Adjusting risk-taking to the annual cycle of long-distance migratory birds
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
14–36098G
Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
VEGA 1/0977/16
Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky (Ministry of Education, Science, Research and Sport of the Slovak Republic) - International
PubMed
30228370
PubMed Central
PMC6143617
DOI
10.1038/s41598-018-32252-1
PII: 10.1038/s41598-018-32252-1
Knihovny.cz E-zdroje
- MeSH
- chov MeSH
- migrace zvířat fyziologie MeSH
- ptáci fyziologie MeSH
- riskování MeSH
- roční období * MeSH
- rozmnožování * MeSH
- zvířata MeSH
- zvláštnosti životní historie MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Life-history theory predicts that current behaviour affects future reproduction, implying that animals should optimise their escape strategies to reflect fitness costs and benefits of premature escape. Both costs and benefits of escape may change temporally with important consequences for the evolution of escape strategies. Moreover, escape strategies of species may differ according to their positions on slow-fast pace of life gradients. We studied risk-taking in long-distance migratory animals, waders (Charadriiformes), during the annual cycle, i.e., breeding in Europe, stopover in the Middle East and wintering in tropical Africa. Phylogenetically informed comparative analyses revealed that risk-taking (measured as flight initiation distance, FID) changed significantly over the year, being lowest during breeding and peaking at stopover sites. Similarly, relationships between risk-taking and life-history traits changed among stages of the annual cycle. While risk-taking significantly decreased with increasing body mass during breeding, risk-taking-body mass relationship became marginally significant in winter and disappeared during migration. The positive trend of risk-taking along slow-fast pace of life gradient measured as adult survival was only found during breeding. The season-dependent relationships between risk-taking and life history traits suggest that migrating animals respond to fluctuating environments by adopting behavioural plasticity.
Arctic Centre University of Lapland PO Box 122 96101 Rovaniemi Finland
Ben Gurion University of the Negev Eilat Campus P O Box 272 Eilat 88000 Israel
Department of Zoology Faculty of Science Charles University Viničná 7 128 43 Praha 2 Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 603 65 Brno Czech Republic
Institute of Zoology Poznań University of Life Sciences Wojska Polskiego 71C 60 625 Poznań Poland
Zobrazit více v PubMed
Lima SL, Dill LM. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 1990;68:619–640. doi: 10.1139/z90-092. DOI
Sol D, Duncan RP, Blackburn TM, Cassey P, Lefebvre L. Big brains, enhanced cognition, and response of birds to novel environments. Proc. Natl. Acad. Sci. USA. 2005;102:5460–5465. doi: 10.1073/pnas.0408145102. PubMed DOI PMC
Dingemanse NJ, Kazem AJ, Réale D, Wright J. Behavioural reaction norms: animal personality meets individual plasticity. Trends Ecol. Evol. 2010;25:81–89. doi: 10.1016/j.tree.2009.07.013. PubMed DOI
Stankowich T, Blumstein DT. Fear in animals: a meta-analysis and review of risk assessment. Proc. R. Soc. London B Biol. Sci. 2005;272:2627–2634. doi: 10.1098/rspb.2005.3251. PubMed DOI PMC
