Nesting behaviour influences species-specific gas exchange across avian eggshells

. 2014 Sep 15 ; 217 (Pt 18) : 3326-32.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25232199

Carefully controlled gas exchange across the eggshell is essential for the development of the avian embryo. Water vapour conductance (G(H2O)) across the shell, typically measured as mass loss during incubation, has been demonstrated to optimally ensure the healthy development of the embryo while avoiding desiccation. Accordingly, eggs exposed to sub-optimal gas exchange have reduced hatching success. We tested the association between eggshell G(H2O) and putative life-history correlates of adult birds, ecological nest parameters and physical characteristics of the egg itself to investigate how variation in G(H2O) has evolved to maintain optimal water loss across a diverse set of nest environments. We measured gas exchange through eggshell fragments in 151 British breeding bird species and fitted phylogenetically controlled, general linear models to test the relationship between G(H2O) and potential predictor parameters of each species. Of our 17 life-history traits, only two were retained in the final model: wet-incubating parent and nest type. Eggs of species where the parent habitually returned to the nest with wet plumage had significantly higher G(H2O) than those of parents that returned to the nest with dry plumage. Eggs of species nesting in ground burrows, cliffs and arboreal cups had significantly higher G(H2O) than those of species nesting on the ground in open nests or cups, in tree cavities and in shallow arboreal nests. Phylogenetic signal (measured as Pagel's λ) was intermediate in magnitude, suggesting that differences observed in the G(H2O) are dependent upon a combination of shared ancestry and species-specific life history and ecological traits. Although these data are correlational by nature, they are consistent with the hypothesis that parents constrained to return to the nest with wet plumage will increase the humidity of the nest environment, and the eggs of these species have evolved a higher G(H2O) to overcome this constraint and still achieve optimal water loss during incubation. We also suggest that eggs laid in cup nests and burrows may require a higher G(H2O) to overcome the increased humidity as a result from the confined nest microclimate lacking air movements through the nest. Taken together, these comparative data imply that species-specific levels of gas exchange across avian eggshells are variable and evolve in response to ecological and physical variation resulting from parental and nesting behaviours.

Zobrazit více v PubMed

Ackerman R. A., Platter-Reiger M. (1979). Water loss by pied-billed grebe (Podilymbus podiceps). Am. Zool. 19, 921

Andersen O., Steen J. B. (1986). Water economy in bird nests. J. Comp. Physiol. B 156, 823-828

Ar A., Rahn H. (1978). Interdependence of gas exchange conductance, incubation length and weight of the avian egg. In Respiratory Function in Birds, Adult and Embryonic (ed. Piper J.), pp. 227-236 Berlin: Springer–Verlag;

Ar A., Rahn H. (1980). Water in the avian egg: overall budget of incubation. Am. Zool. 20, 373-384

Ar A., Paganelli C. V., Reeves R. B., Greene D. G., Rahn H. (1974). The avian egg: water vapour conductance, shell thickness and functional pore area. Condor 76, 153-158

Arad Z., Gavrieli-Levin I., Marder J. (1988). Adaptation of the pigeon egg to incubation in dry hot environments. Physiol. Zool. 61, 293-300

Barrott H. G. (1937). Effect of temperature, humidity, and other factors on hatch of hens' eggs and on energy metabolism of chick embryos. Technical Bulletin, Vol. 553 Washington, DC: USDA;

Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Wheeler D. L. (2007). GenBank. Nucleic Acids Res. 35, D21-D25 PubMed PMC

Board R. G. (1982). Properties of avian eggshells and their adaptive value. Biol. Rev. Camb. Philos. Soc. 57, 1-28

Booth D. T., Seymour R. S. (1987). Effect of eggshell thinning on water vapour conductance of malleefowl eggs. Condor 89, 453-459

Brulez K., Choudhary P. K., Maurer G., Portugal S. J., Boulton R. L., Webber S. L., Cassey P. (2014). A note on the repeatability of visually scoring eggshell patterns. J. Ornithol. 155, 701-706

Buhr R. J. (1995). Incubation relative humidity effects on allantoic fluid volume and hatchability. Poult. Sci. 74, 874-884 PubMed

Carey C. (1980). Physiology of the avian egg. Am. Zool. 20, 325-327

Carey C. (1994). Structural and physiological differences between montane and lowland avian eggs and embryos. J. Biosci. 19, 429-440

Carey C., Leon-Velarde F., Dunin-Borkowski O., Bucher T. L., de la Torre G., Espinoza D., Monge C. (1989). Variation in eggshell characteristics and gas exchange of montane and lowland coot eggs. J. Comp. Physiol. B 159, 389-400

Carey C., Leon-Velarde F., Monge C. (1990). Eggshell conductance and other physical characteristics of avian eggs laid in the Peruvian Andes. Condor 92, 790-793

