• This record comes from PubMed

A Novel Substituted Benzo[g]quinoxaline-Based Cyclometalated Ru(II) Complex as a Biocompatible Membrane-Targeted PDT Colon Cancer Stem Cell Agent

. 2024 Dec 12 ; 67 (23) : 21470-21485. [epub] 20241202

Language English Country United States Media print-electronic

Document type Journal Article

Herein, we describe and investigate biological activity of three octahedral ruthenium(II) complexes of the type [Ru(C∧N)(phen)2]+, RuL1-RuL3, containing a π-expansive cyclometalating substituted benzo[g]quinoxaline ligand (C∧N ligand) (phen = 1,10-phenanthroline). Compounds RuL1-RuL3 in cervical, melanoma, and colon human cancer cells exhibit high phototoxicity after irradiation with light (particularly blue), with the phototoxicity index reaching 100 for the complex RuL2 in most sensitive HCT116 cells. RuL2 accumulates in the cellular membranes. If irradiated, it induces lipid peroxidation, likely connected with photoinduced ROS generation. Oxidative damage to the fatty acids leads to the attenuation of the membranes, the activation of caspase 3, and the triggering of the apoptotic pathway, thus implementing membrane-localized photodynamic therapy. RuL2 is the first photoactive ruthenium-based complex capable of killing the hardly treatable colon cancer stem cells, a highly resilient subpopulation within a heterogeneous tumor mass, responsible for tumor recurrence and the metastatic progression of cancer.

See more in PubMed

Hanahan D.; Weinberg R. A. Hallmarks of cancer: the next generation. Cell 2011, 144, 646–674. 10.1016/j.cell.2011.02.013. PubMed DOI

Debaugnies M.; Rodríguez-Acebes S.; Blondeau J.; Parent M.-A.; Zocco M.; Song Y.; de Maertelaer V.; Moers V.; Latil M.; Dubois C.; Coulonval K.; Impens F.; Van Haver D.; Dufour S.; Uemura A.; Sotiropoulou P. A.; Méndez J.; Blanpain C. RHOJ controls EMT-associated resistance to chemotherapy. Nature 2023, 616, 168–175. 10.1038/s41586-023-05838-7. PubMed DOI PMC

Shahbandi A.; Chiu F.-Y.; Ungerleider N. A.; Kvadas R.; Mheidly Z.; Sun M. J. S.; Tian D.; Waizman D. A.; Anderson A. Y.; Machado H. L.; Pursell Z. F.; Rao S. G.; Jackson J. G. Breast cancer cells survive chemotherapy by activating targetable immune-modulatory programs characterized by PD-L1 or CD80. Nature Cancer 2022, 3, 1513–1533. 10.1038/s43018-022-00466-y. PubMed DOI PMC

Rottenberg S.; Disler C.; Perego P. The rediscovery of platinum-based cancer therapy. Nature Rev. Cancer 2021, 21, 37–50. 10.1038/s41568-020-00308-y. PubMed DOI

Wu Y.; Liu Q.; Li S.; Yu W.; Fan H.; Yao S.; He W.; Guo Z.; Chen Y. Mitochondria targeting photoredox catalyst-induced pyroptosis for enhanced immunotherapy against hypoxic tumor cells. Chem. Engin. J. 2024, 490, 151599.10.1016/j.cej.2024.151599. DOI

Xie Z.; Cao B.; Zhao J.; Liu M.; Lao Y.; Luo H.; Zhong Z.; Xiong X.; Wei W.; Zou T. Ion pairing enables targeted prodrug activation via red light photocatalysis: A proof-of-concept study with anticancer gold complexes. J. Am. Chem. Soc. 2024, 146, 8547–8556. 10.1021/jacs.4c00408. PubMed DOI

Li C.; Pang Y.; Xu Y.; Lu M.; Tu L.; Li Q.; Sharma A.; Guo Z.; Li X.; Sun Y. Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications. Chem. Soc. Rev. 2023, 52, 4392–4442. 10.1039/D3CS00227F. PubMed DOI

