Cytokinins and Expression of SWEET, SUT, CWINV and AAP Genes Increase as Pea Seeds Germinate

. 2016 Dec 01 ; 17 (12) : . [epub] 20161201

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27916945

Transporter genes and cytokinins are key targets for crop improvement. These genes are active during the development of the seed and its establishment as a strong sink. However, during germination, the seed transitions to being a source for the developing root and shoot. To determine if the sucrose transporter (SUT), amino acid permease (AAP), Sugar Will Eventually be Exported Transporter (SWEET), cell wall invertase (CWINV), cytokinin biosynthesis (IPT), activation (LOG) and degradation (CKX) gene family members are involved in both the sink and source activities of seeds, we used RT-qPCR to determine the expression of multiple gene family members, and LC-MS/MS to ascertain endogenous cytokinin levels in germinating Pisum sativum L. We show that genes that are actively expressed when the seed is a strong sink during its development, are also expressed when the seed is in the reverse role of being an active source during germination and early seedling growth. Cytokinins were detected in the imbibing seeds and were actively biosynthesised during germination. We conclude that, when the above gene family members are targeted for seed yield improvement, a downstream effect on subsequent seed germination or seedling vigour must be taken into consideration.

Zobrazit více v PubMed

Yu S.-M., Lo S.-F., Ho T.-H.D. Source-sink communication: Regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci. 2015;20:844–857. doi: 10.1016/j.tplants.2015.10.009. PubMed DOI

Roche J., Love J., Guo Q., Song J., Cao M., Fraser K., Huege J., Jones C., Novák O., Turnbull M.H., et al. Metabolic changes and associated cytokinin signals in response to nitrate assimilation in roots and shoots of Lolium perenne. Physiol. Plant. 2016;156:497–511. doi: 10.1111/ppl.12412. PubMed DOI

Wang L., Ruan Y.-L. Shoot–root carbon allocation, sugar signaling and their coupling with nitrogen uptake and assimilation. Funct. Plant Biol. 2016;43:105–113. doi: 10.1071/FP15249. PubMed DOI

Braun D.M., Wang L., Ruan Y.-L. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J. Exp. Bot. 2014;65:1713–1735. doi: 10.1093/jxb/ert416. PubMed DOI

Ruan Y.-L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 2014;65:33–67. doi: 10.1146/annurev-arplant-050213-040251. PubMed DOI

Tegeder M. Transporters for amino acids in plant cells: Some functions and many unknowns. Curr. Opin. Plant Biol. 2012;15:315–321. doi: 10.1016/j.pbi.2012.02.001. PubMed DOI

Santiago J.P., Tegeder M. Connecting source with sink: The role of Arabidopsis AAP8 in phloem loading of amino acids. Plant Physiol. 2016;171:508–521. doi: 10.1104/pp.16.00244. PubMed DOI PMC

Patrick J.W., Offler C.E. Compartmentation of transport and transfer events in developing seeds. J. Exp. Bot. 2001;52:551–564. doi: 10.1093/jexbot/52.356.551. PubMed DOI

Rosche E., Blackmore D., Tegeder M., Richardson T., Schroeder H., Higgins T.J.V., Frommer W.B., Offler C.E., Patrick J.W. Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing cotyledons. Plant J. 2002;30:165–175. doi: 10.1046/j.1365-313X.2002.01282.x. PubMed DOI

Tegeder M. Transporters involved in source to sink partitioning of amino acids and ureides: Opportunities for crop improvement. J. Exp. Bot. 2014;65:1865–1878. doi: 10.1093/jxb/eru012. PubMed DOI

Zhang L., Garneau M.G., Majumdar R., Grant J., Tegeder M. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids. Plant J. 2015;81:134–146. doi: 10.1111/tpj.12716. PubMed DOI

Eom J.S., Chen L.-Q., Sosso D., Benjamin T.J., Lin I.W., Qu X.-Q., Braun D.M., Frommer W.B. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr. Opin. Plant Biol. 2015;25:53–62. doi: 10.1016/j.pbi.2015.04.005. PubMed DOI

Tegeder M., Ward J.M. Molecular evolution of plant AAP and LHT amino acid transporters. Front. Plant Sci. 2012;3:21. doi: 10.3389/fpls.2012.00021. PubMed DOI PMC

Beevers L., Guernsey F.S. Changes in some nitrogenous components during the germination of pea seeds. Plant Physiol. 1966;41:1455–1458. doi: 10.1104/pp.41.9.1455. PubMed DOI PMC

