Exogenous Application of Methyl Jasmonate Increases Emissions of Volatile Organic Compounds in Pyrenean Oak Trees, Quercus pyrenaica
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PGC2018-095070-B-I00
Spanish Ministry of Economy and Competitiveness
GAJU n. 04-048/2019/P
Grant Agency of the University of South Bohemia
Research infrastructure ENREGAT (LM2018098)
Ministry of Education, Youth and Sports of the Czech Republic
BABE 805189
European Research Council - International
PubMed
35053082
PubMed Central
PMC8773279
DOI
10.3390/biology11010084
PII: biology11010084
Knihovny.cz E-zdroje
- Klíčová slova
- avian olfaction, defense against herbivory, foraging, herbivore-induced plant volatiles,
- Publikační typ
- časopisecké články MeSH
The tri-trophic interactions between plants, insects, and insect predators and parasitoids are often mediated by chemical cues. The attraction to herbivore-induced Plant Volatiles (HIPVs) has been well documented for arthropod predators and parasitoids, and more recently for insectivorous birds. The attraction to plant volatiles induced by the exogenous application of methyl jasmonate (MeJA), a phytohormone typically produced in response to an attack of chewing herbivores, has provided controversial results both in arthropod and avian predators. In this study, we examined whether potential differences in the composition of bouquets of volatiles produced by herbivore-induced and MeJA-treated Pyrenean oak trees (Quercus pyrenaica) were related to differential avian attraction, as results from a previous study suggested. Results showed that the overall emission of volatiles produced by MeJA-treated and herbivore-induced trees did not differ, and were higher than emissions of Control trees, although MeJA treatment showed a more significant reaction and released several specific compounds in contrast to herbivore-induced trees. These slight yet significant differences in the volatile composition may explain why avian predators were not so attracted to MeJA-treated trees, as observed in a previous study in this plant-herbivore system. Unfortunately, the lack of avian visits to the experimental trees in the current study did not allow us to confirm this result and points out the need to perform more robust predator studies.
Zobrazit více v PubMed
Heil M. Herbivore-induced plant volatiles: Targets, perception and unanswered questions. New Phytol. 2014;204:297–306. doi: 10.1111/nph.12977. DOI
Zhang Y., Xie Y., Xue J., Peng G., Wang X. Effect of volatile emissions, especially alpha-pinene, from persimmon trees infested by Japanese wax scales or treated with methyl jasmonate on recruitment of ladybeetle predators. Environ. Entomol. 2009;38:1439–1445. doi: 10.1603/022.038.0512. PubMed DOI
Niinemets U., Loreto F., Reichstein M. Physiological and physiochemical controls on foliar volatile organic compound emissions. Trends Plant Sci. 2004;9:180–186. doi: 10.1016/j.tplants.2004.02.006. PubMed DOI
Karban R., Baldwin I.T. Induced Responses to Herbivory. University of Chicago Press; Chicago, IL, USA: 2007.