Díaz M, et al. The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS One. 2013;8:e64634. doi: 10.1371/journal.pone.0064634. PubMed DOI PMC
Lima SL, O’Keefe JM. Do predators influence the behaviour of bats? Biol. Rev. 2013;88:626–644. doi: 10.1111/brv.12021. PubMed DOI
Lima SL. Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation. Biol. Rev. 2009;84:485–513. doi: 10.1111/j.1469-185X.2009.00085.x. PubMed DOI
Ydenberg RC, Dill LM. The economics of fleeing from predators. Adv. Study Behav. 1986;16:229–249. doi: 10.1016/S0065-3454(08)60192-8. DOI
Blumstein DT. Developing an evolutionary ecology of fear: how life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 2006;71:389–399. doi: 10.1016/j.anbehav.2005.05.010. DOI
Blumstein DT. Flush early and avoid the rush: a general rule of antipredator behavior? Behav. Ecol. 2010;21:440–442. doi: 10.1093/beheco/arq030. DOI
Cooper WE, Blumstein DT. Novel effects of monitoring predators on costs of fleeing and not fleeing explain flushing early in economic escape theory. Behav. Ecol. 2014;25:44–52. doi: 10.1093/beheco/art083. DOI
Lima SL, Bednekoff PA. Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis. Am. Nat. 1999;153:649–659. doi: 10.1086/303202. PubMed DOI
Kotler BP, Brown JS, Bouskila A. Apprehension and time allocation in gerbils: the effects of predatory risk and energetic state. Ecology. 2004;85:917–922. doi: 10.1890/03-3002. DOI
Winnie J, Creel S. Sex-specific behavioural responses of elk to spatial and temporal variation in the threat of wolf predation. Anim. Behav. 2007;73:215–225. doi: 10.1016/j.anbehav.2006.07.007. DOI
Uchida K, Suzuki K, Shimamoto T, Yanagawa H, Koizumi I. Seasonal variation of flight initiation distance in Eurasian red squirrels in urban versus rural habitat. J. Zool. 2016;298:225–231. doi: 10.1111/jzo.12306. DOI
Dawson A. Plasma gonadal steroid levels in wild starlings (Sturnus vulgaris) during the annual cycle and in relation to the stages of breeding. Gen. Comp. Endocrinol. 1983;49:286–294. doi: 10.1016/0016-6480(83)90146-6. PubMed DOI
Wingfield JC, Ball GF, Dufty AM, Hegner RE, Ramenofsky M. Testosterone and aggression in birds. Am. Sci. 1987;75:602–608.
Byrkjedal I. Nest defense behavior of lesser golden-plovers. Wilson Bull. 1989;101:579–590.
Romero LM. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen. Comp. Endocrinol. 2002;128:1–24. doi: 10.1016/S0016-6480(02)00064-3. PubMed DOI
Alerstam T, Hedenström A, Åkesson S. Long-distance migration: evolution and determinants. Oikos. 2003;103:247–260. doi: 10.1034/j.1600-0706.2003.12559.x. DOI
Bairlein F. Body weights and fat deposition of Palaearctic passerine migrants in the central Sahara. Oecologia. 1985;66:141–146. doi: 10.1007/BF00378566. PubMed DOI
Kersten M, Piersma T. High levels of energy expenditure in shorebirds; metabolic adaptations to an energetically expensive way of life. Ardea. 1987;75:175–187.
Castro G, Myers JP. Shorebird predation on eggs of horseshoe crabs during spring stopover on Delaware Bay. Auk. 1993;110:927–930. doi: 10.2307/4088650. DOI
Yosef R, Tryjanowski P, Remisiewicz M. Migration characteristics of wood sandpiper (Tringa glareola) at Eilat, Israel. Ring. 2004;24:61–69.
