Urban birds' tolerance towards humans was largely unaffected by COVID-19 shutdown-induced variation in human presence

. 2024 Jul 17 ; 7 (1) : 874. [epub] 20240717

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39020006

Grantová podpora
REES 003 Česká Zemědělská Univerzita v Praze (Czech University of Life Sciences Prague)
326348 Academy of Finland (Suomen Akatemia)

Odkazy

PubMed 39020006
PubMed Central PMC11255252
DOI 10.1038/s42003-024-06387-z
PII: 10.1038/s42003-024-06387-z
Knihovny.cz E-zdroje

The coronavirus disease 2019 (COVID-19) pandemic and respective shutdowns dramatically altered human activities, potentially changing human pressures on urban-dwelling animals. Here, we use such COVID-19-induced variation in human presence to evaluate, across multiple temporal scales, how urban birds from five countries changed their tolerance towards humans, measured as escape distance. We collected 6369 escape responses for 147 species and found that human numbers in parks at a given hour, day, week or year (before and during shutdowns) had a little effect on birds' escape distances. All effects centered around zero, except for the actual human numbers during escape trial (hourly scale) that correlated negatively, albeit weakly, with escape distance. The results were similar across countries and most species. Our results highlight the resilience of birds to changes in human numbers on multiple temporal scales, the complexities of linking animal fear responses to human behavior, and the challenge of quantifying both simultaneously in situ.

Arctic Centre University of Lapland PO Box 122 96101 Rovaniemi Finland

Deakin Marine School of Life and Environmental Sciences Deakin University Burwood Campus 221 Burwood Highway VIC 3125 Burwood Melbourne Australia

Department of Ecology and Evolutionary Biology University of California 621 Young Drive South Los Angeles CA 90095 USA

Department of Ecology Institute of Biology University of Veterinary Medicine Budapest Rottenbiller u 50 1077 Budapest Hungary

Department of Plant Pathology Institute of Plant Protection Hungarian University of Agriculture and Life Sciences Ménesi út 44 1118 Budapest Hungary

Department of Zoology Faculty of Science Charles University Viničná 7 12844 Prague Czech Republic

Ecologie Systématique Evolution Université Paris Sud CNRS AgroParisTech Université Paris Saclay 91405 Orsay Cedex Paris France

Faculty of Environmental Sciences Czech University of Life Sciences Prague Kamýcká 129 16500 Prague Czechia

Institute for Advanced Study Technical University of Munich 85748 Garching Germany

Institute of Biological Sciences University of Zielona Góra Prof Z Szafrana St 1 65516 Zielona Góra Poland

Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 60365 Brno Czech Republic

Institute of Zoology Poznań University of Life Sciences Wojska Polskiego 71C 60625 Poznań Poland

Ministry of Education Key Laboratory for Biodiversity Sciences and Ecological Engineering College of Life Sciences Beijing Normal University 100875 Beijing China

TUM School of Life Sciences Ecoclimatology Technical University of Munich 85354 Freising Germany

Zobrazit více v PubMed

Fang H, Wang L, Yang Y. Human mobility restrictions and the spread of the Novel Coronavirus (2019-nCoV) in China. J. Public Econ. 2020;191:104272. doi: 10.1016/j.jpubeco.2020.104272. PubMed DOI PMC

Gatto M, et al. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. Proc. Natl Acad. Sci. USA. 2020;117:10484–10491. doi: 10.1073/pnas.2004978117. PubMed DOI PMC

Huang X, Li Z, Jiang Y, Li X, Porter D. Twitter reveals human mobility dynamics during the COVID-19 pandemic. PLoS One. 2020;15:e0241957. doi: 10.1371/journal.pone.0241957. PubMed DOI PMC

Kraemer MUG, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science (1979) 2020;368:493–497. PubMed PMC

Venter ZS, Aunan K, Chowdhury S, Lelieveld J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl Acad. Sci. USA. 2020;117:18984–18990. doi: 10.1073/pnas.2006853117. PubMed DOI PMC

March D, Metcalfe K, Tintoré J, Godley BJ. Tracking the global reduction of marine traffic during the COVID-19 pandemic. Nat. Commun. 2021 12:1. 2021;12:1–12. PubMed PMC

Venter ZS, Barton DN, Gundersen V, Figari H, Nowell M. Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 2020;15:104075. doi: 10.1088/1748-9326/abb396. DOI

Randler C, Tryjanowski P, Jokimäki J, Kaisanlahti-Jokimäki ML, Staller N. SARS-CoV2 (COVID-19) Pandemic Lockdown Influences Nature-Based Recreational Activity: The Case of Birders. Int. J. Environ. Res. Public Health 2020. 2020;17:7310. PubMed PMC