Bonnet S. Ruthenium-based photoactivated chemotherapy. J. Am. Chem. Soc. 2023, 145, 23397–23415. 10.1021/jacs.3c01135. PubMed DOI PMC

Havrylyuk D.; Hachey A. C.; Fenton A.; Heidary D. K.; Glazer E. C. Ru(II) photocages enable precise control over enzyme activity with red light. Nat. Commun. 2022, 13, 3636.10.1038/s41467-022-31269-5. PubMed DOI PMC

Huang H.; Banerjee S.; Qiu K.; Zhang P.; Blacque O.; Malcomson T.; Paterson M. J.; Clarkson G. J.; Staniforth M.; Stavros V. G.; Gasser G.; Chao H.; Sadler P. J. Targeted photoredox catalysis in cancer cells. Nat. Chem. 2019, 11, 1041–1048. 10.1038/s41557-019-0328-4. PubMed DOI

Karges J.; Kuang S.; Maschietto F.; Blacque O.; Ciofini I.; Chao H.; Gasser G. Rationally designed ruthenium complexes for 1- and 2-photon photodynamic therapy. Nat. Commun. 2020, 11, 3262.10.1038/s41467-020-16993-0. PubMed DOI PMC

Karges J.; Heinemann F.; Jakubaszek M.; Maschietto F.; Subecz C.; Dotou M.; Vinck R.; Blacque O.; Tharaud M.; Goud B.; Viñuelas Zahínos E.; Spingler B.; Ciofini I.; Gasser G. Rationally designed long-wavelength absorbing Ru(II) polypyridyl complexes as photosensitizers for photodynamic therapy. J. Am. Chem. Soc. 2020, 142, 6578–6587. 10.1021/jacs.9b13620. PubMed DOI

The National Library of Medicine. Intravesical photodynamic therapy (″PDT″) in BCG-unresponsive/ intolerant non-muscle invasive bladder cancer (″NMIBC″) patients; Theralase® Technologies Inc., 2019. https://clinicaltrials.gov/study/NCT03945162.

Monro S.; Colón K. L.; Yin H.; Roque J.; Konda P.; Gujar S.; Thummel R. P.; Lilge L.; Cameron C. G.; McFarland S. A. Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev. 2019, 119, 797–828. 10.1021/acs.chemrev.8b00211. PubMed DOI PMC

Tu L.; Li C.; Ding Q.; Sharma A.; Li M.; Li J.; Kim J. S.; Sun Y. Augmenting cancer therapy with a supramolecular immunogenic cell death inducer: A lysosome-targeted NIR-light-activated ruthenium(II) metallacycle. J. Am. Chem. Soc. 2024, 146, 8991–9003. 10.1021/jacs.3c13224. PubMed DOI

Wu Y.; Li S.; Chen Y.; He W.; Guo Z. Recent advances in noble metal complex based photodynamic therapy. Chem. Sci. 2022, 13, 5085–5106. 10.1039/D1SC05478C. PubMed DOI PMC

Karges J. Clinical development of metal complexes as photosensitizers for photodynamic therapy of cancer. Angew. Chem., Int. Ed. 2022, 61 (5), e20211223610.1002/anie.202112236. PubMed DOI

Holden L.; Curley R. C.; Avella G.; Long C.; Keyes T. E. Targeting mitochondrial guanine quadruplexes for photoactivatable chemotherapy in normoxic and hypoxic environments. Angew. Chem., Int. Ed. 2024, 63, e20240858110.1002/anie.202408581. PubMed DOI

Wei L.; Kushwaha R.; Sadhukhan T.; Wu H.; Dao A.; Zhang Z.; Zhu H.; Gong Q.; Ru J.; Liang C.; Zhang P.; Banerjee S.; Huang H. Dinuclear tridentate Ru(II) complex with strong near-infrared light-triggered anticancer activity. J. Med. Chem. 2024, 67, 11125–11137. 10.1021/acs.jmedchem.4c00624. PubMed DOI