Bonaventure G., VanDoorn A., Baldwin I.T. Herbivore-associated elicitors: FAC signaling and metabolism. Trends Plant Sci. 2011;16:294–299. doi: 10.1016/j.tplants.2011.01.006. PubMed DOI
Thaler J.S., Stout M.J., Karban R., Duffey S.S. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 1996;22:1767–1781. doi: 10.1007/BF02028503. PubMed DOI
Thaler J.S., Farag M.A., Paré P.W., Dicke M. Jasmonate-deficient plants have reduced direct and indirect defenses against herbivores. Ecol. Lett. 2002;5:764–774. doi: 10.1046/j.1461-0248.2002.00388.x. DOI
Paré P.W., Tumlinson J.H. Induced synthesis of plant volatiles. Nature. 1997;385:30–31. doi: 10.1038/385030a0. DOI
Paré P.W., Tumlinson J.H. Plant volatiles as a defense against insect herbivores. Plant Phsyiol. 1999;121:325–331. doi: 10.1104/pp.121.2.325. PubMed DOI PMC
Mattiacci L., Rocca B.A., Scascighini N., D’Alessandro M., Hern A., Dorn S. Systemically induced plant volatiles emitted at the time of “danger”. J. Chem. Ecol. 2001;27:2233–2252. doi: 10.1023/A:1012278804105. PubMed DOI
Volf M., Weinhold A., Seifert C.L., Holicová T., Uthe H., Alander E., Richter R., Salminen J.-P., Wirth C., Van Dam N.M. Branch-Localized Induction Promotes Efficacy of Volatile Defences and Herbivore Predation in Trees. J. Chem. Ecol. 2020;47:99–111. doi: 10.1007/s10886-020-01232-z. PubMed DOI
Dicke M., Sabelis M.W., Takabayashi J., Bruin J., Posthumus M.A. Plant strategies of manipulating predator-prey interactions through allelochemicals: Prospects for application in pest control. J. Chem. Ecol. 1990;16:3091–3118. doi: 10.1007/BF00979614. PubMed DOI
Turlings T.C., Humlington J.H., Lewis W.J. Exploitation of herbivore induced plant odors by host-seeking parasite wasps. Science. 1990;250:1251–1253. doi: 10.1126/science.250.4985.1251. PubMed DOI
Turlings T.C.J., Tumlinson J.H. Systemic release of chemical signals by herbivore-injured corn. Proc. Natl. Acad. Sci. USA. 1992;89:8399–8402. doi: 10.1073/pnas.89.17.8399. PubMed DOI PMC
Vet L.E.M., Dicke M. Ecology of info chemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 1992;37:141–172. doi: 10.1146/annurev.en.37.010192.001041. DOI
van Loon J.J.A., de Boer J.G., Dicke M. Parasitoid-plant mutualism: Parasitoid attack of herbivore increases plant reproduction. Entomol. Exp. Appl. 2000;97:219–227. doi: 10.1046/j.1570-7458.2000.00733.x. DOI
Fritzsche Hoballah M.E., Turlings T.C.J. Experimental evidence that plants under caterpillar attack may benefit from attracting parasitoids. Evol. Ecol. Res. 2001;3:553–565.
Schuman M.C., Barthel K., Baldwin I.T. Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature. ELife. 2012;1:e00007. doi: 10.7554/eLife.00007. PubMed DOI PMC
Mumm R., Dicke M. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can. J. Zool. 2010;88:628–667. doi: 10.1139/Z10-032. DOI
Dicke M., Baldwin T. The evolutionary context for herbivore-induced plant volatiles: Beyond the ‘cry for help’. Trends Plant Sci. 2010;15:167–175. doi: 10.1016/j.tplants.2009.12.002. PubMed DOI
Mäntylä E., Klemola T., Haukioja E. Attraction of willow warblers to sawfly-damaged mountain birches: Novel function of inducible plant defences? Ecol. Lett. 2004;7:915–918. doi: 10.1111/j.1461-0248.2004.00653.x. DOI
Kessler A., Baldwin I.T. Defensive function of herbivore-induced plant volatile emissions in nature. Science. 2001;291:2141–2144. doi: 10.1126/science.291.5511.2141. PubMed DOI
Mäntylä E., Klemola T., Sirkiä P., Laaksonen T. Low light reflectance may explain the attraction of birds to defoliated trees. Behav. Ecol. 2008;19:325–330. doi: 10.1093/beheco/arm135. DOI
Mäntylä E., Alessio G.A., Blande J.D., Heijari J., Holopainen J.K., Laaksonen T., Piirtola P., Klemola T. From plants to birds: Higher avian predation rates in trees responding to insect herbivory. PLoS ONE. 2008;3:e2832. doi: 10.1371/journal.pone.0002832. PubMed DOI PMC
Amo L., Jansen J.J., Dam N.M., Dicke M., Visser M.E. Birds exploit herbivore–induced plant volatiles to locate herbivorous prey. Ecol. Lett. 2013;16:1348–1355. doi: 10.1111/ele.12177. PubMed DOI
Mäntylä E., Kleier S., Kipper S., Hilker M. The attraction of insectivorous tit species to herbivore-damaged Scots pines. J. Ornithol. 2017;158:479–491. doi: 10.1007/s10336-016-1412-9. DOI