Cassey P., Portugal S. J., Maurer G., Ewen J. G., Boulton R. L., Hauber M. E., Blackburn T. M. (2010). Variability in avian eggshell colour: a comparative study of museum eggshells. PLoS ONE 5, e12054 PubMed PMC

Cassey P., Thomas G., Portugal S. J., Maurer G., Hauber M., Grim T., Lovell G., Miksik I. (2012). Why are birds' eggs colourful? Eggshell pigments co-vary with life-history and nesting ecology among British breeding non-passerine birds. Biol. J. Linn. Soc. London 106, 657-672

Cramp S., Simmons K. E. L., Perrins C. (1977-1994). Handbook of the Birds of Europe the Middle East and North Africa – the Birds of the Western Palearctic. Oxford: Oxford University Press;

Davis T. A., Ackerman R. A. (1985). Adaptations of black tern (Chlidonias niger) eggs for water loss in a moist nest. Auk 102, 640-643

Davis T. A., Platter-Reiger M. F., Ackerman R. A. (1984). Incubation water loss by pied-billed grebe eggs: adaptation to a hot, wet nest. Physiol. Zool. 57, 384-391

Deeming D. C. (2002). Avian Incubation: Behaviour, Environment and Evolution. Oxford: Oxford University Press;

Del Hoyo J., Elliot A., Sargatal J. (1992-2010). Handbook of the Birds of the World. Barcelona, Spain: Lynx Edicions;

Drummond A. J., Rambaut A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 PubMed PMC

Drummond A. J., Ashton B., Cheung M., Heled J., Kearse M., Moir R., Stones-Havas S., Thierer T., Wilson A. (2009). Geneious v4.8. Available at: http://www.geneious.com/

Dunning J. B., Jr (2007). CRC Handbook of Avian Body Mass, 2nd edn. Boca Raton, FL: CRC Press;

DuRant S. E., Hepp G. R., Moore I. T., Hopkins B. C., Hopkins W. A. (2010). Slight differences in incubation temperature affect early growth and stress endocrinology of wood duck (Aix sponsa) ducklings. J. Exp. Biol. 213, 45-51 PubMed

Fernandez M. S., Araya M., Arias J. L. (1997). Eggshells are shaped by a precise spatio-temporal arrangement of sequentially deposited macromolecules. Matrix Biol. 16, 13-20 PubMed

Haftorn S. (1994). The act of tremble-thrusting in tit nests, performance and possible functions. Fauna Norvegica Series C Cinclus 17, 55-74

Handrich Y. (1989). Incubation water loss in King penguin eggs. II. Does the brood patch interfere with eggshell conductance? Physiol. Zool. 62, 119-132

Hauber M. E. (2014). The Book of Eggs. (ed. Bates J., Becker B.). Chicago, IL: University of Chicago Press;

Hoyt D. F., Board R. G., Rahn H., Paganelli C. V. (1979). The eggs of the Anatidae: conductance, pore structure and metabolism. Physiol. Zool. 52, 438-450

Lomholt J. P. (1976). Relationship of weight loss to ambient humidity of birds eggs during incubation. J. Comp. Physiol. 105, 189-196

Lomholt J. P. (1984). A preliminary study of local oxygen tensions inside bird eggs and gas exchange during early stages of embryonic development. In Respiration and Metabolism of Embryonic Vertebrates (ed. Seymour R. S., Junk W.), pp. 289-298 Dordrecht:

Maurer G., Russell D. G. D., Cassey P. (2010). Interpreting the lists and equations of egg dimensions in Schönwetter's ‘Handbuch der Oologie’. Auk 127, 940-947

Maurer G., Portugal S. J., Cassey P. (2011). Speckles of cryptic black-headed gull eggs show no mechanical or conductance structural function. J. Zool. 285, 194-204

Maurer G., Portugal S. J., Cassey P. (2012). A comparison of indices and measured values of eggshell thickness of different shell regions using museum eggs of 230 European bird species. Ibis 154, 714-724

Maurer G., Portugal S. J., Hauber M. E., Mikšík I., Russell D. G. D., Cassey P. (2014). First light for avian embryos: eggshell thickness and pigmentation mediate variation in development and UV exposure in wild bird eggs. Funct. Ecol. [Epub ahead of print] doi: 10.1111/1365-2435.12314

McNaught M., Owens I. P. F. (2002). Interspecific variation in plumage colour among birds: species isolation or light environment? J. Evol. Biol. 15, 505-514

Morgan S. M., Ashley-Ross M. A., Anderson D. J. (2003). Foot-mediated incubation: Nazca booby (Sula granti) feet as surrogate brood patches. Physiol. Biochem. Zool. 76, 360-366 PubMed

Orme C. D. L., Davies R. G., Burgess M., Eigenbrod F., Pickup N., Olson V., Webster A. J., Ding T. S., Rasmussen P. C., Ridgely R. S., et al. (2005). Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016-1019 PubMed

