 1-244.

Luer, C.A. (2000) Icones Pleurothallidinarum XX: systematics of Jostia, Andinia, Barbrodia, Pleurothallis and subgenera Antilla, Effusia and Restrepioidia with Addenda to Lepanthes, Masdevallia and Pleurothallis. Monographs in Systematic Botany from the Missouri Botanical Garden. St. Louis, 79, 1-140.

Luer, C.A. (2006) Icones Pleurothallidinarum XXVIII: a reconsideration of Masdevallia, and the systematics of Specklinia and vegetatively similar taxa (Orchidaceae). Monographs in Systematic Botany from the Missouri Botanical Garden. St. Louis, 105, 1-281.

Macas, J., Novák, P., Pellicer, J., Čížková, J., Koblížková, A., Neumann, P. et al. (2015) In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS One, 10, e0143424.

Mandák, B., Krak, K., Vít, P., Pavlíková, Z., Lomonosova, M.N., Habibi, F. et al. (2016) How genome size variation is linked with evolution within Chenopodium sensu lato. Perspectives in Plant Ecology, Evolution and Systematics, 23, 18-32.

Mandáková, T. & Lysak, M.A. (2016) Chromosome preparation for cytogenetic analyses in Arabidopsis. In Current Protocols in Plant Biology (Stacey, G., Birchler, J., Ecker, J., Martin, C. R., Stitt, M. and Zhou, J.-M., eds). Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 43-51.

Mello, B. (2018) Estimating timetrees with MEGA and the timetree resource. Molecular Biology and Evolution, 35, 2334-2342.

Mirarab, S., Reaz, R., Bayzid, M.S., Zimmermann, T., Swenson, M.S. & Warnow, T. (2014) ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics, 30, i541-i548.

Novák, P., Ávila Robledillo, L., Koblížková, A., Vrbová, I., Neumann, P. & Macas, J. (2017) TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Research, 45, e111.

Novák, P., Neumann, P., Pech, J., Steinhaisl, J. & Macas, J. (2013) RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinforma. Oxf. Engl., 29, 792-793.

Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N. et al. (2018) caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 1.0.1, Available at: https://cran.r-project.org/web/packages/caper/index.html [Accessed January 13, 2019].

Pagel, M. (1999) Inferring the historical patterns of biological evolution. Nature, 401, 877-884.

Paule, J., Heller, S., Maciel, J.R., Monteiro, R.F., Leme, E.M.C. & Zizka, G. (2020) Early diverging and core Bromelioideae (Bromeliaceae) reveal contrasting patterns of genome size evolution and polyploidy. Frontiers of plant science, 11, 1295.

Pellicer, J., Hidalgo, O., Dodsworth, S. & Leitch, I.J. (2018) Genome size diversity and its impact on the evolution of land plants. Genes, 9, 88.

Pérez-Escobar, O.A., Chomicki, G., Condamine, F.L., Karremans, A.P., Bogarín, D., Matzke, N.J. et al. (2017) Recent origin and rapid speciation of Neotropical orchids in the world’s richest plant biodiversity hotspot. New Phytologist, 215, 891-905.

Poinar, G. & Rasmussen, F.N. (2017) Orchids from the past, with a new species in Baltic amber. Botanical Journal of the Linnean Society, 183, 327-333.

Pridgeon, A.M. (2005) Subtribe Pleurothallidinae In: Pridgeon, A.M., Cribb, P.J., Chase, M.W. & Rasmussen, F.N. (Eds.). Genera Orchidacearum. Volume 4 Epidendroideae (Part One). Oxford: Oxford University Press, pp. 405-412.

Pridgeon, A. & Chase, M.W. (2001) A phylogenetic reclassification of Pleurothallidinae (Orchidaceae). Lindleyana, 16, 235-271.

Pridgeon, A.M., Solano, R. & Chase, M.W. (2001) Phylogenetic relationships in Pleurothallidinae (Orchidaceae): combined evidence from nuclear and plastid DNA sequences. American Journal of Botany, 88, 2286-2308.

Qiu, F., Baack, E.J., Whitney, K.D., Bock, D.G., Tetreault, H.M., Rieseberg, L.H. et al. (2019) Phylogenetic trends and environmental correlates of nuclear genome size variation in Helianthus sunflowers. New Phytologist, 221, 1609-1618.