Konda P.; Roque Iii J. A.; Lifshits L. M.; Alcos A.; Azzam E.; Shi G.; Cameron C. G.; McFarland S. A.; Gujar S. Photodynamic therapy of melanoma with new, structurally similar, NIR-absorbing ruthenium (II) complexes promotes tumor growth control via distinct hallmarks of immunogenic cell death. Am. J. Cancer Res. 2022, 12, 210–228. PubMed PMC

Fennes A.; Montesdeoca N.; Papadopoulos Z.; Karges J. Rational design of a red-light absorbing ruthenium polypyridine complex as a photosensitizer for photodynamic therapy. Chem. Commun. 2024, 60, 10724.10.1039/D4CC04126G. PubMed DOI

Ortega-Forte E.; Rovira A.; López-Corrales M.; Hernández-García A.; Ballester F. J.; Izquierdo-García E.; Jordà-Redondo M.; Bosch M.; Nonell S.; Santana M. D.; Ruiz J.; Marchán V.; Gasser G. A near-infrared light-activatable Ru(II)-coumarin photosensitizer active under hypoxic conditions. Chem. Sci. 2023, 14, 7170–7184. 10.1039/D3SC01844J. PubMed DOI PMC

Li J.; Zeng L.; Wang Z.; Chen H.; Fang S.; Wang J.; Cai C.-Y.; Xing E.; Liao X.; Li Z.-W.; Ashby J. C. R.; Chen Z.-S.; Chao H.; Pan Y. Cycloruthenated self-assembly with metabolic inhibition to efficiently overcome multidrug resistance in cancers. Adv. Mater. 2022, 34, 2100245.10.1002/adma.202100245. PubMed DOI PMC

Huang H.; Zhang P.; Yu B.; Chen Y.; Wang J.; Ji L.; Chao H. Targeting nucleus DNA with a cyclometalated dipyridophenazineruthenium(II) complex. J. Med. Chem. 2014, 57, 8971–8983. 10.1021/jm501095r. PubMed DOI

Ghosh G.; Colón K. L.; Fuller A.; Sainuddin T.; Bradner E.; McCain J.; Monro S. M. A.; Yin H.; Hetu M. W.; Cameron C. G.; McFarland S. A. Cyclometalated ruthenium(II) complexes derived from α-oligothiophenes as highly selective cytotoxic or photocytotoxic agents. Inorg. Chem. 2018, 57, 7694–7712. 10.1021/acs.inorgchem.8b00689. PubMed DOI PMC

Martínez-Alonso M.; Gandioso A.; Thibaudeau C.; Qin X.; Arnoux P.; Demeubayeva N.; Guérineau V.; Frochot C.; Jung A. C.; Gaiddon C.; Gasser G. A novel near-IR absorbing ruthenium(II) complex as photosensitizer for photodynamic therapy and its cetuximab bioconjugates. ChemBiochem 2023, 24 (15), e20230020310.1002/cbic.202300203. PubMed DOI

Cervinka J.; Hernández-García A.; Bautista D.; Markova L.; Kostrhunova H.; Malina J.; Kasparkova J.; Santana M. D.; Brabec V.; Ruiz J. New cyclometalated Ru(II) polypyridyl photosensitizers trigger oncosis in cancer cells by inducing damage to cellular membranes. Inorg. Chem. Front. 2024, 11, 3855–3876. 10.1039/D4QI00732H. DOI

Feng T.; Tang Z.; Shu J.; Wu X.; Jiang H.; Chen Z.; Chen Y.; Ji L.; Chao H. A cyclometalated ruthenium(II) complex induces oncosis for synergistic activation of innate and adaptive immunity. Angew. Chem., Int. Ed. 2024, 63 (31), e20240567910.1002/anie.202405679. PubMed DOI

Sahu P.; Mandal S. M.; Biswas R.; Chakraborty S.; Natarajan R.; Isab A. A.; Dinda J. Design, synthesis and bioactivity evaluation of Ag(I)-, Au(I)- and Au(III)-quinoxaline-wingtip N-heterocyclic carbene complexes against antibiotic resistant bacterial pathogens. ChemMedchem 2024, 19, e20240023610.1002/cmdc.202400236. PubMed DOI

