A Frustrated Antipolar Phase Analogous to Classical Spin Liquids
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2023065
Czech Research Infrastructures
CY33159
Diamond Light Source
PRIMUS/22/SCI/016
Univerzita Karlova v Praze
SGS22/182/OHK4/3T/14
České Vysoké Učení Technické v Praze
24-10791S
Grantová Agentura České Republiky
TERAFITCZ.02.01.01/00/22_008/0004594
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39440632
PubMed Central
PMC11635917
DOI
10.1002/adma.202410282
Knihovny.cz E-zdroje
- Klíčová slova
- dielectric relaxation, electric dipoles, frustration, highly degenerate state, structural disorder,
- Publikační typ
- časopisecké články MeSH
The study of magnetic frustration in classical spin systems is motivated by the prediction and discovery of classical spin liquid states. These uncommon magnetic phases are characterized by a massive degeneracy of their ground state implying a finite magnetic entropy at zero temperature. While the classical spin liquid state is originally predicted in the Ising triangular lattice antiferromagnet in 1950, this state has never been experimentally observed in any triangular magnets. The discovery of an electric analogue of classical spin liquids on a triangular lattice of uniaxial electric dipoles in EuAl12O19 is reported here. This new type of frustrated antipolar phase is characterized by a highly-degenerate state at low temperature implying an absence of long-range antiferroelectric order, despite short-range antipolar correlations. Its dynamics are governed by a thermally activated process, slowing down upon cooling toward a complete freezing at zero temperature.
Diamond Light Source Chilton Didcot Oxfordshire OX11 0DE UK
Institute of Physics of the Czech Academy of Sciences Na Slovance 2 Prague 182 00 Czech Republic
Zobrazit více v PubMed
Ramirez A. P., Ann. Rev. Mat. Sci. 1994, 24, 453.
Balents L., Nature 2010, 464, 199. PubMed
Harris M. J., Bramwell S., McMorrow D., Zeiske T., Godfrey K., Phys. Rev. Lett. 1997, 79, 2554.
Ramirez A. P., Hayashi A., Cava R. J., Siddharthan R., Shastry B. S., Nature 1999, 399, 333.
Kermarrec E., Kumar R., Bernard G., Hénaff R., Mendels P., Bert F., Paulose P. L., Hazra B. K., Koteswararao B., Phys. Rev. Lett. 2021, 127, 157202. PubMed
Wannier G. H., Phys. Rev. 1950, 79, 357.
Jiang Y., Emig T., Phys. Rev. Lett. 2005, 94, 110604. PubMed
Zhou Z., Liu C., Yan Z., Chen Y., Zhang X.‐F., npj Quantum Mater. 2022, 7, 60.
Arh T., Sana B., Pregelj M., Khuntia P., Jagličić Z., Le M., Biswas P., Manuel P., Mangin‐Thro L., Ozarowski A., Zorko A., Nat. Mater. 2022, 21, 416. PubMed
Gao Y., Fan Y.‐C., Li H., Yang F., Zeng X.‐T., Sheng X.‐L., Zhong R., Qi Y., Wan Y., Li W., npj Quantum Mater. 2022, 7, 89.
Chen T., Ghasemi A., Zhang J., Shi L., Tagay Z., Chen L., Choi E.‐S., Jaime M., Lee M., Hao Y., Cao H., Winn B., Zhong R., Xu X., Armitage N. P., Cava R., Broholm C., arXiv:2402.15869 2024.
Moessner R., Sondhi S. L., Chandra P., Phys. Rev. Lett. 2000, 84, 4457. PubMed
Li Y., Bachus S., Deng H., Schmidt W., Thoma H., Hutanu V., Tokiwa Y., Tsirlin A. A., Gegenwart P., Phys. Rev. X 2020, 10, 011007.
Takasaki K., Harada I., Tonegawa T., J. Phys. Soc. Jpn. 1986, 55, 4423.
Hwang C., Kim S., Kang D., Kim J. M., J. Korean Phys. Soc. 2008, 52, S203.
Wang P., Xiang H., Phys. Rev. X 2014, 4, 011035.
Courtens E., Phys. Rev. Lett. 1984, 52, 69.
Vugmeister B. E., Glinchuk M. D., Rev. Mod. Phys. 1990, 62, 993.
Höchli U., Knorr K., Loidl A., Adv. Phys. 1990, 39, 405.
Rowley S., Spalek L., Smith R., Dean M., Itoh M., Scott J., Lonzarich G., Saxena S., Nat. Phys. 2014, 10, 367.