Hildebrandt T.M., Nesi A.N., Araújo W.L., Braun H.-P. Amino acid catabolism in plants. Mol. Plant. 2015;8:1563–1579. doi: 10.1016/j.molp.2015.09.005. PubMed DOI

Taylor M.R., Reinders A., Ward J.M. Transport function of rice amino acid permeases (AAPs) Plant Cell Physiol. 2015;56:1355–1363. doi: 10.1093/pcp/pcv053. PubMed DOI

Dhandapani P., Song J., Novak O., Jameson P.E. Infection by Rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen. Ann. Bot. 2016 doi: 10.1093/aob/mcw202. PubMed DOI PMC

Peng D., Gu X., Xue L.-J., Leebens-Mack J.H., Tsai C.-J. Bayesian phylogeny of sucrose transporters: Ancient origins, differential expansion and convergent evolution in monocots and dicots. Front. Plant Sci. 2014;5:615. doi: 10.3389/fpls.2014.00615. PubMed DOI PMC

Zhou Y., Qu H., Dibley K.E., Offler C.E. A suite of sucrose transporters expressed in coats of developing legume seeds includes novel pH-independent facilitators. Plant J. 2007;49:750–764. doi: 10.1111/j.1365-313X.2006.03000.x. PubMed DOI

Reinders A., Sivitz A.B., Ward J.M. Evolution of plant sucrose uptake transporters. Front. Plant Sci. 2012;3:22. doi: 10.3389/fpls.2012.00022. PubMed DOI PMC

Scofield G.N., Aoki N., Hirose T., Takano M., Jenkins C.L., Furbank R.T. The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. J. Exp. Bot. 2007;58:483–495. doi: 10.1093/jxb/erl217. PubMed DOI

Chung P., Hsiao H.-H., Chen H.-J., Chang C.-W., Wang S.-J. Influence of temperature on the expression of the rice sucrose transporter 4 gene, OsSUT4, in germinating embryos and maturing pollen. Acta Physiol. Plant. 2014;36:217–229. doi: 10.1007/s11738-013-1403-x. DOI

Slewinski T.L., Meeley R., Braun D.M. Sucrose transporter 1 functions in phloem loading in maize leaves. J. Exp. Bot. 2009;60:881–892. doi: 10.1093/jxb/ern335. PubMed DOI PMC

Bick J.A., Neelam A., Smith E., Nelson S.J., Hall J.L., Williams L.E. Expression analysis of a sucrose carrier in the germinating seedling of Ricinus communis. Plant Mol. Biol. 1998;38:425–435. doi: 10.1023/A:1006040306581. PubMed DOI

Tegeder M., Wang X.D., Frommer W.B., Offler C.E., Patrick J.W. Sucrose transport into developing seeds of Pisum sativum L. Plant J. 1999;18:151–161. doi: 10.1046/j.1365-313X.1999.00439.x. PubMed DOI

Weber H., Borisjuk L., Wobus U. Sugar import and metabolism during seed development. Trends Plant Sci. 1997;2:169–174. doi: 10.1016/S1360-1385(97)85222-3. DOI

Chen L.-Q., Qu X.Q., Hou B.H., Sosso D., Osorio S., Fernie A.R., Frommer W.B. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science. 2012;335:207–211. doi: 10.1126/science.1213351. PubMed DOI

Chen H.-Y., Huh J.-H., Yu Y.-C., Ho L.-H., Chen L.-Q., Tholl D., Frommer W.B., Guo W.-J. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. Plant J. 2015;83:1046–1058. doi: 10.1111/tpj.12948. PubMed DOI

Chandran D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB Life. 2015;67:461–471. doi: 10.1002/iub.1394. PubMed DOI

Patil G., Valliyodan B., Deshmukh R., Prince S., Nicander B., Zhao M., Sonah H., Song L., Lin L., Chaudhary J., et al. Soybean (Glycine max) SWEET gene family: Insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genom. 2015;16:520. doi: 10.1186/s12864-015-1730-y. PubMed DOI PMC

Klemens P.A.W., Patzke K., Deitmer J., Spinner L., Le Hir R., Bellini C., Bedu M., Chardon F., Krapp A., Neuhaus H.E. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth and stress tolerance in Arabidopsis. Plant Physiol. 2013;163:1338–1352. doi: 10.1104/pp.113.224972. PubMed DOI PMC

Liu X., Zhang Y., Yang C., Tian Z., Li J. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development. Sci. Rep. 2016;6 doi: 10.1038/srep24563. PubMed DOI PMC