Liu Y, et al. Associations between changes in population mobility in response to the COVID-19 pandemic and socioeconomic factors at the city level in China and country level worldwide: a retrospective, observational study. Lancet Digit Health. 2021;3:e349–e359. doi: 10.1016/S2589-7500(21)00059-5. PubMed DOI PMC

Bates AE, et al. Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biol. Conserv. 2021;263:109175. doi: 10.1016/j.biocon.2021.109175. PubMed DOI PMC

Derryberry EP, Phillips JN, Derryberry GE, Blum MJ, Luther D. Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science (1979) 2020;370:575–579. PubMed

Rutz C, et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 2020;4:1156–1159. doi: 10.1038/s41559-020-1237-z. PubMed DOI

Soto EH, et al. How does the beach ecosystem change without tourists during COVID-19 lockdown? Biol. Conserv. 2021;255:108972. doi: 10.1016/j.biocon.2021.108972. PubMed DOI PMC

Zellmer AJ, et al. What can we learn from wildlife sightings during the COVID‐19 global shutdown? Ecosphere. 2020;11:e03215. doi: 10.1002/ecs2.3215. PubMed DOI PMC

Park M, Lim JT, Wang L, Cook AR, Dickens BL. Urban-Rural Disparities for COVID-19: Evidence from 10 Countries and Areas in the Western Pacific. Health Data Sci. 2021;2021:1–9. doi: 10.34133/2021/9790275. PubMed DOI PMC

Manenti R, et al. The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: Insights from the first European locked down country. Biol. Conserv. 2020;249:108728. doi: 10.1016/j.biocon.2020.108728. PubMed DOI PMC

Gordo O, Brotons L, Herrando S, Gargallo G. Rapid behavioural response of urban birds to COVID-19 lockdown. Proc. R. Soc. B: Biol. Sci. 2021;288:20202513. doi: 10.1098/rspb.2020.2513. PubMed DOI PMC

Schrimpf MB, et al. Reduced human activity during COVID-19 alters avian land use across North America. Sci. Adv. 2021;7:5073–5095. doi: 10.1126/sciadv.abf5073. PubMed DOI PMC

Vardi R, Berger-Tal O, Roll U. iNaturalist insights illuminate COVID-19 effects on large mammals in urban centers. Biol. Conserv. 2021;254:108953. doi: 10.1016/j.biocon.2021.108953. PubMed DOI PMC

Warrington, M. H., Schrimpf, M. B., Des Brisay, P., Taylor, M. E. & Koper, N. Avian behaviour changes in response to human activity during the COVID-19 lockdown in the United Kingdom. PubMed PMC

Wilmers CC, Nisi AC, Ranc N. COVID-19 suppression of human mobility releases mountain lions from a landscape of fear. Curr. Biol. 2021;31:3952–3955.e3. doi: 10.1016/j.cub.2021.06.050. PubMed DOI PMC

Diamant, E. S., MacGregor-Fors, I., Blumstein, D. T. & Yeh, P. J. Urban birds become less fearful following COVID-19 reopenings. PubMed PMC

Montgomery RA, Raupp J, Parkhurst M. Animal Behavioral Responses to the COVID-19 Quietus. Trends Ecol. Evol. 2021;36:184–186. doi: 10.1016/j.tree.2020.12.008. PubMed DOI PMC

Samia DSM, Nakagawa S, Nomura F, Rangel TF, Blumstein DT. Increased tolerance to humans among disturbed wildlife. Nat. Commun. 2015;6:8877. doi: 10.1038/ncomms9877. PubMed DOI PMC

Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. PubMed

Díaz M, et al. The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS One. 2013;8:e64634. doi: 10.1371/journal.pone.0064634. PubMed DOI PMC

Samia DSM, et al. Rural-urban differences in escape behavior of European birds across a latitudinal gradient. Front Ecol. Evol. 2017;5:66. doi: 10.3389/fevo.2017.00066. DOI

Mikula P, et al. Bird tolerance to humans in open tropical ecosystems. Nat. Commun. 2023;14:2146. doi: 10.1038/s41467-023-37936-5. PubMed DOI PMC

Samia DSM, Blumstein DT, Stankowich T, Cooper WE. Fifty years of chasing lizards: new insights advance optimal escape theory. Biol. Rev. 2016;91:349–366. doi: 10.1111/brv.12173. PubMed DOI

Webb NV, Blumstein DT. Variation in Human Disturbance Differentially Affects Predation Risk Assessment in Western Gulls. Condor. 2005;107:178–181. doi: 10.1093/condor/107.1.178. DOI