Rowley S., Chai Y.‐S., Shen S.‐P., Sun Y., Jones A., Watts B., Scott J. F., Sci. Rep. 2016, 6, 25724. PubMed PMC
Pauling L., J. Am. Chem. Soc. 1935, 57, 2680.
Artemov V., The Electrodynamics of Water and Ice, vol. 124, Springer, New York: 2021.
Seshadri R., Solid State Sci. 2006, 8, 259.
McQueen T., West D., Muegge B., Huang Q., Noble K., Zandbergen H., Cava R., J. Phys.: Condens. Matter 2008, 20, 235210. PubMed
Coates C. S., Baise M., Schmutzler A., Simonov A., Makepeace J. W., Seel A. G., Smith R. I., Playford H. Y., Keen D. A., Siegel R., Senker J., Slater B., Goodwin A. L., Nat. Commun. 2021, 12, 2272. PubMed PMC
Hickox‐Young D., Laurita G., Meier Q. N., Olds D., Spaldin N. A., Norman M. R., Rondinelli J. M., Phys. Rev. Res. 2022, 4, 033187.
Hotta C., Phys. Rev. B 2010, 82, 241104.
Hassan N., Cunningham S., Mourigal M., Zhilyaeva E. I., Torunova S. A., Lyubovskaya R. N., Schlueter J. A., Drichko N., Science 2018, 360, 1101. PubMed
Rensen J., van Wieringen J., Sol. State Commun. 1969, 7, 1139.
Shen S.‐P., Chai Y.‐S., Cong J.‐Z., Sun P.‐J., Lu J., Yan L.‐Q., Wang S.‐G., Sun Y., Phys.Rev. B 2014, 90, 180404.
Kimura K., Ohgaki M., Tanaka K., Morikawa H., Marumo F., J. Sol. State Chem. 1990, 87, 186.
Iyi N., Takekawa S., Kimura S., J. Sol. State Chem. 1990, 85, 318.
Albanese G., Deriu A., Cabrini D., Hyperfine Interact. 1992, 70, 1087.
Cao H., Zhao Z., Lee M., Choi E., McGuire M., Sales B., Zhou H., Yan J.‐Q., Mandrus D., APL Mater. 2015, 3, 6.
Holtstam D., Hålenius U., Mineralogical Magazine 2020, 84, 376.
Zhang X., Ye Q.‐J., Xiang H., Li X.‐Z., Phys. Rev. B 2020, 101, 104102.
Shen S.‐P., Wu J.‐C., Song J.‐D., Sun X.‐F., Yang Y.‐F., Chai Y.‐S., Shang D.‐S., Wang S.‐G., Scott J. F., Sun Y., Nat. Commun. 2016, 7, 10569. PubMed PMC
Zhang J., Peng F., Su N., Zhang L., Zhang Y., Sun Y., Tang R., Chai Y., arXiv:2209.03680 2022.
Li J., Medina E. A., Stalick J. K., Sleight A. W., Subramanian M., Zeitschrift für Naturforschung B 2016, 71, 475.
Verstegen J., Stevels A., J. Luminescence 1974, 9, 406.
Stevels A., Schrama‐de Pauw A., J. Electrochem. Soc. 1976, 123, 691.
Bastien G., Courtade Q., Eliáš A., Haidamak T., Proschek P., Dušek M., Priessnitz J., Baláž P., Colman R., Phys. Rev. B 2024, 110, 094436.
Moessner R., Chalker J. T., Phys. Rev. Lett. 1998, 80, 2929.
Dvořák V., Ferroelectrics 1974, 7, 1.
Levanyuk A. P., Sannikov D. G., Soviet. Phys. Usp. 1974, 17, 199.
Kamba S., Nuzhnyy D., Savinov M., Tolédano P., Laguta V., Brázda P., Palatinus L., Kadlec F., Borodavka F., Kadlec C., Bednyakov P., Bovtun V., Kempa M., Kriegner D., Drahokoupil J., Kroupa J., Prokleška J., Chapagain K., Dabrowski B., Goian V., Phys. Rev. B 2017, 95, 174103.
Kumar J., Awasthi A., Appl. Phys. Lett. 2013, 103, 13.
Goian V., Borodavka F., Repček D., Savinov M., Míšek M., Kaštil J., Skoromets V., Ondrejkovič P., Petzelt J., Hlinka J., Kužel P., Kamba S., Phys. Rev. B 2023, 108, 224101.
