Bird tolerance to humans in open tropical ecosystems
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37081049
PubMed Central
PMC10119130
DOI
10.1038/s41467-023-37936-5
PII: 10.1038/s41467-023-37936-5
Knihovny.cz E-zdroje
- MeSH
- chování zvířat * MeSH
- divoká zvířata * fyziologie psychologie MeSH
- ekosystém * MeSH
- interakce člověk - zvíře * MeSH
- lidé MeSH
- městské obyvatelstvo MeSH
- ptáci * fyziologie MeSH
- tropické klima MeSH
- venkovské obyvatelstvo MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
- Austrálie MeSH
- Jižní Amerika MeSH
Animal tolerance towards humans can be a key factor facilitating wildlife-human coexistence, yet traits predicting its direction and magnitude across tropical animals are poorly known. Using 10,249 observations for 842 bird species inhabiting open tropical ecosystems in Africa, South America, and Australia, we find that avian tolerance towards humans was lower (i.e., escape distance was longer) in rural rather than urban populations and in populations exposed to lower human disturbance (measured as human footprint index). In addition, larger species and species with larger clutches and enhanced flight ability are less tolerant to human approaches and escape distances increase when birds were approached during the wet season compared to the dry season and from longer starting distances. Identification of key factors affecting animal tolerance towards humans across large spatial and taxonomic scales may help us to better understand and predict the patterns of species distributions in the Anthropocene.
Africa Conservation Programme World Parrot Trust Glanmor House Hayle TR27 4HB UK
AP Leventis Ornithological Research Institute University of Jos Jos Nigeria
BirdLife South Africa Isdell House 17 Hume Road Dunkeld West 2196 Gauteng South Africa
British Trust for Ornithology University of Stirling Stirling FK9 4LA UK
C4 EcoSolutions Tokai 7966 Cape Town South Africa
Centre for Biological Diversity University of St Andrews St Andrews Fife KY16 9TH UK
Department of Biological Sciences University of Cape Town Cape Town South Africa
Department of Biology and Ecology University of Ostrava Chittussiho 10 710 00 Ostrava Czech Republic
Department of Biology Norwegian University of Science and Technology NTNU NO 7091 Trondheim Norway
Department of Biology Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels Belgium
Department of Computer Science Aalto University PO Box 15400 00076 Aalto Finland
Department of Zoology Faculty of Science Charles University Viničná 7 128 44 Praha 2 Czech Republic
Department of Zoology Faculty of Science University of Lagos Akoka Yaba Nigeria
Department of Zoology Poznań University of Life Sciences Wojska Polskiego 71c 60 625 Poznań Poland
Grupo de Pesquisa e Conservação da Arara azul de lear Bahia Brazil
Institute for Advanced Study Technical University of Munich 85748 Garching Germany
Institute of Agricultural Research for Development 1st Main road Nkolbisson Yaoundé Yaoundé Cameroon
Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 603 65 Brno Czech Republic
International Crane Foundation Endangered Wildlife Trust P O Box 33944 Lusaka Zambia
International Fund for Animal Welfare 22 Airdrie Road Estlea Harare Zimbabwe
Organisation for Tropical Studies PO Box 33 Skukuza 1350 South Africa
Programa de Biología Universidad Distrital Francisco José de Caldas Bogotá Colombia
Research and Education for Sustainable Actions 9934 Katanda Chinhoyi Zimbabwe
TUM School of Life Sciences Ecoclimatology Technical University of Munich 85354 Freising Germany
Zoology Department National Museums of Kenya Museum Hill Rd P O BOX 40658 00100 Nairobi Kenya
Zobrazit více v PubMed
Shorrocks, B. & Bates, W. The Biology of African Savannahs (Oxford University Press, 2015).
