Cytokinins and Expression of SWEET, SUT, CWINV and AAP Genes Increase as Pea Seeds Germinate
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27916945
PubMed Central
PMC5187813
DOI
10.3390/ijms17122013
PII: ijms17122013
Knihovny.cz E-zdroje
- Klíčová slova
- Pisum sativum, cytokinin, germination,
- MeSH
- buněčná stěna enzymologie MeSH
- cytokininy biosyntéza genetika MeSH
- hrách setý genetika růst a vývoj MeSH
- invertasa biosyntéza genetika MeSH
- klíčení genetika MeSH
- proteiny přenášející monosacharidy biosyntéza genetika MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin genetika MeSH
- semena rostlinná genetika růst a vývoj MeSH
- semenáček genetika MeSH
- tandemová hmotnostní spektrometrie MeSH
- transportní systémy aminokyselin biosyntéza genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokininy MeSH
- invertasa MeSH
- proteiny přenášející monosacharidy MeSH
- regulátory růstu rostlin MeSH
- transportní systémy aminokyselin MeSH
Transporter genes and cytokinins are key targets for crop improvement. These genes are active during the development of the seed and its establishment as a strong sink. However, during germination, the seed transitions to being a source for the developing root and shoot. To determine if the sucrose transporter (SUT), amino acid permease (AAP), Sugar Will Eventually be Exported Transporter (SWEET), cell wall invertase (CWINV), cytokinin biosynthesis (IPT), activation (LOG) and degradation (CKX) gene family members are involved in both the sink and source activities of seeds, we used RT-qPCR to determine the expression of multiple gene family members, and LC-MS/MS to ascertain endogenous cytokinin levels in germinating Pisum sativum L. We show that genes that are actively expressed when the seed is a strong sink during its development, are also expressed when the seed is in the reverse role of being an active source during germination and early seedling growth. Cytokinins were detected in the imbibing seeds and were actively biosynthesised during germination. We conclude that, when the above gene family members are targeted for seed yield improvement, a downstream effect on subsequent seed germination or seedling vigour must be taken into consideration.
Zobrazit více v PubMed
Yu S.-M., Lo S.-F., Ho T.-H.D. Source-sink communication: Regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci. 2015;20:844–857. doi: 10.1016/j.tplants.2015.10.009. PubMed DOI
Roche J., Love J., Guo Q., Song J., Cao M., Fraser K., Huege J., Jones C., Novák O., Turnbull M.H., et al. Metabolic changes and associated cytokinin signals in response to nitrate assimilation in roots and shoots of Lolium perenne. Physiol. Plant. 2016;156:497–511. doi: 10.1111/ppl.12412. PubMed DOI
Wang L., Ruan Y.-L. Shoot–root carbon allocation, sugar signaling and their coupling with nitrogen uptake and assimilation. Funct. Plant Biol. 2016;43:105–113. doi: 10.1071/FP15249. PubMed DOI
Braun D.M., Wang L., Ruan Y.-L. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J. Exp. Bot. 2014;65:1713–1735. doi: 10.1093/jxb/ert416. PubMed DOI
Ruan Y.-L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 2014;65:33–67. doi: 10.1146/annurev-arplant-050213-040251. PubMed DOI
Tegeder M. Transporters for amino acids in plant cells: Some functions and many unknowns. Curr. Opin. Plant Biol. 2012;15:315–321. doi: 10.1016/j.pbi.2012.02.001. PubMed DOI
Santiago J.P., Tegeder M. Connecting source with sink: The role of Arabidopsis AAP8 in phloem loading of amino acids. Plant Physiol. 2016;171:508–521. doi: 10.1104/pp.16.00244. PubMed DOI PMC
Patrick J.W., Offler C.E. Compartmentation of transport and transfer events in developing seeds. J. Exp. Bot. 2001;52:551–564. doi: 10.1093/jexbot/52.356.551. PubMed DOI