Mikula P. Pedestrian density influences flight distances of urban birds. Ardea. 2014;102:53–60. doi: 10.5253/078.102.0105. DOI

Mikula P, et al. Face mask-wear did not affect large-scale patterns in escape and alertness of urban and rural birds during the COVID-19 pandemic. Sci. Total Environ. 2021;793:148672. doi: 10.1016/j.scitotenv.2021.148672. PubMed DOI PMC

Morelli F, et al. Are birds more afraid in urban parks or cemeteries? A Latin American study contrasts with results from Europe. Sci. Total Environ. 2023;861:160534. doi: 10.1016/j.scitotenv.2022.160534. PubMed DOI

Díaz M, Møller AP. Lockdown effects on fear revealed direct and indirect effects of human presence on perceived predation risk. Sci. Total Environ. 2023;872:162122. doi: 10.1016/j.scitotenv.2023.162122. PubMed DOI PMC

Stankowich T, Blumstein DT. Fear in animals: a meta-analysis and review of risk assessment. Proc. R. Soc. Lond. B: Biol. Sci. 2005;272:2627–2634. PubMed PMC

Weston MA, McLeod EM, Blumstein DT, Guay P-J. A review of flight-initiation distances and their application to managing disturbance to Australian birds. Emu. 2012;112:269–286. doi: 10.1071/MU12026. DOI

Blumstein DT. Developing an evolutionary ecology of fear: how life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 2006;71:389–399. doi: 10.1016/j.anbehav.2005.05.010. DOI

Burger J. Effects of Motorboats and Personal Watercraft on Flight Behavior over a Colony of Common Terns. Condor. 1998;100:528–534. doi: 10.2307/1369719. DOI

Csomós G, Borza EM, Farkas JZ. Exploring park visitation trends during the Covid-19 pandemic in Hungary by using mobile device location data. Sci. Rep. 2023;13:1–12. doi: 10.1038/s41598-023-38287-3. PubMed DOI PMC

Zhao H, Mailloux BJ, Cook EM, Culligan PJ. Change of urban park usage as a response to the COVID-19 global pandemic. Sci. Rep. 2023;13:1–11. doi: 10.1038/s41598-023-46745-1. PubMed DOI PMC

Volenec ZM, Abraham JO, Becker AD, Dobson AP. Public parks and the pandemic: How park usage has been affected by COVID-19 policies. PLoS One. 2021;16:e0251799. doi: 10.1371/journal.pone.0251799. PubMed DOI PMC

Hale T, et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker) Nat. Hum. Behav. 2021;5:529–538. doi: 10.1038/s41562-021-01079-8. PubMed DOI

Bulla, M. et al. Supporting information for “Urban birds' tolerance towards humans was largely unaffected by COVID-19 shutdown-induced variation in human presence”. GitHub, https://martinbulla.github.io/avian_FID_covid/ (2024). PubMed PMC

Mikula P, et al. Adjusting risk-taking to the annual cycle of long-distance migratory birds. Sci. Rep. 2018;8:13989. doi: 10.1038/s41598-018-32252-1. PubMed DOI PMC

Geng D(Christina), Innes J, Wu W, Wang G. Impacts of COVID-19 pandemic on urban park visitation: a global analysis. J. Res. (Harbin) 2021;32:553–567. doi: 10.1007/s11676-020-01249-w. PubMed DOI PMC

Morelli F, et al. Escape behaviour of birds in urban parks and cemeteries across Europe: Evidence of behavioural adaptation to human activity. Sci. Total Environ. 2018;631–632:803–810. doi: 10.1016/j.scitotenv.2018.03.118. PubMed DOI

Rodriguez-Prieto I, Fernández-Juricic E, Martín J, Regis Y. Antipredator behavior in blackbirds: habituation complements risk allocation. Behav. Ecol. 2009;20:371–377. doi: 10.1093/beheco/arn151. DOI

Cavalli M, Baladrón AV, Isacch JP, Biondi LM, Bó MS. The role of habituation in the adjustment to urban life: An experimental approach with burrowing owls. Behav. Process. 2018;157:250–255. doi: 10.1016/j.beproc.2018.10.011. PubMed DOI

Symonds MRE, et al. Time since urbanization but not encephalisation is associated with increased tolerance of human proximity in birds. Front Ecol. Evol. 2016;4:117. doi: 10.3389/fevo.2016.00117. DOI

Uchida K, Blumstein DT. Habituation or sensitization? Long-term responses of yellow-bellied marmots to human disturbance. Behav. Ecol. 2021;32:668–678. doi: 10.1093/beheco/arab016. DOI