Parr CL, Lehmann CER, Bond WJ, Hoffmann WA, Andersen AN. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol. Evol. 2014;29:205–213. doi: 10.1016/j.tree.2014.02.004. PubMed DOI
Beaumont LJ, et al. Impacts of climate change on the world’s most exceptional ecoregions. Proc. Natl Acad. Sci. USA. 2011;108:2306–2311. doi: 10.1073/pnas.1007217108. PubMed DOI PMC
Ripple WJ, et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl Acad. Sci. USA. 2017;114:10678–10683. doi: 10.1073/pnas.1702078114. PubMed DOI PMC
Ducatez S, Sol D, Sayol F, Lefebvre L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 2020;4:788–793. doi: 10.1038/s41559-020-1168-8. PubMed DOI
Lima SL, Dill LM. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 1990;68:619–640. doi: 10.1139/z90-092. DOI
Frid A, Dill L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 2002;6:11.
Steven R, Pickering C, Guy Castley J. A review of the impacts of nature based recreation on birds. J. Environ. Manag. 2011;92:2287–2294. doi: 10.1016/j.jenvman.2011.05.005. PubMed DOI
Navarro C, de Lope F, Marzal A, Møller AP. Predation risk, host immune response, and parasitism. Behav. Ecol. 2004;15:629–635. doi: 10.1093/beheco/arh054. DOI
Møller AP, Samia DSM, Weston MA, Guay P-J, Blumstein DT. American exceptionalism: population trends and flight initiation distances in birds from three continents. PLoS ONE. 2014;9:e107883. doi: 10.1371/journal.pone.0107883. PubMed DOI PMC
Samia DSM, Nakagawa S, Nomura F, Rangel TF, Blumstein DT. Increased tolerance to humans among disturbed wildlife. Nat. Commun. 2015;6:8877. doi: 10.1038/ncomms9877. PubMed DOI PMC
Díaz M, et al. The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS ONE. 2013;8:e64634. doi: 10.1371/journal.pone.0064634. PubMed DOI PMC
Ghalambor CK, Martin TE. Fecundity-survival trade-offs and parental risk-taking in birds. Science. 2001;292:494–497. doi: 10.1126/science.1059379. PubMed DOI
Ripple WJ, et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open Sci. 2016;3:160498. doi: 10.1098/rsos.160498. PubMed DOI PMC
Jetz W, Sekercioglu CH, Böhning-Gaese K, Burgess N, Powell G. The worldwide variation in avian clutch size across species and space. PLoS Biol. 2008;6:e303. doi: 10.1371/journal.pbio.0060303. PubMed DOI PMC
Møller AP, Liang W. Tropical birds take small risks. Behav. Ecol. 2013;24:267–272. doi: 10.1093/beheco/ars163. DOI
Valcu M, Dale J, Griesser M, Nakagawa S, Kempenaers B. Global gradients of avian longevity support the classic evolutionary theory of ageing. Ecography. 2014;37:930–938. doi: 10.1111/ecog.00929. DOI
Stankowich T, Blumstein DT. Fear in animals: a meta-analysis and review of risk assessment. Proc. R. Soc. Lond. B: Biol. Sci. 2005;272:2627–2634. PubMed PMC
Blumstein DT. Developing an evolutionary ecology of fear: how life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 2006;71:389–399. doi: 10.1016/j.anbehav.2005.05.010. DOI
Guay PJ, van Dongen WFD, Robinson RW, Blumstein DT, Weston MA. AvianBuffer: an interactive tool for characterising and managing wildlife fear responses. Ambio. 2016;45:841–851. doi: 10.1007/s13280-016-0779-4. PubMed DOI PMC
Livezey KB, Fernández-Juricic E, Blumstein DT. Database of bird flight initiation distances to assist in estimating effects from human disturbance and delineating buffer areas. J. Fish. Wildl. Manag. 2016;7:181–191. doi: 10.3996/082015-JFWM-078. DOI
Ekanayake, K. E. et al. Ecological and environmental predictors of escape among birds on a large tropical island. Behav. Ecol. Sociobiol. 76, 31 (2022).