Mäntylä E., Kipper S., Hilker M. Insectivorous birds can see and smell systemically herbivore-induced pines. Ecol. Evol. 2020;10:9358–9370. doi: 10.1002/ece3.6622. PubMed DOI PMC
Rubene D., Leidefors M., Ninkovic V., Eggers S., Low M. Disentangling olfactory and visual information used by field foraging birds. Ecol. Evol. 2019;9:545–552. doi: 10.1002/ece3.4773. PubMed DOI PMC
Graham J., Charlier T.D., Bonadonna F., Caro S. Olfactory detection of trace amounts of plant volatiles is correlated with testosterone in a passerine bird. Horm. Behav. 2021;136:105045. doi: 10.1016/j.yhbeh.2021.105045. PubMed DOI
Mäntylä E., Kleier S., Lindstedt C., Kipper S., Hilker M. Insectivorous birds are attracted by plant traits induced by insect egg deposition. J. Chem. Ecol. 2018;44:1127–1138. doi: 10.1007/s10886-018-1034-1. PubMed DOI
Mrazova A., Sam K. Application of methyl jasmonate to grey willow (Salix cinerea) attracts insectivorous birds in nature. Arthropod Plant Interact. 2018;12:1–8. doi: 10.1007/s11829-017-9558-9. DOI
Mrazova A., Sam K., Amo L. What do we know about birds’ use of plant volatile cues in tritrophic interactions? Curr. Opin. Insect Sci. 2019;32:131–136. doi: 10.1016/j.cois.2019.02.004. PubMed DOI
Hopke J., Donath J., Blechert S., Boland W. Herbivore-induced volatiles: The emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a betaglucosidase and jasmonic acid. FEBS Lett. 1994;352:146–150. doi: 10.1016/0014-5793(94)00948-1. PubMed DOI
Degenhardt D.C., Lincoln D.E. Volatile emissions from an odorous plant in response to herbivory and methyl jasmonate exposure. J. Chem. Ecol. 2006;32:725–743. doi: 10.1007/s10886-006-9030-2. PubMed DOI
Mäntylä E., Blande J.D., Klemola T. Does application of methyl jasmonate to birch mimic herbivory and attract insectivorous birds in nature? Arthropod Plant Interact. 2014;8:143–153. doi: 10.1007/s11829-014-9296-1. DOI
Saavedra I., Amo L. Are birds attracted to methyl-jasmonate-treated trees? Behaviour. 2018;155:945–967. doi: 10.1163/1568539X-00003516. DOI
Mrazova A., Sam K. Exogenous application of methyl jasmonate to Ficus hahliana attracts predators of insects along an altitudinal gradient in Papua New Guinea. J. Trop. Ecol. 2019;35:157–164. doi: 10.1017/S0266467419000117. DOI
Betts M.M. The food of Titmice in Oak Woodland. J. Anim. Ecol. 1955;24:282–323. doi: 10.2307/1715. DOI
Mols C.M.M., Visser M.E. Great tits can reduce caterpillar damage in apple orchards. J. Appl. Ecol. 2002;39:888–899. doi: 10.1046/j.1365-2664.2002.00761.x. PubMed DOI PMC
Posa M.R.C., Sodhi N.S., Koh L.P. Predation on artificial nests and caterpillar models across a disturbance gradient in Subic Bay, Philippines. J. Trop. Ecol. 2007;23:27–33. doi: 10.1017/S0266467406003671. DOI
Richards L.A., Coley P.D. Seasonal and habitat differences affect the impact of food and predation on herbivores: A comparison between gaps and understory of a tropical forest. Oikos. 2007;116:31–40. doi: 10.1111/j.2006.0030-1299.15043.x. DOI
Remmel T., Davison J., Tammaru T. Quantifying predation on folivorous insect larvae: The perspective of life-history evolution. Biol. J. Linnean. Soc. 2011;104:1–18. doi: 10.1111/j.1095-8312.2011.01721.x. DOI
Tvardikova K., Novotny V. Predation on exposed and leaf-rolling artificial caterpillars in tropical forests of Papua New Guinea. J. Trop. Ecol. 2012;28:331–341. doi: 10.1017/S0266467412000235. DOI
Sam K., Koane B., Novotny V. Herbivore damage increases avian and ant predation of caterpillars on trees along a complete elevational forest gradient in Papua New Guinea. Ecography. 2015;38:293–300. doi: 10.1111/ecog.00979. DOI
Saavedra I., Amo L. Insectivorous birds eavesdrop on the pheromones of their prey. PLoS ONE. 2018;13:e0190415. doi: 10.1371/journal.pone.0190415. PubMed DOI PMC
Amo L., Saavedra I. Attraction to smelly food in birds: Insectivorous birds discriminate between the pheromones of their prey and those of non-prey insects. Biology. 2021;10:1010. doi: 10.3390/biology10101010. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 1 December 2021)]. Available online: https://www.R-project.org/
Venables W.N., Ripley B.D. Modern Applied Statistics with S. 4th ed. Springer; New York, NY, USA: 2002.
Brooks M.E., Kristensen K., van Benthem K.J., Magnusson A., Berg C.W., Nielsen A., Skaug H.J., Mächler M., Bolker B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017;9:378–400. doi: 10.32614/RJ-2017-066. DOI
Length R.V., Buerkner P., Herve M., Love J., Miguez F., Riebl H., Singmann H. emmeans: Estimated Marginal Means, aka Least-Squares Means. 2020. [(accessed on 1 December 2021)]. R package Version 1.4.8. Available online: https://CRAN.R-project.org/package=emmeans.
Sam K., Kovarova E., Freiberga I., Uthe H., Weinhold A., Jorge R.G., Sreekar R. Great tits (Parus major) flexibly learn that herbivore-induced plant volatiles indicate prey location: An experimental evidence with two tree species. Ecol. Evol. 2021;11:10917–10925. doi: 10.1002/ece3.7869. PubMed DOI PMC
Koski T.M., Laaksonen T., Mäntylä E., Ruuskanen S., Li T., Girón-Calva P.S., Huttunen L., Blande J.D., Holopainen J.K., Klemola T. Do Insectivorous Birds use Volatile Organic Compounds from Plants as Olfactory Foraging Cues? Three Experimental Tests. Ethology. 2015;121:1131–1144. doi: 10.1111/eth.12426. DOI
Bonello P., Blodgett J.T. Pinus nigra–Sphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines. Physiol. Mol. Plant Pathol. 2003;63:249–261. doi: 10.1016/j.pmpp.2004.02.002. DOI
Eyles A., Bonello P., Ganley R., Mohammed C. Induced resistance to pests and pathogens in trees. New Phytol. 2010;185:893–908. doi: 10.1111/j.1469-8137.2009.03127.x. PubMed DOI
Neuvonen S., Haukioja E., Molarius A. Delayed inducible resistance against a leaf-chewing insect in four deciduous tree species. Oecologia. 1987;74:363–369. doi: 10.1007/BF00378931. PubMed DOI
Piggott N., Ekramoddoullah A.K., Liu J.-J., Yu X. Gene cloning of a thaumatin-like (PR-5) protein of western white pine (Pinus monticola D. Don) and expression studies of members of the PR-5 group. Physiol. Mol. Plant Pathol. 2004;64:1–8. doi: 10.1016/j.pmpp.2004.05.004. DOI
Rubert-Nason K.F., Couture J.J., Major I.T., Constabel C.P., Lindroth R.L. Influence of genotype, environment, and gypsy moth herbivory on local and systemic chemical defenses in trembling aspen (Populus tremuloides) J. Chem. Ecol. 2015;41:651–661. doi: 10.1007/s10886-015-0600-z. PubMed DOI
Lämke J.S., Unsicker S.B. Phytochemical variation in treetops: Causes and consequences for tree-insect herbivore interactions. Oecologia. 2018;187:377–388. doi: 10.1007/s00442-018-4087-5. PubMed DOI PMC
Dicke M., Gols R., Ludeking D., Posthumus M.A. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J. Chem. Ecol. 1999;25:1907–1922. doi: 10.1023/A:1020942102181. DOI
Hare J.D. Variation in herbivore and methyl jasmonate-induced volatiles among genetic lines of Datura wrightii. J. Chem. Ecol. 2007;33:2028–2043. doi: 10.1007/s10886-007-9375-1. PubMed DOI
Strapasson P., Pinto-Zevallos D.M., Paudel S., Rajotte E.G., Felton G.W., Zarbin P.H. Enhancing plant resistance at the seed stage: Low concentrations of methyl jasmonate reduce the performance of the leaf miner Tuta absoluta but do not alter the behavior of its predator Chrysoperla externa. J. Chem. Ecol. 2014;40:1090–1098. doi: 10.1007/s10886-014-0503-4. PubMed DOI
Dicke M. Specificity of herbivore-induced plant defences. In: Chadwick D.J., Goode J., editors. Insect-Plant Interactions and Induced Plant Defence. Wiley & Sons; Chicester, UK: 1999. pp. 43–59. PubMed
Ozawa R., Arimura G., Takabayashi J., Shimoda T., Nishioka T. Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol. 2000;41:391–398. doi: 10.1093/pcp/41.4.391. PubMed DOI
Thaler J.S. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature. 1999;399:686–688. doi: 10.1038/21420. DOI
Rodriguez-Saona C., Crafts-Brandner S.J., Paré P.W., Henneberry T.J. Exogenous methyl jasmonate induces volatile emissions in cotton plants. J. Chem. Ecol. 2001;27:679–695. doi: 10.1023/A:1010393700918. PubMed DOI
Smart L.E., Martin J.L., Limpalaër M., Bruce T.J., Pickett J.A. Responses of herbivore and predatory mites to tomato plants exposed to jasmonic acid seed treatment. J. Chem. Ecol. 2013;39:1297–1300. doi: 10.1007/s10886-013-0345-5. PubMed DOI
Erb M., Reymond P. Molecular Interactions Between Plants and Insect Herbivores. Annu. Rev. Plant Biol. 2019;70:527–557. doi: 10.1146/annurev-arplant-050718-095910. PubMed DOI
Kessler A., Baldwin I.T. Plant responses to insect herbivory: The emerging molecular analysis. Annu. Rev. Plant Biol. 2002;53:299–328. doi: 10.1146/annurev.arplant.53.100301.135207. PubMed DOI
Miller B., Madilao L.L., Ralph S., Bohlmann J. Insect-induced conifer defense. White pine weevil and Methyl Jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol. 2005;137:369–382. doi: 10.1104/pp.104.050187. PubMed DOI PMC
Arimura G., Kost C., Boland W. Herbivore-induced, indirect plant defences. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2005;1734:91–111. doi: 10.1016/j.bbalip.2005.03.001. PubMed DOI
De Moraes C.M., Lewis W.J., Pare P.W., Alborn H.T., Tumlinson J.H. Herbivore-infested plants selectively attract parasitoids. Nature. 1998;393:570–573. doi: 10.1038/31219. DOI
Takabayashi J., Dicke M., Posthumus M.A. Variation in composition of predator attracting allelochemicals emitted by herbivore-infested plants: Relative influence of plant and herbivore. Chemoecology. 1991;2:1–6. doi: 10.1007/BF01240659. DOI
Hare J.D. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 2011;56:161–180. doi: 10.1146/annurev-ento-120709-144753. PubMed DOI
Dicke M., van Loon J.J.A., Soler R. Chemical complexity of volatiles from plants induced by multiple attack. Nat. Chem. Biol. 2009;5:317–324. doi: 10.1038/nchembio.169. PubMed DOI
Allison S.D., Schultz J.C. Differential activity of peroxidase isozymes in response to wounding, gypsy moth, and plant hormones in northern red oak (Quercus rubra L.) J. Chem. Ecol. 2004;30:1363–1379. doi: 10.1023/B:JOEC.0000037745.66972.3e. PubMed DOI
Turlings T.C.F., Wäckers F. Recruitment of predators and parasitoids by herbivore-injured plants. Adv. Insect Chem. Ecol. 2004;2:21–75.