Rosche E., Blackmore D., Tegeder M., Richardson T., Schroeder H., Higgins T.J.V., Frommer W.B., Offler C.E., Patrick J.W. Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing cotyledons. Plant J. 2002;30:165–175. doi: 10.1046/j.1365-313X.2002.01282.x. PubMed DOI
Tegeder M. Transporters involved in source to sink partitioning of amino acids and ureides: Opportunities for crop improvement. J. Exp. Bot. 2014;65:1865–1878. doi: 10.1093/jxb/eru012. PubMed DOI
Zhang L., Garneau M.G., Majumdar R., Grant J., Tegeder M. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids. Plant J. 2015;81:134–146. doi: 10.1111/tpj.12716. PubMed DOI
Eom J.S., Chen L.-Q., Sosso D., Benjamin T.J., Lin I.W., Qu X.-Q., Braun D.M., Frommer W.B. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr. Opin. Plant Biol. 2015;25:53–62. doi: 10.1016/j.pbi.2015.04.005. PubMed DOI
Tegeder M., Ward J.M. Molecular evolution of plant AAP and LHT amino acid transporters. Front. Plant Sci. 2012;3:21. doi: 10.3389/fpls.2012.00021. PubMed DOI PMC
Beevers L., Guernsey F.S. Changes in some nitrogenous components during the germination of pea seeds. Plant Physiol. 1966;41:1455–1458. doi: 10.1104/pp.41.9.1455. PubMed DOI PMC
Hildebrandt T.M., Nesi A.N., Araújo W.L., Braun H.-P. Amino acid catabolism in plants. Mol. Plant. 2015;8:1563–1579. doi: 10.1016/j.molp.2015.09.005. PubMed DOI
Taylor M.R., Reinders A., Ward J.M. Transport function of rice amino acid permeases (AAPs) Plant Cell Physiol. 2015;56:1355–1363. doi: 10.1093/pcp/pcv053. PubMed DOI
Dhandapani P., Song J., Novak O., Jameson P.E. Infection by Rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen. Ann. Bot. 2016 doi: 10.1093/aob/mcw202. PubMed DOI PMC
Peng D., Gu X., Xue L.-J., Leebens-Mack J.H., Tsai C.-J. Bayesian phylogeny of sucrose transporters: Ancient origins, differential expansion and convergent evolution in monocots and dicots. Front. Plant Sci. 2014;5:615. doi: 10.3389/fpls.2014.00615. PubMed DOI PMC
Zhou Y., Qu H., Dibley K.E., Offler C.E. A suite of sucrose transporters expressed in coats of developing legume seeds includes novel pH-independent facilitators. Plant J. 2007;49:750–764. doi: 10.1111/j.1365-313X.2006.03000.x. PubMed DOI
Reinders A., Sivitz A.B., Ward J.M. Evolution of plant sucrose uptake transporters. Front. Plant Sci. 2012;3:22. doi: 10.3389/fpls.2012.00022. PubMed DOI PMC
Scofield G.N., Aoki N., Hirose T., Takano M., Jenkins C.L., Furbank R.T. The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. J. Exp. Bot. 2007;58:483–495. doi: 10.1093/jxb/erl217. PubMed DOI
Chung P., Hsiao H.-H., Chen H.-J., Chang C.-W., Wang S.-J. Influence of temperature on the expression of the rice sucrose transporter 4 gene, OsSUT4, in germinating embryos and maturing pollen. Acta Physiol. Plant. 2014;36:217–229. doi: 10.1007/s11738-013-1403-x. DOI
Slewinski T.L., Meeley R., Braun D.M. Sucrose transporter 1 functions in phloem loading in maize leaves. J. Exp. Bot. 2009;60:881–892. doi: 10.1093/jxb/ern335. PubMed DOI PMC
Bick J.A., Neelam A., Smith E., Nelson S.J., Hall J.L., Williams L.E. Expression analysis of a sucrose carrier in the germinating seedling of Ricinus communis. Plant Mol. Biol. 1998;38:425–435. doi: 10.1023/A:1006040306581. PubMed DOI
Tegeder M., Wang X.D., Frommer W.B., Offler C.E., Patrick J.W. Sucrose transport into developing seeds of Pisum sativum L. Plant J. 1999;18:151–161. doi: 10.1046/j.1365-313X.1999.00439.x. PubMed DOI
Weber H., Borisjuk L., Wobus U. Sugar import and metabolism during seed development. Trends Plant Sci. 1997;2:169–174. doi: 10.1016/S1360-1385(97)85222-3. DOI
Chen L.-Q., Qu X.Q., Hou B.H., Sosso D., Osorio S., Fernie A.R., Frommer W.B. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science. 2012;335:207–211. doi: 10.1126/science.1213351. PubMed DOI