Langdon-Jones E. E.; Hallett A. J.; Routledge J. D.; Crole D. A.; Ward B. D.; Platts J. A.; Pope S. J. A. Using substituted cyclometalated quinoxaline ligands to finely tune the luminescence properties of iridium(III) complexes. Inorg. Chem. 2013, 52, 448–456. 10.1021/ic301853t. PubMed DOI

Fitzgerald S. A.; Xiao X.; Zhao J.; Horton P. N.; Coles S. J.; Knighton R. C.; Ward B. D.; Pope S. J. A. Organometallic platinum(II) photosensitisers that demonstrate ligand-modulated triplet-triplet annihilation energy upconversion efficiencies. Chem.—Eur. J. 2023, 29, e20220324110.1002/chem.202203241. PubMed DOI PMC

Fitzgerald S. A.; Payce E. N.; Horton P. N.; Coles S. J.; Pope S. J. A. 2-(Thienyl)quinoxaline derivatives and their application in Ir(iii) complexes yielding tuneable deep red emitters. Dalton Trans. 2023, 52, 16480–16491. 10.1039/D3DT02193A. PubMed DOI

Wu W.; Zhang C.; Rees T. W.; Liao X.; Yan X.; Chen Y.; Ji L.; Chao H. Lysosome-targeting iridium(III) probe with near-infrared emission for the visualization of NO/O2•– crosstalk via in vivo peroxynitrite imaging. Anal. Chem. 2020, 92, 6003–6009. 10.1021/acs.analchem.0c00259. PubMed DOI

Hwang F.-M.; Chen H.-Y.; Chen P.-S.; Liu C.-S.; Chi Y.; Shu C.-F.; Wu F.-I.; Chou P.-T.; Peng S.-M.; Lee G.-H. Iridium(III) complexes with orthometalated quinoxaline ligands: Subtle tuning of emission to the saturated red color. Inorg. Chem. 2005, 44, 1344–1353. 10.1021/ic0489443. PubMed DOI

Elgar C. E.; Otaif H. Y.; Zhang X.; Zhao J.; Horton P. N.; Coles S. J.; Beames J. M.; Pope S. J. A. Iridium(III) sensitisers and energy upconversion: The influence of ligand structure upon TTA-UC performance. Chem.—Eur. J. 2021, 27, 3427–3439. 10.1002/chem.202004146. PubMed DOI

Phillips K. A.; Stonelake T. M.; Chen K.; Hou Y.; Zhao J.; Coles S. J.; Horton P. N.; Keane S. J.; Stokes E. C.; Fallis I. A.; Hallett A. J.; O’Kell S. P.; Beames J. M.; Pope S. J. A. Ligand-tuneable, red-emitting iridium(III) complexes for efficient triplet–triplet annihilation upconversion performance. Chem.—Eur. J. 2018, 24, 8577–8588. 10.1002/chem.201801007. PubMed DOI

Wang L.; Yin H.; Cui P.; Hetu M.; Wang C.; Monro S.; Schaller R. D.; Cameron C. G.; Liu B.; Kilina S.; McFarland S. A.; Sun W. Near-infrared-emitting heteroleptic cationic iridium complexes derived from 2,3-diphenylbenzo[g]quinoxaline as in vitro theranostic photodynamic therapy agents. Dalton Trans. 2017, 46, 8091–8103. 10.1039/C7DT00913E. PubMed DOI

Lee T. K.-W.; Guan X.-Y.; Ma S. Cancer stem cells in hepatocellular carcinoma — from origin to clinical implications. Nature Rev. Gastroenterol. Hepatol. 2022, 19, 26–44. 10.1038/s41575-021-00508-3. PubMed DOI

Xiao Z.; Johnson A.; Singh K.; Suntharalingam K. The discrete breast cancer stem cell mammosphere activity of group 10-bis(azadiphosphine) metal complexes. Angew. Chem., Int. Ed. 2021, 60, 6704–6709. 10.1002/anie.202014242. PubMed DOI