Lima SL. Back to the basics of anti-predatory vigilance: the group-size effect. Anim. Behav. 1995;49:11–20. doi: 10.1016/0003-3472(95)80149-9. DOI
Cresswell W. Flocking is an effective anti-predation strategy in redshanks. Tringa totanus. Anim. Behav. 1994;47:433–442. doi: 10.1006/anbe.1994.1057. DOI
Van Den Hout PJ, Spaans B, Piersma T. Differential mortality of wintering shorebirds on the Banc d’Arguin, Mauritania, due to predation by large falcons. Ibis. 2008;150:219–230. doi: 10.1111/j.1474-919X.2008.00785.x. DOI
Laursen K, Kahlert J, Frikke J. Factors affecting escape distances of staging waterbirds. Wildlife Biol. 2005;11:13–19. doi: 10.2981/0909-6396(2005)11[13:FAEDOS]2.0.CO;2. DOI
Laursen K, Møller AP, Holm TE. Dynamic group size and displacement as avoidance strategies by eiders in response to hunting. Wildlife Biol. 2016;22:174–181. doi: 10.2981/wlb.00197. DOI
Samia DSM, Møller AP, Blumstein DT. Brain size as a driver of avian escape strategy. Sci. Rep. 2015;5:11913. doi: 10.1038/srep11913. PubMed DOI PMC
Caraco T. Time budgeting and group size: a test of theory. Ecology. 1979;60:618–627. doi: 10.2307/1936082. DOI
Pulliam H. On the advantages of flocking. J. Theor. Biol. 1973;38:419–422. doi: 10.1016/0022-5193(73)90184-7. PubMed DOI
Roberts G. Why individual vigilance declines as group size increases. Anim. Behav. 1996;51:1077–1086. doi: 10.1006/anbe.1996.0109. DOI
Fernández-Juricic E, Jimenez MD, Lucas E. Factors affecting intra- and inter-specific variations in the difference between alert distances and flight distances for birds in forested habitats. Can. J. Zool. 2002;80:1212–1220. doi: 10.1139/z02-104. DOI
Ricklefs RE, Wikelski M. The physiology/life-history nexus. Trends Ecol. Evol. 2002;17:462–468. doi: 10.1016/S0169-5347(02)02578-8. DOI
Møller AP, Liang W. Tropical birds take small risks. Behav. Ecol. 2013;24:267–272. doi: 10.1093/beheco/ars163. DOI
Dammhahn M, Dingemanse NJ, Niemelä PT, Réale D. Pace-of-life syndromes: a framework for the adaptive integration of behaviour, physiology and life history. Behav. Ecol. Sociobiol. 2018;72:62. doi: 10.1007/s00265-018-2473-y. DOI
Ghalambor CK, Martin TE. Fecundity-survival trade-offs and parental risk-taking in birds. Science. 2001;292:494–497. doi: 10.1126/science.1059379. PubMed DOI
Calder, W. A. Size Function, and Life History. (Harvard University Press, 1984).
Valcu M, Dale J, Griesser M, Nakagawa S, Kempenaers B. Global gradients of avian longevity support the classic evolutionary theory of ageing. Ecography. 2014;37:930–938. doi: 10.1111/ecog.00929. DOI
Sol D, et al. Risk-taking behavior, urbanization and the pace of life in birds. Behav. Ecol. Sociobiol. 2018;72:59. doi: 10.1007/s00265-018-2463-0. DOI
del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the birds of the world. Vol. 3. Hoatzin to Auks. (Lynx Edicions, 1996).
Cramp, S. & Simmons, K. E. L. Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Palearctic. Volume 3: waders to gulls. (Oxford University Press, 1983).
McKinnon L, et al. Lower predation risk for migratory birds at high latitudes. Science. 2010;327:326–327. doi: 10.1126/science.1183010. PubMed DOI
Kissling, W. D., Sekercioglu, C. H. & Jetz, W. Bird dietary guild richness across latitudes, environments and biogeographic regions. Glob. Ecol. Biogeogr. 21, 328–340
Butler RW, Ydenberg RC, Lank DB. Wader migration on the changing predator landscape. Wader Study Gr. Bull. 2003;100:130–133.
Ydenberg RC, Butler RW, Lank DB. Effects of predator landscapes on the evolutionary ecology of routing, timing and molt by long-distance migrants. J. Avian Biol. 2007;38:523–529. doi: 10.1111/j.0908-8857.2007.04202.x. DOI
Yosef R, Gołdyn B, Zduniak P. Predation of migratory little stint (Calidris minuta) by barbary falcon (Falco pelegrinoides) is dependent on body mass and duration of stopover time. J. Ethol. 2011;29:257–261. doi: 10.1007/s10164-010-0251-z. DOI
Shirihai H, Christie DA. Raptor migration at Eilat. Br. Birds. 1992;85:141–186.