Ruan Y.-L., Jin Y., Yang Y.-J., Li G.-J., Boyer J.S. Sugar input, metabolism, and signaling mediated by invertase: Roles in development, yield potential, and response to drought and heat. Mol. Plant. 2010;3:942–955. doi: 10.1093/mp/ssq044. PubMed DOI

Roitsch T., Gonzalez M.C. Function and regulation of plant invertases: sweet sensations. Trends Plant Sci. 2004;9:606–613. doi: 10.1016/j.tplants.2004.10.009. PubMed DOI

Balibrea Lara M.E., Gonzalez Garcia M.-C., Fatima T., Ehneß R., Lee T.K., Proels R., Tanner W., Roitsch T. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell. 2004;16:1276–1287. doi: 10.1105/tpc.018929. PubMed DOI PMC

Hwang I., Sheen J., Muller B. Cytokinin signaling networks. Annu. Rev. Plant Biol. 2012;63:353–380. doi: 10.1146/annurev-arplant-042811-105503. PubMed DOI

Cheng W.H., Taliercio E.W., Chourey P.S. The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell. 1996;8:971–983. doi: 10.1105/tpc.8.6.971. PubMed DOI PMC

Ehneß R., Roitsch T. Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in Chenopodium rubrum by cytokinins. Plant J. 1997;11:539–548. doi: 10.1046/j.1365-313X.1997.11030539.x. PubMed DOI

Rijavec T., Kovač M., Kladnik A., Chourey P.S., Dermastia M. A comparative study on the role of cytokinins in caryopsis development in the maize miniature1 seed mutant and its wild type. J. Integr. Plant Biol. 2009;51:840–849. doi: 10.1111/j.1744-7909.2009.00863.x. PubMed DOI

Song J., Jiang L., Jameson P.E. Expression patterns of Brassica napus genes implicate IPT, CKX, sucrose transporter, cell wall invertase and amino acid permease gene family members in leaf, flower, silique and seed development. J. Exp. Bot. 2015;66:5067–5082. doi: 10.1093/jxb/erv133. PubMed DOI PMC

Jameson P.E., Song J. Cytokinin: A key driver of seed yield. J. Exp. Bot. 2016;67:593–606. doi: 10.1093/jxb/erv461. PubMed DOI

Kuroha T., Tokunaga H., Kojima M., Ishida T., Nagawa S., Fukuda H., Sugimoto K., Sakakibara H. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct action pathway in Arabidopsis. Plant Cell. 2009;21:3152–3169. doi: 10.1105/tpc.109.068676. PubMed DOI PMC

Lomin S.N., Krivosheev D.M., Steklov M.Y., Arkhipov D.V., Osolodkin D.I., Schmülling T., Romanov G.A. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J. Exp. Bot. 2015;66:1851–1863. doi: 10.1093/jxb/eru522. PubMed DOI PMC

Spichal L. Cytokinins—Recent news and views of evolutionally old molecules. Funct. Plant Biol. 2012;39:267–284. doi: 10.1071/FP11276. PubMed DOI

Jameson P.E. Cytokinins. In: Thomas B., Murray B.G., Murphy D.J., editors. Encyclopedia of Applied Plant Sciences. Volume 1. Academic Press; Waltham, MA, USA: 2017. pp. 391–402.

Nandi S.K., Palni L.M.S., Letham D.S., Knypl J.S. The biosynthesis of cytokinins in germinating lupin seeds. J. Exp. Bot. 1988;39:1649–1665. doi: 10.1093/jxb/39.12.1649. DOI

Nandi S.K., Palni L.M.S. Transport and metabolism of dihydrozeatin riboside in germinating lupin seeds. J. Exp. Bot. 1989;40:615–629. doi: 10.1093/jxb/40.5.615. DOI

Hocart C.H., Letham D.S. Biosynthesis of cytokinin in germinating seeds of Zea mays. J. Exp. Bot. 1990;41:1525–1528. doi: 10.1093/jxb/41.12.1525. DOI

Nandi S.K., Palni L.M.S., de Klerk G.J.M. The influence of the embryonic axis and cytokinins on reserve mobilization in germinating lupin seeds. J. Exp. Bot. 1995;46:329–336. doi: 10.1093/jxb/46.3.329. DOI

Villalobos N., Martin L. Involvement of cytokinins in the germination of chick-pea seeds. Plant Growth Regul. 1992;11:277–291. doi: 10.1007/BF00024567. DOI

Munoz J.L., Martin L., Nicolas G., Villalobos N. Influence of endogenous cytokinin on reserve mobilization in cotyledons of Cicer arietinum L. Plant Physiol. 1990;93:1011–1016. doi: 10.1104/pp.93.3.1011. PubMed DOI PMC