Das U.; Shanavas S.; Nagendra A. H.; Kar B.; Roy N.; Vardhan S.; Sahoo S. K.; Panda D.; Bose B.; Paira P. Luminescent 11-{naphthalen-1-yl}dipyrido[3,2-a: 2’,3′-c]phenazine-based Ru(II)/Ir(III)/Re(I) complexes for HCT-116 colorectal cancer stem cell therapy. ACS Appl. Bio Mater. 2023, 6, 410–424. 10.1021/acsabm.2c00556. PubMed DOI

Kumari P.; Ghosh S.; Acharya S.; Mitra P.; Roy S.; Ghosh S.; Maji M.; Singh S.; Mukherjee A. Cytotoxic imidazolyl-mesalazine ester-based Ru(II) complexes reduce expression of stemness genes and induce differentiation of oral squamous cell carcinoma. J. Med. Chem. 2023, 66, 14061–14079. 10.1021/acs.jmedchem.3c01092. PubMed DOI

Chang M. R.; Rusanov D. A.; Arakelyan J.; Alshehri M.; Asaturova A. V.; Kireeva G. S.; Babak M. V.; Ang W. H. Targeting emerging cancer hallmarks by transition metal complexes: Cancer stem cells and tumor microbiome. Part I. Coord. Chem. Rev. 2023, 477, 214923.10.1016/j.ccr.2022.214923. DOI

Vigueras G.; Markova L.; Novohradsky V.; Marco A.; Cutillas N.; Kostrhunova H.; Kasparkova J.; Ruiz J.; Brabec V. A photoactivated Ir(III) complex targets cancer stem cells and induces secretion of damage-associated molecular patterns in melamoma cells characteristic of immunogenic cell death. Inorg. Chem. Front. 2021, 8, 4696–4711. 10.1039/D1QI00856K. DOI

Bomfim L. M.; Neves S. P.; Coelho A.; Nogueira M. L.; Dias R. B.; Valverde L. F.; Rocha C. A. G.; Soares M. B. P.; Batista A. A.; Correa R. S.; Bezerra D. P. Ru(II)-based complexes containing 2-thiouracil derivatives suppress liver cancer stem cells by targeting NF-κB and Akt/mTOR signaling. Cell Death Discovery 2024, 10, 270.10.1038/s41420-024-02036-w. PubMed DOI PMC

Phillips K. A.; Stonelake T. M.; Horton P. N.; Coles S. J.; Hallett A. J.; O’Kell S. P.; Beames J. M.; Pope S. J. A. Dual visible/NIR emission from organometallic iridium(III) complexes. J. Organomet. Chem. 2019, 893, 11–20. 10.1016/j.jorganchem.2019.04.019. DOI

Zhuang Z.; Dai J.; Yu M.; Li J.; Shen P.; Hu R.; Lou X.; Zhao Z.; Tang B. Z. Type I photosensitizers based on phosphindole oxide for photodynamic therapy: apoptosis and autophagy induced by endoplasmic reticulum stress. Chem. Sci. 2020, 11, 3405–3417. 10.1039/D0SC00785D. PubMed DOI PMC

Zeng L.; Gupta P.; Chen Y.; Wang E.; Ji L.; Chao H.; Chen Z.-S. The development of anticancer ruthenium(II) complexes: from single molecule compounds to nanomaterials. Chem. Soc. Rev. 2017, 46, 5771–5804. 10.1039/C7CS00195A. PubMed DOI PMC

Lin K.; Zhao Z.-Z.; Bo H.-B.; Hao X.-J.; Wang J.-Q. Applications of ruthenium complex in tumor diagnosis and therapy. Front. Pharmacol. 2018, 9, 1323.10.3389/fphar.2018.01323. PubMed DOI PMC

Lecoeur H.; Prévost M. C.; Gougeon M. L. Oncosis is associated with exposure of phosphatidylserine residues on the outside layer of the plasma membrane: a reconsideration of the specificity of the annexin V/propidium iodide assay. Cytometry 2001, 44, 65–72. 10.1002/1097-0320(20010501)44:1<65::AID-CYTO1083>3.0.CO;2-Q. PubMed DOI