Mikula P, et al. Adjusting risk-taking to the annual cycle of long-distance migratory birds. Sci. Rep. 2018;8:13989. doi: 10.1038/s41598-018-32252-1. PubMed DOI PMC
Mikula P, et al. Face mask-wear did not affect large-scale patterns in escape and alertness of urban and rural birds during the COVID-19 pandemic. Sci. Total Environ. 2021;793:148672. doi: 10.1016/j.scitotenv.2021.148672. PubMed DOI PMC
Carrete M, Tella JL. High individual consistency in fear of humans throughout the adult lifespan of rural and urban burrowing owls. Sci. Rep. 2013;3:1–7. doi: 10.1038/srep03524. PubMed DOI PMC
Carrete M, et al. Heritability of fear of humans in urban and rural populations of a bird species. Sci. Rep. 2016;6:31060. doi: 10.1038/srep31060. PubMed DOI PMC
Symonds MRE, et al. Time since urbanization but not encephalisation is associated with increased tolerance of human proximity in birds. Front Ecol. Evol. 2016;4:117. doi: 10.3389/fevo.2016.00117. DOI
McKinney ML. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 2006;127:247–260. doi: 10.1016/j.biocon.2005.09.005. DOI
Croci S, Butet A, Cleargeau P. Does urbanization filter birds on the basis of their biological traits. Condor. 2008;110:223–240. doi: 10.1525/cond.2008.8409. DOI
Ferenc M, et al. Large-scale commonness is the best predictor of bird species presence in European cities. Urban Ecosyst. 2017;21:369–377.
Sol D, González-Lagos C, Moreira D, Maspons J, Lapiedra O. Urbanisation tolerance and the loss of avian diversity. Ecol. Lett. 2014;17:942–950. doi: 10.1111/ele.12297. PubMed DOI
Maklakov AA, Immler S, Gonzalez-Voyer A, Rönn J, Kolm N. Brains and the city: big-brained passerine birds succeed in urban environments. Biol. Lett. 2011;7:730–732. doi: 10.1098/rsbl.2011.0341. PubMed DOI PMC
Sayol F, Sol D, Pigot AL. Brain size and life history interact to predict urban tolerance in birds. Front. Ecol. Evol. 2020;8:58. doi: 10.3389/fevo.2020.00058. DOI
Blumstein DT. Flight-initiation distance in birds is dependent on intruder starting distance. J. Wildl. Manag. 2003;67:852–857. doi: 10.2307/3802692. DOI
Weston MA, McLeod EM, Blumstein DT, Guay P-J. A review of flight-initiation distances and their application to managing disturbance to Australian birds. Emu. 2012;112:269–286. doi: 10.1071/MU12026. DOI
Blumstein DT. Flush early and avoid the rush: a general rule of antipredator behavior? Behav. Ecol. 2010;21:440–442. doi: 10.1093/beheco/arq030. DOI
Samia DSM, Nomura F, Blumstein DT. Do animals generally flush early and avoid the rush? a meta-analysis. Biol. Lett. 2013;9:20130016. doi: 10.1098/rsbl.2013.0016. PubMed DOI PMC
Mayer M, Natusch D, Frank S. Water body type and group size affect the flight initiation distance of European waterbirds. PLoS ONE. 2019;14:e0219845. doi: 10.1371/journal.pone.0219845. PubMed DOI PMC
Samia DSM, Blumstein DT, Stankowich T, Cooper WE. Fifty years of chasing lizards: new insights advance optimal escape theory. Biol. Rev. 2016;91:349–366. doi: 10.1111/brv.12173. PubMed DOI
Kozłowski J, Konarzewski M, Czarnoleski M. Coevolution of body size and metabolic rate in vertebrates: a life-history perspective. Biol. Rev. 2020;95:1393–1417. doi: 10.1111/brv.12615. PubMed DOI PMC
Ricklefs RE, Wikelski M. The physiology/life-history nexus. Trends Ecol. Evol. 2002;17:462–468. doi: 10.1016/S0169-5347(02)02578-8. DOI
Guay PJ, Weston MA, Symonds MRE, Glover HK. Brains and bravery: little evidence of a relationship between brain size and flightiness in shorebirds. Austral Ecol. 2013;38:516–522. doi: 10.1111/j.1442-9993.2012.02441.x. DOI
Weston MA, et al. Differences in flight initiation distances between African and Australian birds. Anim. Behav. 2021;179:235–245. doi: 10.1016/j.anbehav.2021.07.008. DOI
Norberg, U. M. Vertebrate Flight: Mechanisms, Physiology, Morphology, Ecology and Evolution (Springer, 1990).
