Synthesis and characterization of (Z)-5-arylmethylidene-rhodanines with photosynthesis-inhibiting properties
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21697777
PubMed Central
PMC6264177
DOI
10.3390/molecules16065207
PII: molecules16065207
Knihovny.cz E-zdroje
- MeSH
- Chlorella vulgaris účinky léků metabolismus MeSH
- chloroplasty účinky léků metabolismus MeSH
- fotosyntéza účinky léků MeSH
- hydrofobní a hydrofilní interakce MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- rhodanin analogy a deriváty chemická syntéza farmakologie MeSH
- Spinacia oleracea účinky léků metabolismus MeSH
- transport elektronů účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rhodanin MeSH
A series of rhodanine derivatives was prepared. The synthetic approach, analytical and spectroscopic data of all synthesized compounds are presented. Lipophilicity of all the discussed rhodanine derivatives was analyzed using the RP-HPLC method. The compounds were tested for their ability to inhibit photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts and reduce chlorophyll content in freshwater alga Chlorella vulgaris. Structure-activity relationships between the chemical structure, physical properties and biological activities of the evaluated compounds are discussed. For majority of the tested compounds the lipophilicity of the compound and not electronic properties of the R1 substituent were decisive for PET-inhibiting activity. The most potent PET inhibitor was (5Z)-5-(4-bromobenzylidene)-2-thioxo-1,3-thiazolidin-4-one (IC(50) = 3.0 μmol/L) and the highest antialgal activity was exhibited by (5Z)-5-(4-chlorobenzylidene)-2-thioxo-1,3-thiazolidin-4-one (IC(50) = 1.3 μmol/L).
Zobrazit více v PubMed
Casida J.E. Pest toxicology: The primary mechanisms of pesticide action. Chem. Res. Toxicol. 2009;22:609–619. doi: 10.1021/tx8004949. PubMed DOI
Fuerst E.P., Norman M.A. Interaction of herbicides with photosynthetic electron transport. Weed Sci. 1991;39:458–464.
Draber W., Kluth J.F., Tietjen K., Trebst A. Herbicides in photosynthesis research. Angew. Chem. Int. Ed. 1991;30:1621–1633. doi: 10.1002/anie.199116211. DOI
Huppatz J.L., McFadden H.G. Understanding the topography of the photosystem II herbicide binding niche: Does QSAR help? Z. Naturforsch. C. 1993;48:140–145.
Tomasic T., Masic L.P. Rhodanine as a privileged scaffold in drug discovery. Curr. Med. Chem. 2009;16:1596–1629. doi: 10.2174/092986709788186200. PubMed DOI
Mazzanti L. Study on antithyroid substances. VI. Action of methylthiouracil, rhodanine, and intramine on development of young lupine plants. Boll. Soc. Ital. Biol. Sper. 1948;24:767–769. PubMed
Takematsu T., Furushima M., Hasegawa Y., Morioka M., Tsuchiyama T. Herbicide containing 2-mercapto-4-keto-5-substituted thiazoline derivatives. JP 47013812. 1972 Nov 6;
Kerst A.F., Douros J.D., Jr., Brokl M. Controlling algae with 5-(5-barbiturilidene)-rhodanine. U.S. Patent 3,765,864. 1973 Oct 16;
La Croix E.A.S. Herbicidal compositions of 3-arylrhodanines. GB 1390550. 1975 Apr 16;
Manning D.T., Chen T.M., Campbell A.J., Smith E.W. Effects of chemical treatments upon photosynthetic parameters in soybeen seedlings. Plant Physiol. 1984;76:1055–1059. doi: 10.1104/pp.76.4.1055. PubMed DOI PMC
Inamori Y., Muro C., Tanaka R., Adachi A., Miyamoto K., Tsujibo H. Phytogrowth inhibitory activity of sulfur-containing compounds. 1. Inhibitory activities of thiazolidine derivatives on plant growth. Chem. Pharm. Bull. 1992;40:2854–2856. doi: 10.1248/cpb.40.2854. DOI