Zargarian S.; Shlomovitz I.; Erlich Z.; Hourizadeh A.; Ofir-Birin Y.; Croker B. A.; Regev-Rudzki N.; Edry-Botzer L.; Gerlic M. Phosphatidylserine externalization, “necroptotic bodies” release, and phagocytosis during necroptosis. PloS Biol. 2017, 15, e200271110.1371/journal.pbio.2002711. PubMed DOI PMC

Crowley L. C.; Waterhouse N. J. Detecting Cleaved Caspase-3 in Apoptotic Cells by Flow Cytometry. Cold Spring Harb Protoc. 2016, 2016, 27803251.10.1101/pdb.prot087312. PubMed DOI

Galluzzi L.; Vitale I.; Aaronson S. A.; Abrams J. M.; Adam D.; Agostinis P.; Alnemri E. S.; Altucci L.; Amelio I.; Andrews D. W.; Annicchiarico-Petruzzelli M.; Antonov A. V.; Arama E.; Baehrecke E. H.; Barlev N. A.; Bazan N. G.; Bernassola F.; Bertrand M. J. M.; Bianchi K.; Blagosklonny M. V.; Blomgren K.; Borner C.; Boya P.; Brenner C.; Campanella M.; Candi E.; Carmona-Gutierrez D.; Cecconi F.; Chan F. K.; Chandel N. S.; Cheng E. H.; Chipuk J. E.; Cidlowski J. A.; Ciechanover A.; Cohen G. M.; Conrad M.; Cubillos-Ruiz J. R.; Czabotar P. E.; D’Angiolella V.; Dawson T. M.; Dawson V. L.; De Laurenzi V.; De Maria R.; Debatin K. M.; DeBerardinis R. J.; Deshmukh M.; Di Daniele N.; Di Virgilio F.; Dixit V. M.; Dixon S. J.; Duckett C. S.; Dynlacht B. D.; El-Deiry W. S.; Elrod J. W.; Fimia G. M.; Fulda S.; García-Sáez A. J.; Garg A. D.; Garrido C.; Gavathiotis E.; Golstein P.; Gottlieb E.; Green D. R.; Greene L. A.; Gronemeyer H.; Gross A.; Hajnoczky G.; Hardwick J. M.; Harris I. S.; Hengartner M. O.; Hetz C.; Ichijo H.; Jäättelä M.; Joseph B.; Jost P. J.; Juin P. P.; Kaiser W. J.; Karin M.; Kaufmann T.; Kepp O.; Kimchi A.; Kitsis R. N.; Klionsky D. J.; Knight R. A.; Kumar S.; Lee S. W.; Lemasters J. J.; Levine B.; Linkermann A.; Lipton S. A.; Lockshin R. A.; López-Otín C.; Lowe S. W.; Luedde T.; Lugli E.; MacFarlane M.; Madeo F.; Malewicz M.; Malorni W.; Manic G.; Marine J. C.; Martin S. J.; Martinou J. C.; Medema J. P.; Mehlen P.; Meier P.; Melino S.; Miao E. A.; Molkentin J. D.; Moll U. M.; Muñoz-Pinedo C.; Nagata S.; Nuñez G.; Oberst A.; Oren M.; Overholtzer M.; Pagano M.; Panaretakis T.; Pasparakis M.; Penninger J. M.; Pereira D. M.; Pervaiz S.; Peter M. E.; Piacentini M.; Pinton P.; Prehn J. H. M.; Puthalakath H.; Rabinovich G. A.; Rehm M.; Rizzuto R.; Rodrigues C. M. P.; Rubinsztein D. C.; Rudel T.; Ryan K. M.; Sayan E.; Scorrano L.; Shao F.; Shi Y.; Silke J.; Simon H. U.; Sistigu A.; Stockwell B. R.; Strasser A.; Szabadkai G.; Tait S. W. G.; Tang D.; Tavernarakis N.; Thorburn A.; Tsujimoto Y.; Turk B.; Vanden Berghe T.; Vandenabeele P.; Vander Heiden M. G.; Villunger A.; Virgin H. W.; Vousden K. H.; Vucic D.; Wagner E. F.; Walczak H.; Wallach D.; Wang Y.; Wells J. A.; Wood W.; Yuan J.; Zakeri Z.; Zhivotovsky B.; Zitvogel L.; Melino G.; Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541. 10.1038/s41418-017-0012-4. PubMed DOI PMC