Carrete M, et al. Heritability of fear of humans in urban and rural populations of a bird species. Sci. Rep. 2016;6:31060. doi: 10.1038/srep31060. PubMed DOI PMC

Carrete M, Tella JL. High individual consistency in fear of humans throughout the adult lifespan of rural and urban burrowing owls. Sci. Rep. 2013;3:1–7. doi: 10.1038/srep03524. PubMed DOI PMC

Carrete M, Tella JL. Individual consistency in flight initiation distances in burrowing owls: a new hypothesis on disturbance-induced habitat selection. Biol. Lett. 2010;23:167–170. doi: 10.1098/rsbl.2009.0739. PubMed DOI PMC

Slater C, et al. Camera shy? Motivations, attitudes and beliefs of bird photographers and species-specific avian responses to their activities. Biol. Conserv. 2019;237:327–337. doi: 10.1016/j.biocon.2019.07.016. DOI

Lethlean H, Van Dongen WFD, Kostoglou K, Guay PJ, Weston MA. Joggers cause greater avian disturbance than walkers. Landsc. Urban Plan. 2017;159:42–47. doi: 10.1016/j.landurbplan.2016.08.020. DOI

Radkovic AZ, Van Dongen WFD, Kirao L, Guay P-J, Weston MA. Birdwatchers evoke longer escape distances than pedestrians in some African birds. J. Ecotour. 2019;18:100–106. doi: 10.1080/14724049.2017.1372765. DOI

Sprau P, Dingemanse NJ. An approach to distinguish between plasticity and non-random distributions of behavioral types along urban gradients in a wild passerine bird. Front Ecol. Evol. 2017;5:92. doi: 10.3389/fevo.2017.00092. DOI

Minias P, Włodarczyk R, Minias A, Dziadek J. How birds colonize cities: genetic evidence from a common waterbird, the Eurasian coot. J. Avian Biol. 2017;48:1095–1103. doi: 10.1111/jav.01334. DOI

Indykiewicz, P., Podlaszczuk, P., Janiszewska, A. & Minias, P. Extensive gene flow along the urban–rural gradient in a migratory colonial bird.

Ellenberg U, Mattern T, Seddon PJ. Habituation potential of yellow-eyed penguins depends on sex, character and previous experience with humans. Anim. Behav. 2009;77:289–296. doi: 10.1016/j.anbehav.2008.09.021. DOI

Rankin CH, et al. Habituation revisited: An updated and revised description of the behavioral characteristics of habituation. Neurobiol. Learn Mem. 2009;92:135–138. doi: 10.1016/j.nlm.2008.09.012. PubMed DOI PMC

Zaccaroni M, Ciuffreda M, Paganin M, Beani L. Does an early aversive experience to humans modify antipredator behaviour in adult Rock partridges? Ethol. Ecol. Evol. 2010;19:193–200. doi: 10.1080/08927014.2007.9522561. DOI

Vincze E, et al. Habituation to human disturbance is faster in urban than rural house sparrows. Behav. Ecol. 2016;27:1304–1313. doi: 10.1093/beheco/arw047. DOI

Čapkun-Huot C, Blumstein DT, Garant D, Sol D, Réale D. Toward a unified framework for studying behavioural tolerance. Trends Ecol. Evol. 2024;39:446–455. doi: 10.1016/j.tree.2023.12.006. PubMed DOI

Sanderson EW, et al. The Human Footprint and the Last of the Wild: The human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. Bioscience. 2002;52:891–904. doi: 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2. DOI

Blumstein DT, Sanchez M, Philson CS, Bliard L. Is flight initiation distance associated with longer-term survival in yellow-bellied marmots, Marmota flaviventer? Anim. Behav. 2023;202:21–28. doi: 10.1016/j.anbehav.2023.05.013. DOI

Marzluff, J. M., Bowman, R. & Donnelly, R. A historical perspective on urban bird research: trend, terms, and approaches. in

Ydenberg RC, Dill LM. The economics of fleeing from predators. Adv. Study Behav. 1986;16:229–249. doi: 10.1016/S0065-3454(08)60192-8. DOI

Albrecht T, Klvaňa P. Nest Crypsis, Reproductive Value of a Clutch and Escape Decisions in Incubating Female Mallards Anas platyrhynchos. Ethology. 2004;110:603–613. doi: 10.1111/j.1439-0310.2004.00992.x. DOI

Blumstein, D. T., Samia, D. S. M., Stankowich, T. & Cooper, W. E. Best practice for the study of escape behavior. in

Guay P-J, et al. Observer effects occur when estimating alert but not flight-initiation distances. Wildl. Res. 2013;40:289. doi: 10.1071/WR13013. DOI

Bjørvik LM, Dale S, Hermansen GH, Munishi PKT, Moe SR. Bird flight initiation distances in relation to distance from human settlements in a Tanzanian floodplain habitat. J. Ornithol. 2015;156:239–246. doi: 10.1007/s10336-014-1121-1. DOI

Kalb N, Anger F, Randler C. Flight initiation distance and escape behavior in the black redstart (Phoenicurus ochruros) Ethology. 2019;125:430–438. doi: 10.1111/eth.12867. DOI

Sreekar R, Goodale E, Harrison RD. Flight initiation distance as behavioral indicator of hunting pressure: a case study of the sooty-headed bulbul (Pycnonotus aurigaster) in Xishuangbanna, SW China. Trop. Conserv Sci. 2020;8:505–512. doi: 10.1177/194008291500800214. DOI

Braimoh, B. et al. Managing human disturbance: factors influencing flight-initiation distance of birds in a West African nature reserve.

de Palma A, Vosough S, Liao F. An overview of effects of COVID-19 on mobility and lifestyle: 18 months since the outbreak. Transp. Res Part A Policy Pr. 2022;159:372–397. doi: 10.1016/j.tra.2022.03.024. PubMed DOI PMC

Kong X, Zhang A, Xiao X, Das S, Zhang Y. Work from home in the post-COVID world. Case Stud. Transp. Policy. 2022;10:1118. doi: 10.1016/j.cstp.2022.04.002. PubMed DOI PMC

Morelli F, et al. Contagious fear: Escape behavior increases with flock size in European gregarious birds. Ecol. Evol. 2019;9:6096–6104. doi: 10.1002/ece3.5193. PubMed DOI PMC

Reynolds C, Henry DAW, Tye DRC, Tye ND. Defining separation zones for coastal birds at a wetland of global importance. Wildl. Res. 2020;48:134–141. doi: 10.1071/WR20098. DOI

Piratelli AJ, Favoretto GR, de Almeida Maximiano MF. Factors affecting escape distance in birds. Zoologia (Curitiba) 2015;32:438–444. doi: 10.1590/s1984-46702015000600002. DOI

Legagneux, P. & Ducatez, S. European birds adjust their flight initiation distance to road speed limits. PubMed PMC

Wilman H, et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology. 2014;95:2027–2027. doi: 10.1890/13-1917.1. DOI

Bulla M, et al. Unexpected diversity in socially synchronized rhythms of shorebirds. Nature. 2016;540:109–113. doi: 10.1038/nature20563. PubMed DOI

Schielzeth H, Forstmeier W. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 2009;20:416–420. doi: 10.1093/beheco/arn145. PubMed DOI PMC

Barr DJ, Levy R, Scheepers C, Tily HJ. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. Mem. Lang. 2013;68:255–278. doi: 10.1016/j.jml.2012.11.001. PubMed DOI PMC

Lumley, T. rmeta: Meta-Analysis. https://cran.r-project.org/web/packages/rmeta/index.html (2018).

Cooper WE, Samia DSM, Blumstein DT. FEAR, spontaneity, and artifact in economic escape theory: A review and prospectus. Adv. Study Behav. 2015;47:147–179. doi: 10.1016/bs.asb.2015.02.002. DOI

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Gelman, A. & Hill, J.

Gelman, A. & Su, Y.-S. arm: Data analysis using regression and multilevel/hierarchical models. http://CRAN.R-project.org/package=arm (2018).

Uyeda JC, Zenil-Ferguson R, Pennell MW. Rethinking phylogenetic comparative methods. Syst. Biol. 2018;67:1091–1109. doi: 10.1093/sysbio/syy031. PubMed DOI

Stan Development Team. Stan Modeling Language Users Guide and Reference Manual, l, Version 2.28. (2021).

Bürkner PC. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 2017;80:1–28. doi: 10.18637/jss.v080.i01. DOI

Bürkner PC. Advanced Bayesian multilevel modeling with the R package brms. R. J. 2018;10:395–411. doi: 10.32614/RJ-2018-017. DOI

Hadfield JD. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 2010;33:1–22. doi: 10.18637/jss.v033.i02. DOI

Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–593. doi: 10.1093/bioinformatics/btq706. PubMed DOI PMC

Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–448. doi: 10.1038/nature11631. PubMed DOI

Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations)? J. Comput. Graphical Stat. 1998;7:434–455. doi: 10.1080/10618600.1998.10474787. DOI

Wickham, H.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...