Certi Mazza M.T., de Cicco L., de Rosa G., de Rosa R., Cara-Mazza R. Preparation and activity of complexes of transition metals and thiolic heterocyclic ligands. Boll. Soc. Ital. Biol. Sper. 1996;72:79–86. PubMed
Muro C., Yasuda M., Sakagami Y., Yamada T., Numata A., Inamori Y. Inhibitory activities of rhodanine derivatives on plant growth. Biosci. Biotech. Biochem. 1996;60:1368–1371. doi: 10.1271/bbb.60.1368. DOI
Muro C., Tsujibo H., Inamori Y., Sumida M., Tanaka T., Wakabayashi K., Boger P. Effect of rhodanine and 2(5H)-thiophenone in green algae and liverwort cells. J. Pest. Sci. 1997;22:1–5. doi: 10.1584/jpestics.22.1. DOI
Inamori Y., Okamoto Y., Takegawa Y., Tsujibo H., Sakagami Y., Kumeda Y., Shibata M., Numata A. Insecticidal and antifungal activities of aminorhodanine derivatives. Biosci. Biotech. Biochem. 1998;62:1025–1027. doi: 10.1271/bbb.62.1025. PubMed DOI
Fan C., Clay M.D., Deyholos M.K., Vederas J.C. Exploration of inhibitors for diaminopimelate aminotransferase. Bioorg. Med. Chem. 2010;18:2141–2151. doi: 10.1016/j.bmc.2010.02.001. PubMed DOI
Kerns E.H., Li D. Drug-like Properties: Concept, Structure Design and Methods. Elsevier; San Diego, CA, USA: 2008.
Opletalova V., Patel A., Boulton M., Dundrova A., Lacinova E., Prevorova M., Appeltauerova M., Coufalova M. 5-Alkyl-2-pyrazinecarboxamides, 5-alkyl-2-pyrazine-carbonitriles and 5-alkyl-2-acetylpyrazines as synthetic intermediates for antiinflammatory agents. Collect. Czech. Chem. Commun. 1996;61:1093–1101. doi: 10.1135/cccc19961093. DOI
Chlupacova M., Opletalova V., Kunes J., Silva L., Buchta V., Duskova L., Kralova K. Synthesis and biological evaluation of some ring-substituted (E)-3-aryl-1-pyrazin-2-ylprop-2-en-1-ones. Folia Pharm. Univ. Carol. 2005;33:31–43.
Opletalova V., Pour M., Kunes J., Buchta V., Silva L., Kralova K., Chlupacova M., Meltrova D., Peterka M., Poslednikova M. Synthesis and biological evaluation of (E)-3-(nitrophenyl)-1-(pyrazin-2-yl)prop-2-en-1-ones. Collect. Czech. Chem. Commun. 2006;71:44–58. doi: 10.1135/cccc20060044. DOI
Kucerova-Chlupacova M., Opletalova V., Jampilek J., Dolezel J., Dohnal J., Kunes J., Pour M., Vorisek V. New hydrophobicity constants of substituents in pyrazine rings derived from RP-HPLC Study. Collect. Czech. Chem. Comm. 2008;73:1–18. doi: 10.1135/cccc20080001. DOI
Opletalova V., Kalinowski D., Vejsova M., Kunes J., Pour M., Jampilek J., Buchta V., Richardson D.R. Identification and characterization of thiosemicarbazones with anti-fungal and anti-tumor effects: Cellular iron-chelation mediating cytotoxic activity. Chem. Res. Toxicol. 2008;21:1878–1889. doi: 10.1021/tx800182k. PubMed DOI
Dolezel J., Hirsova P., Opletalova V., Dohnal J., Vejsova M., Kunes J., Jampilek J. Rhodanineacetic acid derivatives as potential drugs: Preparation, hydrophobic properties and antifungal activity of (5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)acetic acids. Molecules. 2009;14:4197–4212. doi: 10.3390/molecules14104197. PubMed DOI PMC
Sagura J.J., Unruh C.C. Light-sensitive rhodanine esters of maleic anhydride copolymers. U.S. Patent 2,824,087. 1958 Feb 18;
Piera F., Seoane E., Mestres R. Synthesis of substituted pyrazines derived from pyrazinecarboxadehyde and hydroxymethylpyrazine. Ann. Quim. 1979;75:899–903.