Zhang Y.; Chen X.; Gueydan C.; Han J. Plasma membrane changes during programmed cell deaths. Cell Res. 2018, 28, 9–21. 10.1038/cr.2017.133. PubMed DOI PMC

Lindenboim L.; Zohar H.; Worman H. J.; Stein R. The nuclear envelope: target and mediator of the apoptotic process. Cell Death Discovery 2020, 6 (1), 29.10.1038/s41420-020-0256-5. PubMed DOI PMC

Tang D.; Kang R.; Berghe T. V.; Vandenabeele P.; Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019, 29, 347–364. 10.1038/s41422-019-0164-5. PubMed DOI PMC

Ndolo R. A.; Jacobs D. T.; Forrest M. L.; Krise J. P. Intracellular distribution-based anticancer drug targeting: Exploiting a lysosomal acidification defect associated with cancer cells. Mol. Cell. Pharmacol. 2010, 2, 131–136. 10.4255/mcpharmacol.10.18. PubMed DOI PMC

Raudsepp P.; Brüggemann D. A.; Andersen M. L. Detection of radicals in single droplets of oil-in-water emulsions with the lipophilic fluorescent probe BODIPY(665/676) and confocal laser scanning microscopy. Free Radical Biol. Med. 2014, 70, 233–240. 10.1016/j.freeradbiomed.2014.02.026. PubMed DOI

Hreusova M.; Novohradsky V.; Markova L.; Kostrhunova H.; Potočňák I.; Brabec V.; Kasparkova J.; Rizzarelli E. Gallium(III) complex with cloxyquin ligands induces ferroptosis in cancer cells and is a potent agent against both differentiated and tumorigenic cancer stem Rhabdomyosarcoma cells. Bioinorg. Chem. Appl. 2022, 2022, 3095749.10.1155/2022/3095749. PubMed DOI PMC

Tzeng W. F.; Lee J. L.; Chiou T. J. The role of lipid peroxidation in menadione-mediated toxicity in cardiomyocytes. J. Mol. Cell. Cardiol. 1995, 27, 1999–2008. 10.1016/0022-2828(95)90021-7. PubMed DOI

Chiou T. J.; Chou Y. T.; Tzeng W. F. Menadione-induced cell degeneration is related to lipid peroxidation in human cancer cells. Proc. Natl. Sci. Counc. Repub. China B 1998, 22, 13–21. PubMed

Godar D. E.; Lucas A. D. Spectral dependence of UV -induced immediate and delayed apoptosis: The role of membrane and DNA damage. Photochem. Photobiol. 1995, 62, 108–113. 10.1111/j.1751-1097.1995.tb05246.x. PubMed DOI

Barisch C.; Holthuis J. C. M.; Cosentino K. Membrane damage and repair: a thin line between life and death. Biol. Chem. 2023, 404, 467–490. 10.1515/hsz-2022-0321. PubMed DOI

Su L.-J.; Zhang J. H.; Gomez H.; Murugan R.; Hong X.; Xu D.; Jiang F.; Peng Z. Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev. 2019, 2019, 5080843.10.1155/2019/5080843. PubMed DOI PMC

Itri R.; Junqueira H. C.; Mertins O.; Baptista M. S. Membrane changes under oxidative stress: the impact of oxidized lipids. Biophys. Rev. 2014, 6, 47–61. 10.1007/s12551-013-0128-9. PubMed DOI PMC

Redza-Dutordoir M.; Averill-Bates D. A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 2016, 1863, 2977–2992. 10.1016/j.bbamcr.2016.09.012. PubMed DOI

Anuradha C. D.; Kanno S.; Hirano S. Oxidative damage to mitochondria is a preliminary step to caspase-3 activation in fluoride-induced apoptosis in HL-60 cells. Free Radical Biol. Med. 2001, 31, 367–373. 10.1016/S0891-5849(01)00591-3. PubMed DOI

de Sá Junior P. L.; Câmara D. A. D.; Porcacchia A. S.; Fonseca P. M. M.; Jorge S. D.; Araldi R. P.; Ferreira A. K. The roles of ROS in cancer heterogeneity and therapy. Oxid. Med. Cell. Longev. 2017, 2017, 2467940.10.1155/2017/2467940. PubMed DOI PMC

