Reduced gamma oscillations in a mouse model of intellectual disability: a role for impaired repetitive neurotransmission?

. 2014 ; 9 (5) : e95871. [epub] 20140506

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24800744

Grantová podpora
Wellcome Trust - United Kingdom
074771/Z/04/Z Wellcome Trust - United Kingdom

Intellectual disability affects 2-3% of the population; mutations of the X-chromosome are a major cause of moderate to severe cases. The link between the molecular consequences of the mutation and impaired cognitive function remains unclear. Loss of function mutations of oligophrenin-1 (OPHN1) disrupt Rho-GTPase signalling. Here we demonstrate abnormal neurotransmission at CA3 synapses in hippocampal slices from Ophn1-/y mice, resulting from a substantial decrease in the readily releasable pool of vesicles. As a result, synaptic transmission fails at high frequencies required for oscillations associated with cognitive functions. Both spontaneous and KA-induced gamma oscillations were reduced in Ophn1-/y hippocampal slices. Spontaneous oscillations were rapidly rescued by inhibition of the downstream signalling pathway of oligophrenin-1. These findings suggest that the intellectual disability due to mutations of oligophrenin-1 results from a synaptopathy and consequent network malfunction, providing a plausible mechanism for the learning disabilities. Furthermore, they raise the prospect of drug treatments for affected individuals.

Zobrazit více v PubMed

Chelly J, Khelfaoui M, Francis F, Cherif B, Bienvenu T (2006) Genetics and pathophysiology of mental retardation. Eur J HumGenet 14: 701–713. PubMed

Bianchi V, Farisello P, Baldelli P, Meskenaite V, Milanese M, et al. (2009) Cognitive impairment in Gdi1 deficient mice is associated with altered synaptic vesicle pools and short-term synaptic plasticity, and can be corrected by appropriate learning training. Human Molecular Genetics 18: 105–117. PubMed PMC

Monteggia LM, Kavalali ET (2009) Rett Syndrome and the Impact of MeCP2 Associated Transcriptional Mechanisms on Neurotransmission. Biological Psychiatry 65: 204–210. PubMed PMC

Powell AD, Gill KK, Saintot PP, Jiruska P, Chelly J, et al. (2012) Rapid reversal of impaired inhibitory and excitatory transmission but not spine dysgenesis in a mouse model of mental retardation. Journal of Physiology 590: 763–776. PubMed PMC

Herrmann CS, Munk MH, Engel AK (2004) Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci 8: 347–355. PubMed

Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Reviews Neuroscience 8: 45–56. PubMed

Rosenzweig ES, Rao G, McNaughton BL, Barnes CA (1997) Role of temporal summation in age-related long-term potentiation-induction deficits. Hippocampus 7: 549–558. PubMed

Traub RD, Spruston N, Soltesz I, Konnerth A, Whittington MA, et al. (1998) Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity. Prog Neurobiol 55: 563–575. PubMed

Buzsaki G, Buhl DL, Harris KD, Csicsvari J, Czeh B, et al. (2003) Hippocampal network patterns of activity in the mouse. Neuroscience 116: 201–211. PubMed

Csicsvari J, Jamieson B, Wise KD, Buzsaki G (2003) Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37: 311–322. PubMed

Fuchs EC, Zivkovic AR, Cunningham MO, Middleton S, LeBeau FE, et al. (2007) Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53: 591–604. PubMed

Ma J, Leung LS (2000) Relation between hippocampal gamma waves and behavioral disturbances induced by phencyclidine and methamphetamine. Behav Brain Res 111: 1–11. PubMed

Grice SJ, Spratling MW, Karmiloff-Smith A, Halit H, Csibra G, et al. (2001) Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. Neuroreport 12: 2697–2700. PubMed

Hanson JE, Weber M, Meilandt WJ, Wu T, Luu T, et al. (2013) GluN2B Antagonism Affects Interneurons and Leads to Immediate and Persistent Changes in Synaptic Plasticity, Oscillations, and Behavior. Neuropsychopharmacology 38: 1221–1233. PubMed PMC