Piersma T. Phenotypic flexibility during migration: optimization of organ size contingent on the risks and rewards of fueling and flight? J. Avian Biol. 1998;29:511–520. doi: 10.2307/3677170. DOI
Newton, I. The Migration Ecology of Birds. London: Academic Press (2008).
Lavee D, Safriel UN, Meilijson I. For how long do trans-Saharan migrants stop over at an oasis? Ornis Scand. 1991;22:33–44. doi: 10.2307/3676619. DOI
Warnock N, Bishop MA. Spring stopover ecology of migrant western sandpipers. Condor. 1998;100:456–467. doi: 10.2307/1369711. DOI
Brochet A-L, et al. Preliminary assessment of the scope and scale of illegal killing and taking of birds in the Mediterranean. Bird Conserv. Int. 2016;26:1–28. doi: 10.1017/S0959270915000416. DOI
Møller AP, Grim T, Ibáñez-Álamo JD, Markó G, Tryjanowski P. Change in flight initiation distance between urban and rural habitats following a cold winter. Behav. Ecol. 2013;24:1211–1217. doi: 10.1093/beheco/art054. DOI
Sillett TS, Holmes RT. Variation in survivorship of a migratory songbird throughout its annual cycle. J. Anim. Ecol. 2002;71:296–308. doi: 10.1046/j.1365-2656.2002.00599.x. DOI
Geffroy B, Samia DSM, Bessa E, Blumstein DT. How nature-based tourism might increase prey vulnerability to predators. Trends Ecol. Evol. 2015;30:755–765. doi: 10.1016/j.tree.2015.09.010. PubMed DOI
Safriel U. Bird migration in Elat, Israel. Ibis. 1968;110:283–320. doi: 10.1111/j.1474-919X.1968.tb00039.x. DOI
Yosef R. Clues to the migratory routes of the eastern flyway of the Western Palearctics – ringing recoveries at Eilat, Israel (I – Ciconiiformes, Charadriiformes, Coraciiformes, and Passeriformes) Die Vogelwarte. 1997;39:131–140.
Glaser RL, Horsepool K, Simhai N, Yosef R. The effects of disturbance on migratory waders at Eilat, Israel. Sandgrouse. 1998;20:30–35.
Yosef R, Markovets M, Mitchell L, Tryjanowski P. Body condition as a determinant for stopover in bee-eaters (Merops apiaster) on spring migration in the Arava Valley, southern Israel. J. Arid Environ. 2006;64:401–411. doi: 10.1016/j.jaridenv.2005.06.012. DOI
Yosef R. Indications of Arctic breeding success of little stint (Calidris minuta) as reflected by ringing at Eilat, Israel. Arct. Birds. 2002;4:38–39.
Yosef R, Zduniak P. Salinity affects territory size of migratory little stint (Calidris minuta) (Aves: Limicolae) Zool. Middle East. 2015;61:220–225. doi: 10.1080/09397140.2015.1058466. DOI
Yosef R, Meissner W. Seasonal age differences in weight and biometrics of migratory dunlins (Calidris alpina) at Eilat, Israel. Ostrich. 2006;77:67–72. doi: 10.2989/00306520609485510. DOI
Bulla M, Stich E, Valcu M, Kempenaers B. Off-nest behaviour in a biparentally incubating shorebird varies with sex, time of day and weather. Ibis. 2015;157:575–589. doi: 10.1111/ibi.12276. DOI
Warnock SE, Takekawa JY. Wintering site fidelity and movement patterns of western sandpipers Calidris mauri in the San Francisco Bay estuary. Ibis. 1996;138:160–167. doi: 10.1111/j.1474-919X.1996.tb04323.x. DOI
Leyrer J, Spaans B, Camara M, Piersma T. Small home ranges and high site fidelity in red knots (Calidris c. canutus) wintering on the Banc d’Arguin, Mauritania. J. Ornithol. 2006;147:376–384. doi: 10.1007/s10336-005-0030-8. DOI
Runyan AM, Blumstein DT. Do individual differences influence flight initiation distance? J. Wildl. Manage. 2009;68:1124–1129. doi: 10.2193/0022-541X(2004)068[1124:DIDIFI]2.0.CO;2. DOI
Weston MA, McLeod EM, Blumstein DT, Guay P-J. A review of flight-initiation distances and their application to managing disturbance to Australian birds. Emu. 2012;112:269–286. doi: 10.1071/MU12026. DOI
del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the birds of the world Alive. Available at: http://www.hbw.com/ (2017).