Graetsch H., Gebert W., Zeitschrift für Kristallographie‐Crystalline Materials 1994, 209, 338.
Mittal R., Gupta M., Chaplot S., Prog. Mater. Sci. 2018, 92, 360.
Ramirez A., Broholm C., Cava R., Kowach G., Physica B: Cond. Matter 2000, 280, 290.
Zhao H., Pan Z., Shen X., Zhao J., Lu D., Zhang J., Hu Z., Kuo C.‐Y., Chen C.‐T., Chan T.‐S., Sahle C. J., Dong C., Nishikubo T., Koike T., Deng Z.‐Y., Hong J., Yu R., Yu P., Azuma M., Jin C., Long Y., Small 2024, 20, 2305219. PubMed
Kamba S., APL Mater. 2021, 9, 2. PubMed PMC
Petzelt J., Bovtun V., Nuzhnyy D., Kempa M., Savinov M., Paściak M., Kamba S., Canu G., Buscaglia V., Phys. Status Solidi B 2021, 258, 2100259.
Vanderschueren J., Gasiot J., Thermally stimulated relaxation in solids 2005, 135.
Jachalke S., Mehner E., Stöcker H., Hanzig J., Sonntag M., Weigel T., Leisegang T., Meyer D., Appl. Phys. Rev. 2017, 4, 2.
Dupuis V., Vincent E., Hammann J., Greedan J., Wills A., J. Appl. Phys. 2002, 91, 8384.
Mamiya H., Tsujii N., Terada N., Nimori S., Kitazawa H., Hoshikawa A., Ishigaki T., Phys. Rev. B 2014, 90, 014440.
Bradley O., Feng C., Scalettar R. T., Singh R. R. P., Phys. Rev. B 2019, 100, 064414.
Venkateshwaran B., Yao M., Guo R., Bhalla A., Balachandran U., Int. J. Inorg. Mat. 1999, 1, 213.
Ni D., Cava R. J., Prog. Solid State Chem. 2022, 66, 100346.
Elk code , http://elk.sourceforge.net/ (accessed: 2024).
Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1996, 77, 3865. PubMed
Anisimov V. I., Zaanen J., Andersen O. K., Phys. Rev. B 1991, 44, 943. PubMed
Togo A., Chaput L., Tadano T., Tanaka I., J. Phys.: Cond. Mater. 2023, 35, 353001. PubMed
Bovtun V., Veljko S., Axelsson A., Kamba S., Alford N., Petzelt J., Integrated Ferroelectrics 2008, 98, 53.
Bovtun V., Pashkov V., Kempa M., Kamba S., Eremenko A., Molchanov V., Poplavko Y., Yakymenko Y., Lee J., Schlom D., J. Appl. Phys. 2011, 109, 2.
Allan D. R., Nowell H., Barnett S. A., Warren M. R., Wilcox A., Christensen J., Saunders L. K., Peach A., Hooper M. T., Zaja L., Patel S., Cahill L., Marshall R., Trimnel S., Foster A. J., Bates T., Lay S., Williams M. A., Hathaway P. A., Winter G., Gerstel M., Wooley R. W., Crystals 2017, 7, 336.
Winter G., J. Appl. Crystallography 2010, 43, 186.
Winter G., Waterman D. G., Parkhurst J. M., Brewster A. S., Gildea R. J., Gerstel M., Fuentes‐Montero L., Vollmar M., Michels‐Clark T., Young I. D., Sauterb N. K., Evansa G., Acta Crystallographica Section D: Structural Biology 2018, 74, 85. PubMed PMC
Beilsten‐Edmands J., Winter G., Gildea R., Parkhurst J., Waterman D., Evans G., Acta Crystallographica Section D: Structural Biology 2020, 76, 385. PubMed PMC
Petříček V., Palatinus L., Plášil J., Dušek M., Zeitschrift für Kristallographie‐Crystalline Materials 2023, 0.
Palatinus L., Chapuis G., J. Appl. Cryst. 2007, 40, 786.
Momma K., Ikeda T., Belik A. A., Izumi F., Powder Diffr. 2013, 28, 184.
Momma K., Izumi F., J. Appl. Cryst. 2008, 41, 653.
Rotter M., Müller H., Gratz E., Doerr M., Loewenhaupt M., Rev. Sci. Instr. 1998, 69, 2742.
Kužel P., Němec H., Kadlec F., Kadlec C., Opt. Express 2010, 18, 15338. PubMed
Lüthi B., Physical Acoustics in the Solid State, vol. 148, Springer Science & Business Media, New York: 2007.