Green T.R., Baisted D.J. Development of the activities of enzymes of the isoprenoid pathway during early stages of pea-seed germination. Biochem. J. 1972;130:983–995. doi: 10.1042/bj1300983. PubMed DOI PMC

Yadav U.P., Ayre B.G., Bush D.R. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: Assessing the potential to improve crop yields and nutritional quality. Front. Plant Sci. 2015;6:275. doi: 10.3389/fpls.2015.00275. PubMed DOI PMC

Petruzzelli L., Kunz C., Waldvogel R., Meins F., Leubner-Metzger G. Distinct ethylene- and tissue-specific regulation of β-1,3-glucanases and chitinases during pea seed germination. Planta. 1999;209:195–201. doi: 10.1007/s004250050622. PubMed DOI

Nawa Y., Asahi T. Relationship between the water content of pea cotyledons and mitochondrial development during the early stage of germination. Plant Cell Physiol. 1973;14:607–610.

Barba-Espín G., Diaz-Vivancos P., Job D., Belghazi M., Job C., Hernández A. Understanding the role of H2O2 during pea seed germination: A combined proteomic and hormone profiling approach. Plant Cell Environ. 2011;34:1907–1919. doi: 10.1111/j.1365-3040.2011.02386.x. PubMed DOI

Bewley J.D. Seed germination and dormancy. Plant Cell. 1997;9:1055–1066. doi: 10.1105/tpc.9.7.1055. PubMed DOI PMC

Weitbrecht K., Müller K., Leubner-Metzger G. First off the mark: Early seed germination. J. Exp. Bot. 2011;62:3289–3309. doi: 10.1093/jxb/err030. PubMed DOI

Hirose N., Takei K., Huroha T., Kamada-Nobusada T., Hayashi H., Sakakibara H. Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot. 2008;59:75–83. doi: 10.1093/jxb/erm157. PubMed DOI

Stirk W.A., Gold J.D., Novák O., Strnad M., van Staden J. Changes in endogenous cytokinins during germination and seedling establishment of Tagetes minuta L. Plant Growth Regul. 2005;47:1–7. doi: 10.1007/s10725-005-1767-z. DOI

Werner T., Holst K., Pörs Y., Guivarc'h A., Mustroph A., Chriqui D., Grimm B., Schmülling T. Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. J. Exp. Bot. 2008;59:2659–2672. doi: 10.1093/jxb/ern134. PubMed DOI PMC

Ashikari M., Sakakibara H., Lin S.Y., Yamamoto T., Takashi T., Nishimura A., Angeles E.R., Qian Q., Kitano H., Matsuoka M. Cytokinin oxidase regulates rice grain production. Science. 2005;309:741–745. doi: 10.1126/science.1113373. PubMed DOI

Zalewski W., Gasparis S., Boczkowska M., Rajchel I., Orczyk W., Nadolska-Orczyk A. Expression patterns of HvCKX genes indicate their role in growth and reproductive development of barley. PLoS ONE. 2014 doi: 10.1371/journal.pone.0115729. PubMed DOI PMC

Sanders A., Collier R., Trethewy A., Gould G., Sieker R., Tegeder M. AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J. 2009;59:540–552. doi: 10.1111/j.1365-313X.2009.03890.x. PubMed DOI

Schmidt R., Stransky H., Koch W. The amino acid permease AAP8 is important for early seed development in Arabidopsis. Planta. 2007;226:805–813. doi: 10.1007/s00425-007-0527-x. PubMed DOI

Klambt D., Thies G., Skoog F. Isolation of cytokinins from Corynebacterium. fascians. Proc. Natl. Acad. Sci. USA. 1966;56:52–59. doi: 10.1073/pnas.56.1.52. PubMed DOI PMC

Lawson E., Gantotti B., Starr M. A 78-megadalton plasmid occurs in avirulent strains as well as virulent strains of Corynebacterium fascians. Curr. Microbiol. 1982;7:327–332. doi: 10.1007/BF01572598. DOI

Song J., Jiang L., Jameson P.E. Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat. BMC Plant Biol. 2012;12:78. doi: 10.1186/1471-2229-12-78. PubMed DOI PMC

Antoniadi I., Plačková L., Simonovik B., Doležal K., Turnbull C., Ljung K., Novák O. Cell-type specific cytokinin distribution within the Arabidopsis primary root apex. Plant Cell. 2015;27:1955–1967. doi: 10.1105/tpc.15.00176. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...