Chen H.-Y., Huh J.-H., Yu Y.-C., Ho L.-H., Chen L.-Q., Tholl D., Frommer W.B., Guo W.-J. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. Plant J. 2015;83:1046–1058. doi: 10.1111/tpj.12948. PubMed DOI
Chandran D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB Life. 2015;67:461–471. doi: 10.1002/iub.1394. PubMed DOI
Patil G., Valliyodan B., Deshmukh R., Prince S., Nicander B., Zhao M., Sonah H., Song L., Lin L., Chaudhary J., et al. Soybean (Glycine max) SWEET gene family: Insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genom. 2015;16:520. doi: 10.1186/s12864-015-1730-y. PubMed DOI PMC
Klemens P.A.W., Patzke K., Deitmer J., Spinner L., Le Hir R., Bellini C., Bedu M., Chardon F., Krapp A., Neuhaus H.E. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth and stress tolerance in Arabidopsis. Plant Physiol. 2013;163:1338–1352. doi: 10.1104/pp.113.224972. PubMed DOI PMC
Liu X., Zhang Y., Yang C., Tian Z., Li J. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development. Sci. Rep. 2016;6 doi: 10.1038/srep24563. PubMed DOI PMC
Ruan Y.-L., Jin Y., Yang Y.-J., Li G.-J., Boyer J.S. Sugar input, metabolism, and signaling mediated by invertase: Roles in development, yield potential, and response to drought and heat. Mol. Plant. 2010;3:942–955. doi: 10.1093/mp/ssq044. PubMed DOI
Roitsch T., Gonzalez M.C. Function and regulation of plant invertases: sweet sensations. Trends Plant Sci. 2004;9:606–613. doi: 10.1016/j.tplants.2004.10.009. PubMed DOI
Balibrea Lara M.E., Gonzalez Garcia M.-C., Fatima T., Ehneß R., Lee T.K., Proels R., Tanner W., Roitsch T. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell. 2004;16:1276–1287. doi: 10.1105/tpc.018929. PubMed DOI PMC
Hwang I., Sheen J., Muller B. Cytokinin signaling networks. Annu. Rev. Plant Biol. 2012;63:353–380. doi: 10.1146/annurev-arplant-042811-105503. PubMed DOI
Cheng W.H., Taliercio E.W., Chourey P.S. The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell. 1996;8:971–983. doi: 10.1105/tpc.8.6.971. PubMed DOI PMC
Ehneß R., Roitsch T. Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in Chenopodium rubrum by cytokinins. Plant J. 1997;11:539–548. doi: 10.1046/j.1365-313X.1997.11030539.x. PubMed DOI
Rijavec T., Kovač M., Kladnik A., Chourey P.S., Dermastia M. A comparative study on the role of cytokinins in caryopsis development in the maize miniature1 seed mutant and its wild type. J. Integr. Plant Biol. 2009;51:840–849. doi: 10.1111/j.1744-7909.2009.00863.x. PubMed DOI
Song J., Jiang L., Jameson P.E. Expression patterns of Brassica napus genes implicate IPT, CKX, sucrose transporter, cell wall invertase and amino acid permease gene family members in leaf, flower, silique and seed development. J. Exp. Bot. 2015;66:5067–5082. doi: 10.1093/jxb/erv133. PubMed DOI PMC
Jameson P.E., Song J. Cytokinin: A key driver of seed yield. J. Exp. Bot. 2016;67:593–606. doi: 10.1093/jxb/erv461. PubMed DOI
Kuroha T., Tokunaga H., Kojima M., Ishida T., Nagawa S., Fukuda H., Sugimoto K., Sakakibara H. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct action pathway in Arabidopsis. Plant Cell. 2009;21:3152–3169. doi: 10.1105/tpc.109.068676. PubMed DOI PMC
Lomin S.N., Krivosheev D.M., Steklov M.Y., Arkhipov D.V., Osolodkin D.I., Schmülling T., Romanov G.A. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J. Exp. Bot. 2015;66:1851–1863. doi: 10.1093/jxb/eru522. PubMed DOI PMC
Spichal L. Cytokinins—Recent news and views of evolutionally old molecules. Funct. Plant Biol. 2012;39:267–284. doi: 10.1071/FP11276. PubMed DOI
Jameson P.E. Cytokinins. In: Thomas B., Murray B.G., Murphy D.J., editors. Encyclopedia of Applied Plant Sciences. Volume 1. Academic Press; Waltham, MA, USA: 2017. pp. 391–402.