Jetz W, Sekercioglu CH, Böhning-Gaese K, Burgess N, Powell G. The worldwide variation in avian clutch size across species and space. PLoS Biol. 2008;6:e303. doi: 10.1371/journal.pbio.0060303. PubMed DOI PMC
Liker A, Reynolds JD, Székely T. The evolution of egg size in socially polyandrous shorebirds. Oikos. 2001;95:3–14. doi: 10.1034/j.1600-0706.2001.950101.x. DOI
Portugal SJ, et al. Nesting behaviour influences species-specific gas exchange across avian eggshells. J. Exp. Biol. 2014;217:3326–3332. doi: 10.1242/jeb.103291. PubMed DOI PMC
Thomas GH, Székely T, Reynolds JD. Sexual conflict and the evolution of breeding systems in shorebirds. Adv. Study Behav. 2007;37:279–342. doi: 10.1016/S0065-3454(07)37006-X. DOI
Boyd H. Mortality and fertility of European charadrii. Ibis. 1962;104:368–387. doi: 10.1111/j.1474-919X.1962.tb08664.x. DOI
Evans, P. R. Migration and dispersal of shorebirds as a survival strategy. In Feeding and survival strategies of estuarine organism (eds Jones, N. V. & Wolff, W. J.) 275–290 (Plenum Press, 1981).
Green RE, Hodson DP, Holness PR. Survival and movements of stone-curlews Burhinus oedicnemus ringed in England. Ringing Migr. 1997;18:102–112. doi: 10.1080/03078698.1997.9674150. DOI
Watts B, Reed E, Turrin C. Estimating sustainable mortality limits for shorebirds using the Western Atlantic Flyway. Wader Study. 2015;122:37–53. doi: 10.18194/ws.00005. DOI
Zar, J. H. Biostatistical analysis. (Prentice-Hall/Pearson, 1999).
Garamszegi LZ, Møller AP. Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biol. Rev. 2010;85:797–805. PubMed
Freckleton RP. On the misuse of residuals in ecology: regression of residuals vs. multiple regression. J. Anim. Ecol. 2002;71:542–545. doi: 10.1046/j.1365-2656.2002.00618.x. DOI
Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Version 2.75. Available at: http://mesquiteproject.org (2011).
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–448. doi: 10.1038/nature11631. PubMed DOI
Garamszegi LZ, Møller AP. Prevalence of avian influenza and host ecology. Proc. R. Soc. London B Biol. Sci. 2007;274:2003–2012. doi: 10.1098/rspb.2007.0124. PubMed DOI PMC
Revell LJ. Size-correction and principal components for interspecific comparative studies. Evolution. 2009;63:3258–3268. doi: 10.1111/j.1558-5646.2009.00804.x. PubMed DOI
Lipsey, M. W. & Wilson, D. B. Practical meta- analysis. (Sage, 2001).
Cohen, J. Statistical power analysis for the behavioral sciences. (L. Erlbaum Associates, 1988).
Bird tolerance to humans in open tropical ecosystems
Contagious fear: Escape behavior increases with flock size in European gregarious birds