Sortino M., Delgado P., Juarez S., Quiroga J., Abonia R., Insuasty B., Nogueras M., Rodero L., Garibotto F.M., Enriz R.D., Zacchino A. Synthesis and antifungal activity of (Z)-5-arylidenerhodanines. Bioorg. Med. Chem. 2007;15:484–494. doi: 10.1016/j.bmc.2006.09.038. PubMed DOI
Russel A.J., Westwood I.M., Crawford M.H.J., Robinson J., Kawamura A., Redfield C., Laurieri N., Lowe E.D., Davies S.G., Sim E. Selective small molecule inhibitors of the potential breast cancer marker, human arylamine N-acetyltransferase 1, and its murine homologue, mouse arylamine N-acetyltransferase 2. Bioorg. Med. Chem. 2009;17:905–918. PubMed
Tomasic T., Zidar N., Kovac A., Turk S., Simcic M., Blanot D., Mueller-Premru M., Filipic M., Grdadolnik S.G., Zega A., et al. 5–Benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial MurD ligases. ChemMedChem. 2010;5:286–295. doi: 10.1002/cmdc.200900449. PubMed DOI
Chakrabarti P.M., Chapman N.B. An improved synthesis of substituted benzo[b]thiophen-2-carboxylic acids and related acids. Tetrahedron. 1969;14:2781–2785. doi: 10.1016/0040-4020(69)80021-9. DOI
Zhou J.F., Song Y.Z., Zhu F.X., Zhu Y.L. Facile synthesis of 5-benzylidene rhodamine derivatives under microwave irradiation. Synth.Commun. 2006;36:3297–3303. doi: 10.1080/00397910600941166. DOI
Fisher H.E., Hibbert H. Studies on lignin and related compounds. LXXXIII. Synthesis of 3-hydroxy-1(4-hydroxy-3-methoxyphenyl)-2-propanone. J. Am. Chem. Soc. 1947;69:1208–1210.
Allan F.J., Allan G.G., Thomson J.B. The condensation of rhodanine with aromatic dialdehydes and some related compounds. Can. J. Chem. 1958;36:1579–1583. doi: 10.1139/v58-229. DOI
Gong K., He Z.W., Liu Z.L. Green synthesis of 5-benzylidene rhodanine derivatives catalyzed by 1-butyl-3-methyl imidazolium hydroxide in water. Monatsh. Chem. 2008;139:913–915. doi: 10.1007/s00706-008-0871-y. DOI
Campbell N., Kail J.E. Preparation of halophenylacetic acids. J. Chem. Soc. 1948:1251–1255. doi: 10.1039/jr9480001251. DOI
Khodair A.I. A convenient synthesis of 2-arylidene-5H-thiazolo[2,3-b]quinazoline-3,5[2H]-diones and their benzoquinazoline derivatives. J. Heterocycl. Chem. 2002;39:1153–1160. doi: 10.1002/jhet.5570390607. DOI
Ohishi Y., Mukai T., Nagahara M., Yajima M., Kajikawa N., Miahara K., Takano T. Preparations of 5-alkylmethylidene-3-carboxymethylrhodanine derivatives and their aldose reductase inhibitory activity. Chem. Pharm. Bull. 1990;38:1911–1919. doi: 10.1248/cpb.38.1911. PubMed DOI
Whitessit C.A., Simon R.L., Reel J.K., Sigmund S.K., Phillips M.L., Shadle J.K., Heintz L.W., Koppel G.A., Hunden D.C., Lifer S.L., et al. Synthesis and structure-activity relationships of benzophenones as inhibitors of cathepsin D. Bioorg. Med. Chem. Lett. 1996;6:2157–2162. doi: 10.1016/0960-894X(96)00393-9. DOI
Zidar N., Tomasic T., Sink R., Rupnik V., Kovac A., Turk S., Patin D., Blanot D., Contreras-Martel C., Dessen A., et al. Discovery of novel 5-benzylidenerhodanine and 5-benzylidenethiazolidine-2,4-dione inhibitors of MurD ligase. J. Med. Chem. 2010;53:6584–6594. doi: 10.1021/jm100285g. PubMed DOI
Ryabukhin S.V., Plaskon A.S., Volochnyuk D.M., Pipko S.E., Shivanyuk A.N., Tolmachev A.D. Combinatorial Knoevenagel reactions. J. Comb. Chem. 2007;9:1073–1078. doi: 10.1021/cc070073f. PubMed DOI
Norrington F.E., Hyde R.M., Williams S.G., Wotton R. Physicochemical-activity relations in practice. 1. Rational and self-consistent data bank. J. Med. Chem. 1975;18:604–607. PubMed