R Core Team (2020) A language and environment for statistical computing R Foundation for statistical computing. Vienna, Austria: R Core Team Available at: https://www.R-project.org/.

Rambaut, A. (2018) FigTree v1.4.4. (http://tree.bio.ed.ac.uk/software/), Available at: http://tree.bio.ed.ac.uk/software/ [Accessed February 2, 2020].

Ramírez, S.R., Gravendeel, B., Singer, R.B., Marshall, C.R. & Pierce, N.E. (2007) Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature, 448, 1042-1045.

Revell, L.J. (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217-223.

Sang, T. & Zhong, Y. (2000) Testing hybridization hypotheses based on incongruent gene trees. Systematic Biology, 49, 422-434.

Schmickl, R., Liston, A., Zeisek, V., Oberlander, K.K., Weitemier, K., Straub, S.C.K. et al.(2016) Phylogenetic marker development for target enrichment from transcriptome and genome skim data: the pipeline and its application in southern African Oxalis (Oxalidaceae). Molecular Ecology Resources, 16, 1124-1135.

Šmarda, P., Bureš, P., Horová, L., Leitch, I.J., Mucina, L., Pacini, E. et al. (2014) Ecological and evolutionary significance of genomic GC content diversity in monocots. Proceedings of the National Academy of Sciences, 111, E4096-E4102.

Smith, S.A., Moore, M.J., Brown, J.W. & Yang, Y. (2015) Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evolutionary Biology, 15, 150.

Sonnhammer, E.L. & Durbin, R. (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene, 167, GC1-GC10.

Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312-1313.

Štorchová, H., Hrdličková, R., Chrtek, J., Tetera, M., Fitze, D. & Fehrer, J. (2000) An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon, 49, 79-84. Available at: https://onlinelibrary.wiley.com/doi/abs/10.2307/1223934

Štubňová, E., Hodálová, I., Kučera, J., Mártonfiová, L., Svitok, M. & Slovák, M. (2017) Karyological patterns in the European endemic genus Soldanella L.: absolute genome size variation uncorrelated with cytotype chromosome numbers. American Journal of Botany, 104, 1241-1253.

Sun, M., Soltis, D.E., Soltis, P.S., Zhu, X., Burleigh, J.G. & Chen, Z. (2015) Deep phylogenetic incongruence in the angiosperm clade Rosidae. Molecular Phylogenetics and Evolution, 83, 156-166.

te Beest, M., Le Roux, J.J., Richardson, D.M., Brysting, A.K., Suda, J., Kubešová, M. et al. (2012) The more the better? The role of polyploidy in facilitating plant invasions. Annals of Botany, 109, 19-45.

Trávníček, P., Čertner, M., Ponert, J., Chumová, Z., Jersáková, J. & Suda, J. (2019) Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life-history traits and climatic conditions. New Phytologist, 224, 1642-1656.

Trávníček, P., Ponert, J., Urfus, T., Jersáková, J., Vrána, J., Hřibová, E. et al. (2015) Challenges of flow-cytometric estimation of nuclear genome size in orchids, a plant group with both whole-genome and progressively partial endoreplication. Cytometry A, 87A, 958-966.

Veleba, A., Šmarda, P., Zedek, F., Horová, L., Šmerda, J. & Bureš, P. (2017) Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae). Annals of Botany, 119, 409-416.

Vitales, D., Álvarez, I., Garcia, S., Hidalgo, O., Nieto Feliner, G., Pellicer, J. et al. (2020) Genome size variation at constant chromosome number is not correlated with repetitive DNA dynamism in Anacyclus (Asteraceae). Annals of Botany, 125, 611-623.

Weitemier, K., Straub, S.C.K., Cronn, R.C., Fishbein, M., Schmickl, R., McDonnell, A. et al. (2014) Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences, 2, 1400042.

Wilson, M., Frank, G.S., Jost, L., Pridgeon, A.M., Vieira-Uribe, S. & Karremans, A.P. (2017) Phylogenetic analysis of Andinia (Pleurothallidinae; Orchidaceae) and a systematic re-circumscription of the genus. Phytotaxa, 295, 101-131.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace