Contagious fear: Escape behavior increases with flock size in European gregarious birds
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
31161021
PubMed Central
PMC6540657
DOI
10.1002/ece3.5193
PII: ECE35193
Knihovny.cz E-resources
- Keywords
- FID, birds, dilution effect, fear response, gregariousness, human disturbance, social interactions, vigilance,
- Publication type
- Journal Article MeSH
Flight initiation distance (FID), the distance at which individuals take flight when approached by a potential (human) predator, is a tool for understanding predator-prey interactions. Among the factors affecting FID, tests of effects of group size (i.e., number of potential prey) on FID have yielded contrasting results. Group size or flock size could either affect FID negatively (i.e., the dilution effect caused by the presence of many individuals) or positively (i.e., increased vigilance due to more eyes scanning for predators). These effects may be associated with gregarious species, because such species should be better adapted to exploiting information from other individuals in the group than nongregarious species. Sociality may explain why earlier findings on group size versus FID have yielded different conclusions. Here, we analyzed how flock size affected bird FID in eight European countries. A phylogenetic generalized least square regression model was used to investigate changes in escape behavior of bird species in relation to number of individuals in the flock, starting distance, diet, latitude, and type of habitat. Flock size of different bird species influenced how species responded to perceived threats. We found that gregarious birds reacted to a potential predator earlier (longer FID) when aggregated in large flocks. These results support a higher vigilance arising from many eyes scanning in birds, suggesting that sociality may be a key factor in the evolution of antipredator behavior both in urban and rural areas. Finally, future studies comparing FID must pay explicit attention to the number of individuals in flocks of gregarious species.
Department of Biogeography and Global Change Museo Nacional de Ciencias Naturales Madrid Spain
Department of Plant Pathology Szent István University Budapest Hungary
Department of Zoology and Laboratory of Ornithology Palacky University Olomouc Czech Republic
Department of Zoology Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
Institute of Zoology Poznań University of Life Sciences Poznan Poland
Nature Inventory and EIA services Arctic Centre University of Lapland Rovaniemi Finland
See more in PubMed
Alexander, R. D. (1974). The evolution of social behavior. Annual Review of Ecology and Systematics, 5, 325–383. 10.1146/annurev.es.05.110174.001545 DOI
Beauchamp, G. (2008). What is the magnitude of the group‐size effect on vigilance? Behavioral Ecology, 19, 1361–1368. 10.1371/journal.pone.0018631 DOI
Blomberg, S. P. , & Garland, T. (2003). Tempo and mode in evolution: Phylogenetic inertia, adaptation and comparative methods. Journal of Evolutionary Biology, 15, 899–910. 10.1046/j.1420-9101.2002.00472.x DOI
Blomberg, S. P. , Garland, T. , & Ives, A. R. A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717–745. 10.1111/j.0014-3820.2003.tb00285.x PubMed DOI
Blumstein, D. T. (2006). Developing an evolutionary ecology of fear: How life history and natural history traits affect disturbance tolerance in birds. Animal Behaviour, 71, 389–399. 10.1016/j.anbehav.2005.05.010 DOI
Blumstein, D. T. (2013). Flight‐initiation distance in birds is dependent on intruder starting distance. The Journal of Wildlife Management, 67, 852–857. 10.2307/3802692 DOI
Bötsch, Y. , Gugelmann, S. , Tablado, Z. , & Jenni, L. (2018). Effect of human recreation on bird anti‐predatory response. PeerJ, 6, e5093 10.7717/peerj.5093 PubMed DOI PMC
Burger, J. , & Gochfeld, M. (1991). Human activity influence and diurnal and nocturnal foraging of Sanderlings (Calidris alba). Condor, 93, 259–265. 10.2307/1368941 DOI
Burger, J. , Gochfeld, M. , Jenkins, C. D. , & Lesser, F. (2010). Effect of approaching boats on nesting black skimmers: Using response distances to establish protective buffer zones. Journal of Wildlife Management, 74, 102–108. 10.2193/2008-576 DOI
Caro, T. M. (2005). Antipredator defenses in birds and mammals. Chicago, IL and London, UK: University of Chicago Press.
Carrete, M. , & Tella, J. L. (2013). High individual consistency in fear of humans throughout the adult lifespan of rural and urban burrowing owls. Scientific Reports, 3, 3524 10.1038/srep03524 PubMed DOI PMC
Cooper, J. W. E. , Pyron, R. A. , & Garland, T. (2014) Island tameness: living on islands reduces flight initiation distance. Proceedings of the Royal Society B: Biological Sciences, 281, 20133019 10.1098/rspb.2013.3019 PubMed DOI PMC
Cooper, W. E. J. , & Blumstein, D. T. (2015). Escaping from predators: An integrative view of escape decisions. Cambridge, UK: Cambridge University Press.
Cramp, S. , & Perrins, C. (1994). The birds of the western Palearctic. Oxford, UK: Oxford University Press.
Deboelpaep, E. , Keleman, P. J. , Vanschoenwinkel, B. , & Koedam, N. (2018). Gallant geese, fearful flocks? Flock size and heterospecifics alter the escape behaviour of an invasive goose. Belgian Journal of Zoology, 148, 135–147. 10.26496/bjz.2018.23 DOI
Díaz, M. , Møller, A. P. , Flensted‐Jensen, E. , Grim, T. , Ibáñez‐Álamo, J. D. , Jokimäki, J. , … Tryjanowski, P. (2013). The geography of fear: A latitudinal gradient in anti‐predator escape distances of birds across Europe. PLoS ONE, 8, e64634 10.1371/journal.pone.0064634 PubMed DOI PMC
Emlen, J. T. (1952). Flocking behavior in birds. The Auk, 69, 160–170. 10.2307/4081266 DOI
Fernández‐Juricic, E. , Blumstein, D. T. , Abrica, G. , Manriquez, L. , Adams, L. B. , Adams, R. , … Rodriguez‐Prieto, I. (2006). Relationships of anti‐predator escape and post‐escape responses with body mass and morphology: A comparative avian study. Evolutionary Ecology Research, 8, 731–752.
Fernández‐Juricic, E. , Jimenez, M. D. , & Lucas, E. (2002). Factors affecting intra‐ and inter‐specific variations in the difference between alert distances and flight distances for birds in forested habitats. Canadian Journal of Zoology, 80, 1212–1220. 10.1139/z02-104 DOI
Frid, A. , & Dill, L. M. (2002). Human‐caused disturbance stimuli as a form of predation risk. Conservation Ecology, 6, 11 10.5751/ES-00404-060111 DOI
Garamszegi, L. Z. (2014). Uncertainties Due to Within-Species Variation in Comparative Studies: Measurement Errors and Statistical Weights In Garamszegi L. Z., (Ed.). Modern phylogenetic comparative methods and their application in evolutionary biology. New York, NY: Springer Verlag.
Geist, C. , Liao, J. , Libby, S. , & Blumstein, D. T. (2001). Does intruder group size and orientation affect flight initiation distance in birds? Animal Biodiversity and Conservation, 28, 69–73.
Glover, H. K. , Weston, M. A. , Maguire, G. S. , Miller, K. K. , & Christie, B. A. (2011). Towards ecologically meaningful and socially acceptable buffers: Response distances of shorebirds in Victoria, Australia, to human disturbance. Landscape and Urban Planning, 103, 326–334. 10.1016/j.landurbplan.2011.08.006 DOI
Griffin, A. S. (2004). Social learning about predators: A review and prospectus. Animal Learning & Behavior, 32, 131–140. 10.3758/BF03196014 PubMed DOI
Guay, P.‐J. , Lorenz, R. D. A. , Robinson, R. W. , Symonds, M. R. E. , & Weston, M. A. (2013). Distance from water, sex and approach direction influence flight distances among habituated black swans. Ethology, 119, 552–558. 10.1111/eth.12094 DOI
Guay, P.‐J. , McLeod, E. M. , Cross, R. , Formby, A. J. , Maldonado, S. P. , Stafford‐Bell, R. E. , … Weston, M. A. (2013b). Observer effects occur when estimating alert but not flight‐initiation distances. Wildlife Research, 40, 289–293.
Guay, P.‐J. , van Dongen, W. F. D. , Robinson, R. W. , Blumstein, D. T. , & Weston, M. A. (2016). AvianBuffer: An interactive tool for characterising and managing wildlife fear responses. Ambio, 45, 841–851. 10.1007/s13280-016-0779-4 PubMed DOI PMC
Hediger, H. (1934). Zur Biologie und Psychologie der Flucht bei Tieren. Biologisches Zentralblatt, 54, 21–40.
Hemmingsen, A. (1951). The relation of shyness (flushing distance) to body size. Spolia Zool Musei Hauniensis, 11, 74–76.
Hingee, M. , & Magrath, R. D. (2009). Flights of fear: A mechanical wing whistle sounds the alarm in a flocking bird. Proceedings of the Royal Society B: Biological Sciences, 276, 4173–4179. 10.1098/rspb.2009.1110. PubMed DOI PMC
Holtmann, B. , Santos, E. S. A. , Lara, C. E. , & Nakagawa, S. (2017). Personality‐matching habitat choice, rather than behavioural plasticity, is a likely driver of a phenotype‐environment covariance. Proceedings of the Royal Society B: Biological Sciences, 284, 20170943 10.1098/rspb.2017.0943 PubMed DOI PMC
Jetz, W. , Thomas, G. H. , Joy, J. B. , Hartmann, K. , & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491, 444–448. 10.1038/nature11631 PubMed DOI
Jetz, W. , Thomas, G. H. , Joy, J. B. , Redding, D. W. , Hartmann, K. , & Mooers, A. Ø. (2014). Global distribution and conservation of evolutionary distinctness in birds. Current Biology, 24, 919–930. 10.1016/j.cub.2014.03.011 PubMed DOI
Keck, F. , Rimet, F. , Bouchez, A. , & Franc, A. (2016). Phylosignal: An R package to measure, test, and explore the phylogenetic signal. Ecology and Evolution, 6, 2774–2780. 10.1002/ece3.2051 PubMed DOI PMC
Krebs, J. R. , MacRoberts, M. H. , & Cullen, J. M. (1972). Flocking and feeding in the Great tit Parus major ‐ An experimental study. Ibis, 114, 507–530. 10.1111/j.1474-919X.1972.tb00852.x DOI
Laursen, K. , Kahlert, J. , & Frikke, J. (2005). Factors affecting escape distances of staging waterbirds. Wildlife Biology, 11, 13–19. 10.2981/0909-6396(2005)11[13:FAEDOS]2.0.CO;2 DOI
Laursen, K. , Møller, A. P. , & Holm, T. E. (2016). Dynamic group size and displacement as avoidance strategies by eiders in response to hunting. Wildlife Biology, 22, 174–181. 10.2981/wlb.00197 DOI
Lazarus, J. (1979). The early warning function of flocking in birds: An experimental study with captive quelea. Animal Behaviour, 27, 855–865. 10.1016/0003-3472(79)90023-X DOI
Legagneux, P. , & Ducatez, S. (2013). European birds adjust their flight initiation distance to road speed limits. Biology Letters, 9, 20130417 10.1098/rsbl.2013.0417 PubMed DOI PMC
Liker, A. , & Bókony, V. (2009). Larger groups are more successful in innovative problem solving in house sparrows. Proceedings of the National Academy of Sciences of the United States of America, 106, 7893–7898. 10.1073/pnas.0900042106 PubMed DOI PMC
Lima, S. L. (1995). Back to the basics of anti‐predatory vigilance: The group‐size effect. Animal Behaviour, 49, 11–20. 10.1016/0003-3472(95)80149-9 DOI
Lima, S. L. , & Dill, L. M. (1990). Behavioral decisions made under the risk of predation: A review and prospectus. Canadian Journal of Zoology, 68, 619–640. 10.1139/z90-092 DOI
Maddison, W. P. , & Maddison, D. R. (2018). Mesquite: A modular system for evolutionary analysis. Version 3.51.
Marzluff, J. , Bowman, R. , & Donnelly, R. (2001). Avian ecology and conservation in an urbanizing world. New York, NY: Springer Science.
Mikula, P. (2014). Pedestrian density influences flight distances of urban birds. Ardea, 102, 53–60. 10.5253/078.102.0105 DOI
Mikula, P. , Díaz, M. , Albrecht, T. , Jokimäki, J. , Kaisanlahti‐Jokimäki, M. L. , Kroitero, G. , … Hromada, M. (2018). Adjusting risk‐taking to the annual cycle of long‐distance migratory birds. Scientific Reports, 8, 13989 10.1038/s41598-018-32252-1 PubMed DOI PMC
Miller, R. C. (1922). The significance of the gregarious habit. Ecology, 3, 122–126. 10.2307/1929145 DOI
Møller, A. P. (2008a). Flight distance and population trends in European breeding birds. Behavioral Ecology, 19, 1095–1102. 10.1093/beheco/arn103 DOI
Møller, A. P. (2008b). Interactions between interactions: Predator‐prey, parasite‐host, and mutualistic interactions. Annals of the New York Academy of Sciences, 1133, 180–186. 10.1196/annals.1438.007 PubMed DOI
Møller, A. P. (2008c). Flight distance of urban birds, predation and selection for urban life. Behavioral Ecology and Sociobiology, 63, 63–75. 10.1038/srep13723 DOI
Møller, A. P. (2012). Urban areas as refuges from predators and flight distance of prey. Behavioral Ecology, 23, 1030–1035. 10.1093/beheco/ars067 DOI
Møller, A. P. (2014). Life history, predation and flight initiation distance in a migratory bird. Journal of Evolutionary Biology, 27, 1105–1113. 10.1111/jeb.12399 PubMed DOI
Møller, A. P. (2015). Birds In Cooper W. E. J., & Blumstein D. T. (Eds.), Escaping from predators: An integrative view of escape decisions and refuge use (pp. 88–112). Cambridge, UK: Cambridge University Press.
Møller, A. P. , Berthold, P. , & Fiedler, W. (2010). Effects of climate change on birds. Oxford, UK: Oxford University Press.
Møller, A. P. , Erritzøe, H. , & Erritzøe, J. (2011). A behavioral ecology approach to traffic accidents: Interspecific variation in causes of traffic casualties among birds. Zoological Research, 32, 115–127. 10.3724/SP.J.1141.2011.02115 PubMed DOI
Møller, A. P. , Grim, T. , Ibáñez‐Álamo, J. D. , Markó, G. , & Tryjanowski, P. (2013). Change in flight initiation distance between urban and rural habitats following a cold winter. Behavioral Ecology, 24, 1211–1217. 10.1093/beheco/art054 DOI
Møller, A. P. , Nielsen, J. T. , & Garamszegi, L. Z. (2008). Risk taking by singing males. Behavioral Ecology, 19, 41–53. 10.1093/beheco/arm098 DOI
Møller, A. P. , Samia, D. S. M. , Weston, M. A. , Guay, P. J. , & Blumstein, D. T. (2016). Flight initiation distances in relation to sexual dichromatism and body size in birds from three continents. Biological Journal of the Linnean Society, 117, 823–831. 10.1111/bij.12706 DOI
Møller, A. P. , & Tryjanowski, P. (2014). Direction of approach by predators and flight initiation distance of urban and rural populations of birds. Behavioral Ecology, 25, 960–966. 10.1093/beheco/aru073 DOI
Morelli, F. , Mikula, P. , Benedetti, Y. , Bussière, R. , Jerzak, L. , & Tryjanowski, P. (2018). Escape behaviour of birds in urban parks and cemeteries across Europe: Evidence of behavioural adaptation to human activity. Science of the Total Environment, 631–632, 803–810. 10.1016/j.scitotenv.2018.03.118 PubMed DOI
Olson, R. S. , Haley, P. B. , Dyer, F. C. , & Adami, C. (2015). Exploring the evolution of a trade‐off between vigilance and foraging in group‐living organisms. Royal Society Open Science, 2, 150135 10.1098/rsos.150135 PubMed DOI PMC
Paradis, E. , Claude, J. , & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290. 10.1093/bioinformatics/btg412 PubMed DOI
Pearman, P. B. , Lavergne, S. , Roquet, C. , Wüest, R. , Zimmermann, N. E. , & Thuiller, W. (2014). Phylogenetic patterns of climatic, habitat and trophic niches in a European avian assemblage. Global Ecology and Biogeography, 23, 414–424. 10.1111/geb.12127 PubMed DOI PMC
Pinheiro, J. , Bates, D. , DebRoy, S. , Sarkar, D. , &R Core Team .(2017). nlme: Linear and nonlinear mixed effects models. R package version 3.1‐131.
Piratelli, A. J. , Favoretto, G. R. , & de Almeida Maximiano, M. F. (2015). Factors affecting escape distance in birds. Zoologia (Curitiba), 32, 438–444. 10.1590/s1984-46702015000600002 DOI
Pulliam, H. (1973). On the advantages of flocking. Journal of Theoretical Biology, 38, 419–422. 10.1016/0022-5193(73)90184-7 PubMed DOI
R Development Core Team . (2017). R: A Language and Environment for Statistical Computing.
Roberts, G. (1996). Why individual vigilance declines as group size increases. Animal Behaviour, 51, 1077–1086. 10.1006/anbe.1996.0109 DOI
Samia, D. S. M. , Blumstein, D. T. , Diaz, M. , Grim, T. , Ibáñez‐Álamo, J. D. , Jokimäki, J. , … Møller, A. P. (2017). Rural‐urban differences in escape behavior of European birds across a latitudinal gradient. Frontiers in Ecology and Evolution, 5, 66 10.3389/fevo.2017.00066 DOI
Sol, D. , Maspons, J. , Gonzalez‐Voyer, A. , Morales‐Castilla, I. , Garamszegi, L. Z. , & Møller, A. P. (2018). Risk‐taking behavior, urbanization and the pace of life in birds. Behavioral Ecology and Sociobiology, 72, 59 10.1007/s00265-018-2463-0 DOI
Stankowich, T. , & Blumstein, D. T. (2005). Fear in animals: a meta‐analysis and review of risk assessment. Proceedings of the Royal Society B: Biological Sciences, 272, 2627–2634. 10.1098/rspb.2005.3251. PubMed DOI PMC
Tätte, K. , Møller, A. P. , & Mänd, R. (2018). Towards an integrated view of escape decisions in birds: Relationship between flight initiation distance and distance fled. Animal Behaviour, 136, 75–86. 10.1016/j.anbehav.2017.12.008 DOI
Treisman, M. (1975). Predation and the evolution of gregariousness. I. Models for concealment and evasion. Animal Behaviour, 23, 779–800. 10.1016/0003-3472(75)90106-2 DOI
Triola, M. F. (2012). Elementary statistics, 12th ed. London, UK: Pearson International.
van Dongen, W. F. D. , Robinson, R. W. , Weston, M. A. , Mulder, R. A. , & Guay, P.‐J. (2015). Variation at the DRD4 locus is associated with wariness and local site selection in urban black swans. BMC Evolutionary Biology, 15, 253 10.1186/s12862-015-0533-8 PubMed DOI PMC
Wang, Z. , Li, Z. , Beauchamp, G. , & Jiang, Z. (2011). Flock size and human disturbance affect vigilance of endangered red‐crowned cranes (Grus japonensis). Biological Conservation, 144, 101–105. 10.1016/j.biocon.2010.06.025 DOI
Weston, M. A. , Ju, Y.‐K. , Guay, P.‐J. , & Naismith, C. (2018). A test of the “Leave Early and Avoid Detection” (LEAD) hypothesis for passive nest defenders. The Wilson Bulletin, 130, 1011–1013. 10.1676/1559-4491.130.4.1011 DOI
Weston, M. A. , Mcleod, E. M. , Blumstein, D. T. , & Guay, P. J. (2012). A review of flight‐initiation distances and their application to managing disturbance to Australian birds. Emu ‐ Austral Ornithology, 112, 269–286. 10.1071/MU12026 DOI
Yasué, M. (2005). The effects of human presence, flock size and prey density on shorebird foraging rates. Journal of Ethology, 23, 199–204. 10.1007/s10164-005-0152-8 DOI
Ydenberg, R. C. , & Dill, L. M. (1986). The economics of fleeing from predators. Advances in the Study of Behavior, 16, 229–249. 10.1016/S0065-3454(08)60192-8 DOI
Yu, J. , Wang, L. , Xing, X. , Yang, C. , Ma, J. , Møller, A. P. , … Liang, W. (2016). Barn swallows (Hirundo rustica) differentiate between common cuckoo and sparrowhawk in China: Alarm calls convey information on threat. Behavioral Ecology and Sociobiology, 70, 171–178. 10.1007/s00265-015-2036-4 DOI
Yu, J. , Xing, X. , Jiang, Y. , Liang, W. , Wang, H. , & Møller, A. P. (2017). Alarm call‐based discrimination between common cuckoo and Eurasian sparrowhawk in a Chinese population of great tits. Ethology, 123, 542–550. 10.1111/eth.12624 DOI
Resident birds are more behaviourally plastic than migrants
Dryad
10.5061/dryad.3q25r77