Miletin M., Hartl J., Dolezal M., Odlerova Z., Kralova K., Machacek M. Synthesis of some 2,6-disubstituted 4-amidopyridines and -thioamidopyridines, and their photosynthesis-inhibiting activity. Molecules. 2000;5:208–218. doi: 10.3390/50300208. DOI
Dolezal M., Palek L., Vinsova J., Buchta V., Jampilek J., Kralova K. Substituted pyrazinecarboxamides: Synthesis and biological evaluation. Molecules. 2006;11:242–256. doi: 10.3390/11040242. PubMed DOI PMC
Dolezal M., Zitko J., Osicka Z., Kunes J., Vejsova M., Buchta V., Dohnal J., Jampilek J., Kralova K. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules. 2010;15:8567–8581. doi: 10.3390/molecules15128567. PubMed DOI PMC
Honda I., Yoneyama K., Iwamura H., Knnai M., Takahashi N., Yoshida S. Structure-activity relationship of 3-nitro-2,4,6 trihydroxybenzamide derivatives in photosynthetic electron transport. Agric. Biol. Chem. 1990;54:1127–1233.
Kralova K., Sersen F., Kubicova L., Waisser K. Inhibitory effects of substituted benzanilides on photosynthetic electron transport in spinach chloroplasts. Chem. Pap. 1999;53:328–331.
Kralova K., Sersen F., Kubicova L., Waisser K. Inhibition of photosynthetic electron transport in spinach chloroplasts by 3- and 4-halogeno substituted benzanilides and thiobenzanilides. J. Trace Microprobe Techn. 2000;18:251–256.
Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC
Musiol R., Jampilek J., Kralova K., Richardson D.R., Kalinowski D., Podeszwa B., Finster J., Niedbala H., Palka A., Polanski J. Investigating biological activity spectrum for novel quinoline analogues. Bioorg. Med. Chem. 2007;15:1280–1288. doi: 10.1016/j.bmc.2006.11.020. PubMed DOI
Musiol R., Tabak D., Niedbala H., Podeszwa B., Jampilek J., Kralova K., Dohnal J., Finster J., Mencel A., Polanski J. Investigating biological activity spectrum for novel quinoline analogues 2: Hydroxyquinolinecarboxamides with photosynthesis inhibiting activity. Bioorg. Med. Chem. 2008;16:4490–4499. doi: 10.1016/j.bmc.2008.02.065. PubMed DOI
Jampilek J., Musiol R., Pesko M., Kralova K., Vejsova M., Carroll J., Coffey A., Finster J., Tabak D., Niedbala H., et al. Ring-substituted 4-hydroxy-1H-quinolin-2-ones: Preparation and biological activity. Molecules. 2009;14:1145–1159. doi: 10.3390/molecules14031145. PubMed DOI PMC
Jampilek J., Musiol R., Finster J., Pesko M., Carroll J., Kralova K., Vejsova M., O'Mahony J., Coffey A., Dohnal J., Polanski J. Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules. 2009;14:4246–4265. doi: 10.3390/molecules14104246. PubMed DOI PMC
Musiol R., Jampilek J., Nycz J.E., Pesko M., Carroll J., Kralova K., Vejsova M., O'Mahony J., Coffey A., Mrozek A., Polanski J. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules. 2010;15:288–304. doi: 10.3390/molecules15010288. PubMed DOI PMC
Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D., Kovacevic Z., Coffey A., Csollei J., Richardson D.R., Jampilek J. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC
Masarovicova E., Kralova K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd. Taylor & Francis Group; Boca Raton, FL, USA: 2005. pp. 617–656.
Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.
Fedke C. Biochemistry and Physiology of Herbicide Action. Springer Verlag; New York, NY, USA: 1982.
Kralova K., Sersen F., Melnik M. Inhibition of photosynthesis in Chlorella vulgaris by Cu(II) complexes with biologically active ligands. J. Trace Microprobe Techn. 1998;16:491–500.
Wellburn A.R. The spectra determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI
Investigation of Hydro-Lipophilic Properties of N-Alkoxyphenylhydroxynaphthalenecarboxamides †