Hajos N, Katona I, Naiem SS, Mackie K, Ledent C, et al. (2000) Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur J Neurosci 12: 3239–3249. PubMed

Pietersen AN, Patel N, Jefferys JGR, Vreugdenhil M (2009) Comparison between spontaneous and kainate-induced gamma oscillations in the mouse hippocampus in vitro. Eur J Neurosci. PubMed

Trevino M, Vivar C, Gutierrez R (2007) Beta/gamma oscillatory activity in the CA3 hippocampal area is depressed by aberrant GABAergic transmission from the dentate gyrus after seizures. Journal of Neuroscience 27: 251–259. PubMed PMC

Andersson R, Johnston A, Fisahn A (2012) Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons. PLoS One 7: e40906. PubMed PMC

Billuart P, Bienvenu T, Ronce N, des Portes V, Vinet MC, et al. (1998) Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature 392: 923–926. PubMed

Khelfaoui M, Denis C, van Galen E, de Bock F, Schmitt A, et al. (2007) Loss of X-Linked Mental Retardation Gene Oligophrenin1 in Mice Impairs Spatial Memory and Leads to Ventricular Enlargement and Dendritic Spine Immaturity. Journal of Neuroscience 27: 9439–9450. PubMed PMC

Fauchereau F, Herbrand U, Chafey P, Eberth A, Koulakoff A, et al. (2003) The RhoGAP activity of OPHN1, a new F-actin-binding protein, is negatively controlled by its amino-terminal domain. Mol Cell Neurosci 23: 574–586. PubMed

Khelfaoui M, Alice P, Powell AD, Valnegri P, Cheong KW, et al. (2009) Inhibition of RhoA pathway rescues the endocytosis defects in Oligophrenin1 mouse model of mental retardation. Human Molecular Genetics 18: 2575–83. PubMed PMC

Nakano-Kobayashi A, Kasri NN, Newey SE, Van Aelst L (2009) The Rho-Linked Mental Retardation Protein OPHN1 Controls Synaptic Vesicle Endocytosis via Endophilin A1. Curr Biol 19: 1133–1139. PubMed PMC

Schneggenburger R, Meyer AC, Neher E (1999) Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron 23: 399–409. PubMed

Vreugdenhil M, Jefferys JGR, Celio MR, Schwaller B (2003) Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. Journal of Neurophysiology 89: 1414–1422. PubMed

Govek EE, Newey SE, Akerman CJ, Cross JR, Van der Veken L, et al. (2004) The X-linked mental retardation protein oligophrenin-1 is required for dendritic spine morphogenesis. Nat Neurosci 7: 364–372. PubMed

Di PG, Sankaranarayanan S, Wenk MR, Daniell L, Perucco E, et al. (2002) Decreased synaptic vesicle recycling efficiency and cognitive deficits in amphiphysin 1 knockout mice. Neuron 33: 789–804. PubMed

Nadif Kasri N, Nakano-Kobayashi A, Malinow R, Li B, Van Aelst L (2009) The Rho-linked mental retardation protein oligophrenin-1 controls synapse maturation and plasticity by stabilizing AMPA receptors. Genes Dev 23: 1289–1302. PubMed PMC

Koenig T, Prichep L, Dierks T, Hubl D, Wahlund LO, et al. (2005) Decreased EEG synchronization in Alzheimer's disease and mild cognitive impairment. NeurobiolAging 26: 165–171. PubMed

Vreugdenhil M, Toescu EC (2005) Age-dependent reduction of gamma oscillations in the mouse hippocampus in vitro. Neuroscience 132: 1151–1157. PubMed

Basar-Eroglu C, Brand A, Hildebrandt H, Karolina KK, Mathes B, et al. (2007) Working memory related gamma oscillations in schizophrenia patients. Int J Psychophysiol 64: 39–45. PubMed

Posey HT (1951) The electroencephalogram in mental deficiency. Am J Ment Defic 55: 515–520. PubMed

Gloveli T, Dugladze T, Saha S, Monyer H, Heinemann U, et al. (2005) Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. J Physiol 562: 131–147. PubMed PMC