Geervliet J.B.F., Ariens S.J., Dicke M., Vet L.E.M. Long-distance assessment of patch profitability through volatile infochemicals by the parasitoids Cotesia glomerata and C. rubecula (Hymenoptera: Braconidae) Biol. Control. 1998;11:113–121. doi: 10.1006/bcon.1997.0585. DOI
Shiojiri K., Takabayashi J., Yano S., Takafuji A. Infochemically mediated tritrophic interaction webs on cabbage plants. Popul. Ecol. 2001;43:23–29. doi: 10.1007/PL00012011. DOI
Girling R.D., Stewart-Jones A., Dherbecourt J., Staley J.T., Wright D.J., Poppy G.M. Parasitoids select plants more heavily infested with their caterpillar hosts: A new approach to aid interpretation of plant headspace volatiles. Proc. Biol. Sci. 2011;278:2646–2653. doi: 10.1098/rspb.2010.2725. PubMed DOI PMC
Scascighini N., Mattiacci L., D’Alessandro M., Hern A., Rott A.S., Dorn S. New insights in analysing parasitoid attracting synomones: Early volatile emission and use of stir bar sorptive extraction. Chemoecology. 2005;15:97–104. doi: 10.1007/s00049-005-0300-1. DOI
Kigathi R.N., Unsicker S.B., Reichelt M., Kesselmeier J., Gershenzon J., Weisser W.W. Emission of volatile organic compounds after herbivory from Trifolium pratense (L.) under laboratory and field conditions. J. Chem. Ecol. 2009;35:1335–1348. doi: 10.1007/s10886-009-9716-3. PubMed DOI PMC
Shiojiri K., Ozawa R., Kugimiya S., Uefune M., van Wijk M., Sabelis M.W., Takabayashi J. Herbivore-specific, density-dependent induction of plant volatiles: Honesty or “cry wolf” signals? PLoS ONE. 2010;5:e12161. doi: 10.1371/journal.pone.0012161. PubMed DOI PMC
De Boer J.G., Posthumus M.A., Dicke M. Identification of volatiles that are used in discrimination between plants infested with prey or non prey herbivores by a predatory mite. J. Chem. Ecol. 2004;30:2215–2230. doi: 10.1023/B:JOEC.0000048784.79031.5e. PubMed DOI
Van Den Boom C.E.M., Van Beek T.A., Posthumus M.A., De Groot E., Dicke M. Qualitative and quantitative variation between volatile profiles induced by Tetranychus urticae feeding on different plants of various families. J. Chem. Ecol. 2004;30:69–89. doi: 10.1023/B:JOEC.0000013183.72915.99. PubMed DOI
Bruinsma M., Posthumus M.A., Mumm R., Mueller M.J., van Loon J.J.A., Dicke M. Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: Effects of time and dose, and comparison with induction by herbivores. J. Exp. Bot. 2009;60:2575–2587. doi: 10.1093/jxb/erp101. PubMed DOI PMC
Gols R., Veenemans C., Potting R.P.J., Smid H.M., Dicke M., Harvey J.A., Bukovinszky T. Variation in the specificity of plant volatiles and their use by a specialist and a generalist parasitoid. Anim. Behav. 2012;83:1231–1242. doi: 10.1016/j.anbehav.2012.02.015. DOI
Steidle J., van Loon J. Dietary specialization and infochemical use in carnivorous arthropods: Testing a concept. Entomol. Exp. Appl. 2003;108:133–148. doi: 10.1046/j.1570-7458.2003.00080.x. DOI
Amo L., Dicke M., Visser M.E. Are naïve birds attracted to herbivore-induced plant defences? Behaviour. 2016;153:353–366. doi: 10.1163/1568539X-00003345. DOI