Boodram J. N.; Mcgregor I. J.; Bruno P. M.; Cressey P. B.; Hemann M. T.; Suntharalingam K. Breast cancer stem cell potent copper(II)–non-steroidal anti-inflammatory drug complexes. Angew. Chem., Int. Ed. 2016, 55, 2845–2850. 10.1002/anie.201510443. PubMed DOI

Shi X.; Zhang Y.; Zheng J.; Pan J. Reactive oxygen species in cancer stem cells. Antioxid. Redox. Signal. 2012, 16, 1215–1228. 10.1089/ars.2012.4529. PubMed DOI PMC

Li Z. CD133: a stem cell biomarker and beyond. Exp. Hematol. Oncol. 2013, 2 (1), 17.10.1186/2162-3619-2-17. PubMed DOI PMC

Baker B. M.; Chen C. S. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J. Cell Sci. 2012, 125, 3015–3024. 10.1242/jcs.079509. PubMed DOI PMC

Kimlin L. C.; Casagrande G.; Virador V. M. In vitro three-dimensional (3D) models in cancer research: An update. Mol. Carcinogen 2013, 52, 167–182. 10.1002/mc.21844. PubMed DOI

Thoma C. R.; Zimmermann M.; Agarkova I.; Kelm J. M.; Krek W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv. Drug Delivery Rev. 2014, 69–70, 29–41. 10.1016/j.addr.2014.03.001. PubMed DOI

Zanoni M.; Piccinini F.; Arienti C.; Zamagni A.; Santi S.; Polico R.; Bevilacqua A.; Tesei A. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci. Rep. 2016, 6 (1), 19103.10.1038/srep19103. PubMed DOI PMC

Lanzafame R. Light dosing and tissue penetration: It is complicated. Photobiomodul. Photomed. Laser Surg 2020, 38, 393–394. 10.1089/photob.2020.4843. PubMed DOI PMC

Wu X.; Hu J.-J.; Yoon J. Cell membrane as a promising therapeutic target: From materials design to biomedical applications. Angew. Chem. Int. Ed. 2024, 63 (18), e20240024910.1002/anie.202400249. PubMed DOI

Preta G. New insights into targeting membrane lipids for cancer therapy. Front. Cell. Develop. Biol. 2020, 8, 571237.10.3389/fcell.2020.571237. PubMed DOI PMC

Tan L. T.-H.; Chan K.-G.; Pusparajah P.; Lee W.-L.; Chuah L.-H.; Khan T. M.; Lee L.-H.; Goh B.-H. Targeting membrane lipid a potential cancer cure?. Front. Pharmacol. 2017, 8, 12.10.3389/fphar.2017.00012. PubMed DOI PMC

Bruker SHELXTL, Version 6.1; Bruker AXS Inc; Madison, Wisconsin, USA, 2001.

Sheldrick G. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3–8. 10.1107/S2053273314026370. PubMed DOI PMC

Cervinka J.; Gobbo A.; Biancalana L.; Markova L.; Novohradsky V.; Guelfi M.; Zacchini S.; Kasparkova J.; Brabec V.; Marchetti F. Ruthenium(II)–tris-pyrazolylmethane complexes inhibit cancer cell growth by disrupting mitochondrial calcium homeostasis. J. Med. Chem. 2022, 65, 10567–10587. 10.1021/acs.jmedchem.2c00722. PubMed DOI PMC

Novohradsky V.; Yellol J.; Stuchlikova O.; Santana M. D.; Kostrhunova H.; Yellol G.; Kasparkova J.; Bautista D.; Ruiz J.; Brabec V. Organoruthenium complexes with C∧N ligands are highly potent cytotoxic agents that act by a new mechanism of action. Chem.—Eur. J. 2017, 23, 15294–15299. 10.1002/chem.201703581. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...