Hajos N, Palhalmi J, Mann EO, Nemeth B, Paulsen O, et al. (2004) Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J Neurosci 24: 9127–9137. PubMed PMC

Gelsomino G, Menna E, Antonucci F, Rodighiero S, Riganti L, et al. (2013) Kainate Induces Mobilization of Synaptic Vesicles at the Growth Cone through the Activation of Protein Kinase A. Cerebral Cortex 23: 531–541. PubMed

Mathew SS, Pozzo-Miller L, Hablitz JJ (2008) Kainate Modulates Presynaptic GABA Release from Two Vesicle Pools. Journal of Neuroscience 28: 725–731. PubMed PMC

Hagerman RJ, Berry-Kravis E, Kaufmann WE, Ono MY, Tartaglia N, et al. (2009) Advances in the treatment of fragile X syndrome. Pediatrics 123: 378–390. PubMed PMC

Khelfaoui M, Gambino F, Houbaert X, Ragazzon B, Müller C, et al... (2014) Lack of the presynaptic RhoGAP protein oligophrenin1 leads to cognitive disabilities through dysregulation of the cAMP/PKA signalling pathway. Philosophical Transactions of the Royal Society B: Biological Sciences 369. PubMed PMC

Fisahn A, Contractor A, Traub RD, Buhl EH, Heinemann SF, et al. (2004) Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. J Neurosci 24: 9658–9668. PubMed PMC

Pálhalmi J, Paulsen O, Freund TF, Hájos N (2004) Distinct properties of carbachol- and DHPG-induced network oscillations in hippocampal slices. Neuropharmacology 47: 381–389. PubMed

Brown JT, Teriakidis A, Randall AD (2006) A pharmacological investigation of the role of GLUK5-containing receptors in kainate-driven hippocampal gamma band oscillations. Neuropharmacology 50: 47–56. PubMed

Middleton S, Jalics J, Kispersky T, LeBeau FEN, Roopun AK, et al. (2008) NMDA receptor-dependent switching between different gamma rhythm-generating microcircuits in entorhinal cortex. Proceedings of the National Academy of Sciences 105: 18572–18577. PubMed PMC

Fukuda T, Kosaka T (2000) Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus. J Neurosci 20: 1519–1528. PubMed PMC

McNally JM, McCarley RW, McKenna JT, Yanagawa Y, Brown RE (2011) Complex receptor mediation of acute ketamine application on in vitro gamma oscillations in mouse prefrontal cortex: modeling gamma band oscillation abnormalities in schizophrenia. Neuroscience 199: 51–63. PubMed PMC

Traub RD, Pais I, Bibbig A, LeBeau FE, Buhl EH, et al. (2003) Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations. Proc Natl Acad Sci USA 100: 1370–1374. PubMed PMC

Zlomuzica A, Reichinnek S, Maxeiner S, Both M, May E, et al. (2010) Deletion of connexin45 in mouse neurons disrupts one-trial object recognition and alters kainate-induced γ-oscillations in the hippocampus. Physiology & Behavior 101: 245–253. PubMed

Anderson SC, Stone C, Tkach L, SundarRaj N (2002) Rho and Rho-kinase (ROCK) signaling in adherens and gap junction assembly in corneal epithelium. Invest Ophthalmol Vis Sci 43: 978–986. PubMed

Dulong C, Fang YJ, Gest C, Zhou MH, Patte-Mensah C, et al. (2014) The small GTPase RhoA regulates the expression and function of the sodium channel Nav1.5 in breast cancer cells. Int J Oncol 44: 539–547. PubMed

Saponara S, Fusi F, Sgaragli G, Cavalli M, Hopkins B, et al. (2012) Effects of commonly used protein kinase inhibitors on vascular contraction and L-type Ca2+ current. Biochemical Pharmacology 84: 1055–1061. PubMed

Huentelman MJ, Stephan DA, Talboom J, Corneveaux JJ, Reiman DM, et al. (2009) Peripheral delivery of a ROCK inhibitor improves learning and working memory. Behav Neurosci 123: 218–223. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...