Nandi S.K., Palni L.M.S., Letham D.S., Knypl J.S. The biosynthesis of cytokinins in germinating lupin seeds. J. Exp. Bot. 1988;39:1649–1665. doi: 10.1093/jxb/39.12.1649. DOI
Nandi S.K., Palni L.M.S. Transport and metabolism of dihydrozeatin riboside in germinating lupin seeds. J. Exp. Bot. 1989;40:615–629. doi: 10.1093/jxb/40.5.615. DOI
Hocart C.H., Letham D.S. Biosynthesis of cytokinin in germinating seeds of Zea mays. J. Exp. Bot. 1990;41:1525–1528. doi: 10.1093/jxb/41.12.1525. DOI
Nandi S.K., Palni L.M.S., de Klerk G.J.M. The influence of the embryonic axis and cytokinins on reserve mobilization in germinating lupin seeds. J. Exp. Bot. 1995;46:329–336. doi: 10.1093/jxb/46.3.329. DOI
Villalobos N., Martin L. Involvement of cytokinins in the germination of chick-pea seeds. Plant Growth Regul. 1992;11:277–291. doi: 10.1007/BF00024567. DOI
Munoz J.L., Martin L., Nicolas G., Villalobos N. Influence of endogenous cytokinin on reserve mobilization in cotyledons of Cicer arietinum L. Plant Physiol. 1990;93:1011–1016. doi: 10.1104/pp.93.3.1011. PubMed DOI PMC
Green T.R., Baisted D.J. Development of the activities of enzymes of the isoprenoid pathway during early stages of pea-seed germination. Biochem. J. 1972;130:983–995. doi: 10.1042/bj1300983. PubMed DOI PMC
Yadav U.P., Ayre B.G., Bush D.R. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: Assessing the potential to improve crop yields and nutritional quality. Front. Plant Sci. 2015;6:275. doi: 10.3389/fpls.2015.00275. PubMed DOI PMC
Petruzzelli L., Kunz C., Waldvogel R., Meins F., Leubner-Metzger G. Distinct ethylene- and tissue-specific regulation of β-1,3-glucanases and chitinases during pea seed germination. Planta. 1999;209:195–201. doi: 10.1007/s004250050622. PubMed DOI
Nawa Y., Asahi T. Relationship between the water content of pea cotyledons and mitochondrial development during the early stage of germination. Plant Cell Physiol. 1973;14:607–610.
Barba-Espín G., Diaz-Vivancos P., Job D., Belghazi M., Job C., Hernández A. Understanding the role of H2O2 during pea seed germination: A combined proteomic and hormone profiling approach. Plant Cell Environ. 2011;34:1907–1919. doi: 10.1111/j.1365-3040.2011.02386.x. PubMed DOI
Bewley J.D. Seed germination and dormancy. Plant Cell. 1997;9:1055–1066. doi: 10.1105/tpc.9.7.1055. PubMed DOI PMC
Weitbrecht K., Müller K., Leubner-Metzger G. First off the mark: Early seed germination. J. Exp. Bot. 2011;62:3289–3309. doi: 10.1093/jxb/err030. PubMed DOI
Hirose N., Takei K., Huroha T., Kamada-Nobusada T., Hayashi H., Sakakibara H. Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot. 2008;59:75–83. doi: 10.1093/jxb/erm157. PubMed DOI
Stirk W.A., Gold J.D., Novák O., Strnad M., van Staden J. Changes in endogenous cytokinins during germination and seedling establishment of Tagetes minuta L. Plant Growth Regul. 2005;47:1–7. doi: 10.1007/s10725-005-1767-z. DOI
Werner T., Holst K., Pörs Y., Guivarc'h A., Mustroph A., Chriqui D., Grimm B., Schmülling T. Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. J. Exp. Bot. 2008;59:2659–2672. doi: 10.1093/jxb/ern134. PubMed DOI PMC
Ashikari M., Sakakibara H., Lin S.Y., Yamamoto T., Takashi T., Nishimura A., Angeles E.R., Qian Q., Kitano H., Matsuoka M. Cytokinin oxidase regulates rice grain production. Science. 2005;309:741–745. doi: 10.1126/science.1113373. PubMed DOI
Zalewski W., Gasparis S., Boczkowska M., Rajchel I., Orczyk W., Nadolska-Orczyk A. Expression patterns of HvCKX genes indicate their role in growth and reproductive development of barley. PLoS ONE. 2014 doi: 10.1371/journal.pone.0115729. PubMed DOI PMC
Sanders A., Collier R., Trethewy A., Gould G., Sieker R., Tegeder M. AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J. 2009;59:540–552. doi: 10.1111/j.1365-313X.2009.03890.x. PubMed DOI
Schmidt R., Stransky H., Koch W. The amino acid permease AAP8 is important for early seed development in Arabidopsis. Planta. 2007;226:805–813. doi: 10.1007/s00425-007-0527-x. PubMed DOI
Klambt D., Thies G., Skoog F. Isolation of cytokinins from Corynebacterium. fascians. Proc. Natl. Acad. Sci. USA. 1966;56:52–59. doi: 10.1073/pnas.56.1.52. PubMed DOI PMC
Lawson E., Gantotti B., Starr M. A 78-megadalton plasmid occurs in avirulent strains as well as virulent strains of Corynebacterium fascians. Curr. Microbiol. 1982;7:327–332. doi: 10.1007/BF01572598. DOI
Song J., Jiang L., Jameson P.E. Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat. BMC Plant Biol. 2012;12:78. doi: 10.1186/1471-2229-12-78. PubMed DOI PMC
Antoniadi I., Plačková L., Simonovik B., Doležal K., Turnbull C., Ljung K., Novák O. Cell-type specific cytokinin distribution within the Arabidopsis primary root apex. Plant Cell. 2015;27:1955–1967. doi: 10.1105/tpc.15.00176. PubMed DOI PMC