Orme C. D. L., Davies R. G., Olson V. A., Thomas G. H., Ding T. S., Rasmussen P. C., Ridgely R. S., Stattersfield A. J., Bennett P. M., Owens I. P., et al. (2006). Global patterns of geographic range size in birds. PLoS Biol. 4, e208 PubMed PMC

Paganelli C. V. (1980). The physics of gas exchange across the avian eggshell. Am. Zool. 20, 329-338

Pagel M. (1997). Inferring evolutionary processes from phylogenies. Zool. Scr. 26, 331-348

Pagel M. (1999). The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48, 612-622

Paradis E., Claude J., Strimmer K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289-290 PubMed

Pérez J. H., Ardia D. R., Chad E. K., Clotfelter E. D. (2008). Experimental heating reveals nest temperature affects nestling condition in tree swallows (Tachycineta bicolor). Biol. Lett. 4, 468-471 PubMed PMC

Portugal S. J., Maurer G., Cassey P. (2010a). Eggshell permeability: a standard technique for determining interspecific rates of water vapor conductance. Physiol. Biochem. Zool. 83, 1023-1031 PubMed

Portugal S. J., Cooper H. J., Zampronio C. G., Wallace L. L., Cassey P. (2010b). Can museum egg specimens be used for proteomic analyses? Proteome Sci. 8, 40 PubMed PMC

Portugal S. J., Hauber M. E., Maurer G., Stokke B. G., Grim T., Cassey P. (2014). Rapid development of brood-parasitic cuckoo embryos cannot be explained by increased gas exchange through the eggshell. J. Zool. (Lond.) 293, 219-226

Rahn H., Hammel H. T. (1982). Incubation water loss, shell conductance, and pore dimensions in Adelie penguin eggs. Polar Biol. 1, 91-97

Rahn H., Paganelli C. V. (1990). Gas fluxes in avian eggs: driving forces and the pathway for exchange. Comp. Biochem. Physiol. 95A, 1-15

Rahn H., Carey C., Balmas K., Bhatia B., Paganelli C. (1977). Reduction of pore area of the avian eggshell as an adaptation to altitude. Proc. Natl. Acad. Sci. USA 74, 3095-3098 PubMed PMC

Rambaut A. (2002). Se-AI: Sequence alignment editor program, Version 2.0a11. Available at http://tree.bio.ed.ac.uk/software/seal/

Ricklefs R. E. (1969). An analysis of nesting mortality in birds. Smithson. Contrib. Zool. 9, 1-48

Romijn C., Roos J. (1938). The air space of the hen's egg and its changes during the period of incubation. J. Physiol. 94, 365-379 PubMed PMC

Russell D. G. D., White J., Maurer G., Cassey P. (2010). Data-poor egg collections: tapping an important research resource. J. Afrotropical Zool. 6, 77-82

Shackleton M., Shipman R., Ebner M. (2000). An investigation of redundant genotype-phenotype mappings and their role in evolutionary search. In Proceedings of the 2000 Congress on Evolutionary Computation, Vol. 1, pp. 493-500 Piscataway, NJ: IEEE Press;

Sibley C. G., Monroe B. L. (1990). Distribution and Taxonomy of Birds of the World. New Haven, CT: Yale University Press;

Skutch A. F. (1976). Parent Birds and Their Young. Austin, TX: University of Texas;

Sotherland P. R., Packard G. C., Taigen T. L., Boardman T. J. (1980). An altitudinal cline in conductance of cliff swallow (Petrochelidon pyrrhonota) eggs to water vapour. Auk 97, 177-185

Sotherland D. P., Ashen R. M., Shuman D., Tracy C. R. (1984). The water balance of bird eggs incubated in water. Physiol. Zool. 57, 338-348

Thomas G. H. (2008). Phylogenetic distributions of British birds of conservation concern. Proc. Biol. Sci. 275, 2077-2083 PubMed PMC

Thomas G. H., Freckleton R. P., Székely T. (2006). Comparative analyses of the influence of developmental mode on phenotypic diversification rates in shorebirds. Proc. Biol. Sci. 273, 1619-1624 PubMed PMC

Visschedijk A. H. J. (1980). Effects of barometric pressure and abnormal gas mixtures on gaseous exchange by the avian embryo. Am. Zool. 20, 469-476

Vleck C. M. (1981). Hummingbird incubation: female attentiveness and egg temperature. Oecologia 51, 199-205 PubMed

Vleck C. M., Vleck D., Rahn H., Paganelli C. V. (1983). Nest microclimate, water-vapour conductance, and water loss in heron and tern eggs. Auk 100, 76-83

Walsberg G. E., Schmidt C. A. (1992). Effects of variable humidity on embryonic development and hatching success of mourning doves. Auk 109, 309-314

Yildirim I., Yetisir R. (2004). Effects of different hatcher temperatures on hatching traits of broiler embryos during the last five days of incubation. S. Afr. J. Anim. Sci. 34, 211-216

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...