Sheard C, et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 2020;11:2463. doi: 10.1038/s41467-020-16313-6. PubMed DOI PMC
Mikula P, et al. Migratory and resident waders differ in risk taking on the wintering grounds. Behav. Process. 2018;157:309–314. doi: 10.1016/j.beproc.2018.07.020. PubMed DOI
Hau M. Timing of breeding in variable environments: tropical birds as model systems. Horm. Behav. 2001;40:281–290. doi: 10.1006/hbeh.2001.1673. PubMed DOI
Wyndham E. Length of birds’ breeding seasons. Am. Naturalist. 1986;128:155–164. doi: 10.1086/284551. DOI
Tablado Z, et al. Factors modulating the behavioral and physiological stress responses: do they modify the relationship between flight initiation distance and corticosterone reactivity? Horm. Behav. 2021;132:104979. doi: 10.1016/j.yhbeh.2021.104979. PubMed DOI
Romero LM. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen. Comp. Endocrinol. 2002;128:1–24. doi: 10.1016/S0016-6480(02)00064-3. PubMed DOI
Silverin B. The stress response and autumn dispersal behaviour in willow tits. Anim. Behav. 1997;53:451–459. doi: 10.1006/anbe.1996.0295. DOI
Samia DSM, Møller AP, Blumstein DT. Brain size as a driver of avian escape strategy. Sci. Rep. 2015;5:11913. doi: 10.1038/srep11913. PubMed DOI PMC
Martin TE, Martin PR, Olson CR, Heidinger BJ, Fontaine JJ. Parental care and clutch sizes in North and South American birds. Science. 2000;287:1482–1485. doi: 10.1126/science.287.5457.1482. PubMed DOI
Runyan AM, Blumstein DT. Do individual differences influence flight initiation distance? J. Wildl. Manag. 2004;68:1124–1129. doi: 10.2193/0022-541X(2004)068[1124:DIDIFI]2.0.CO;2. DOI
Guay P-J, et al. Observer effects occur when estimating alert but not flight-initiation distances. Wildl. Res. 2013;40:289. doi: 10.1071/WR13013. DOI
Wilman H, et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology. 2014;95:2027–2027. doi: 10.1890/13-1917.1. DOI
del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & Kirwan, G. Handbook of the Birds of the World Alive (Lynx Edicions, 2020).
Birdlife International. Data Zone. http://datazone.birdlife.org/home (2020).
Global Forest Watch. Global Forest Change. https://data.globalforestwatch.org/ (2020).
Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun.7, 12558 (2016). PubMed PMC
Venter O, et al. Last of the Wild Project, Version 3 (LWP-3): 2009 Human Footprint, 2018 Release. Palisades,: NASA Socioeconomic Data and Applications Center (SEDAC); 2018.
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–448. doi: 10.1038/nature11631. PubMed DOI
Schliep K. P. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–593. doi: 10.1093/bioinformatics/btq706. PubMed DOI PMC
Gabry, J. & Češnovar, R. cmdstanr: R Interface to “CmdStan”. https://mc-stan.org/cmdstanr, https://discourse.mc-stan.org (2021).
R Development Core Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
Vehtari A, Gelman A, Simpson D, Carpenter B, Bürkner PC. Rank-normalization, folding, and localization: an improved R̂ for assessing convergence of MCMC (with discussion) Bayesian Anal. 2021;16:667–718. doi: 10.1214/20-BA1221. DOI
Jones, N. S. & Moriarty, J. Evolutionary inference for function-valued traits: Gaussian process regression on phylogenies. J. R. Soc. Interface10, 20120616 (2013). PubMed PMC
Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 2010;1:103–113. doi: 10.1111/j.2041-210X.2010.00012.x. DOI
Gelman A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 2008;27:2865–2873. doi: 10.1002/sim.3107. PubMed DOI
Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat. Sci. 1992;7:457–472. doi: 10.1214/ss/1177011136. DOI
Leveraging social media and other online data to study animal behavior