NMR metabolomics reveals effects of Cryptosporidium infections on host cell metabolome
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
BB/M009971/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
30984292
PubMed Central
PMC6446323
DOI
10.1186/s13099-019-0293-x
PII: 293
Knihovny.cz E-zdroje
- Klíčová slova
- COLO-680N, Cryptosporidiosis, Metabolomics, NMR, Taurine,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Cryptosporidium is an important gut microbe whose contributions towards infant and immunocompromise patient mortality rates are steadily increasing. Over the last decade, we have seen the development of various tools and methods for studying Cryptosporidium infection and its interactions with their hosts. One area that is sorely overlooked is the effect infection has on host metabolic processes. RESULTS: Using a 1H nuclear magnetic resonance approach to metabolomics, we have explored the nature of the mouse gut metabolome as well as providing the first insight into the metabolome of an infected cell line. Statistical analysis and predictive modelling demonstrated new understandings of the effects of a Cryptosporidium infection, while verifying the presence of known metabolic changes. Of note is the potential contribution of host derived taurine to the diarrhoeal aspects of the disease previously attributed to a solely parasite-based alteration of the gut environment, in addition to other metabolites involved with host cell catabolism. CONCLUSION: This approach will spearhead our understanding of the Cryptosporidium-host metabolic exchange and provide novel targets for tackling this deadly parasite.
Biomolecular NMR Facility School of Biosciences University of Kent Canterbury UK
Institute of Parasitology Biology Centre CAS Ceske Budejovice Czech Republic
Present Address Complex Carbohydrate Research Center University of Georgia Athens GA 30602 USA
Present Address School of Chemistry University of Leeds Leeds LS2 9JT UK
Zobrazit více v PubMed
Checkley W, White AC, Jr, Jaganath D, Arrowood MJ, Chalmers RM, Chen XM, Fayer R, Griffiths JK, Guerrant RL, Hedstrom L, Huston CD, Kotloff KL, Kang G, Mead JR, Miller M, Petri WA, Jr, Priest JW, Roos DS, Striepen B, Thompson RC, Ward HD, Van Voorhis WA, Xiao L, Zhu G, Houpt ER. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium. Lancet Infect Dis. 2015;15(1):85–94. PubMed PMC
Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acacio S, Biswas K, O’Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet. 2013;382(9888):209–222. PubMed
Striepen B. Parasitic infections: time to tackle cryptosporidiosis. Nature. 2013;503(7475):189–191. PubMed
Wanyiri JW, Kanyi H, Maina S, Wang DE, Steen A, Ngugi P, Kamau T, Waithera T, O’Connor R, Gachuhi K, Wamae CN, Mwamburi M, Ward HD. Cryptosporidiosis in HIV/AIDS patients in Kenya: clinical features, epidemiology, molecular characterization and antibody responses. Am J Trop Med Hyg. 2014;91(2):319–328. PubMed PMC
O’Connor RM, Shaffie R, Kang G, Ward HD. Cryptosporidiosis in patients with HIV/AIDS. AIDS. 2011;25(5):549–560. PubMed
Caccio SM. Molecular epidemiology of human cryptosporidiosis. Parassitologia. 2005;47(2):185–192. PubMed
Leoni F, Amar C, Nichols G, Pedraza-Diaz S, McLauchlin J. Genetic analysis of Cryptosporidium from 2414 humans with diarrhoea in England between 1985 and 2000. J Med Microbiol. 2006;55(Pt 6):703–707. PubMed
Shirley DA, Moonah SN, Kotloff KL. Burden of disease from cryptosporidiosis. Curr Opin Infect Dis. 2012;25(5):555–563. PubMed PMC
Wielinga PR, de Vries A, van der Goot TH, Mank T, Mars MH, Kortbeek LM, van der Giessen JW. Molecular epidemiology of Cryptosporidium in humans and cattle in The Netherlands. Int J Parasitol. 2008;38(7):809–817. PubMed
Doumbo O, Rossignol JF, Pichard E, Traore HA, Dembele TM, Diakite M, Traore F, Diallo DA. Nitazoxanide in the treatment of cryptosporidial diarrhea and other intestinal parasitic infections associated with acquired immunodeficiency syndrome in tropical Africa. Am J Trop Med Hyg. 1997;56(6):637–639. PubMed
Domjahn BT, Hlavsa MC, Anderson B, Schulkin J, Leon J, Jones JL. A survey of US obstetrician-gynecologists’ clinical and epidemiological knowledge of cryptosporidiosis in pregnancy. Zoonoses Public Health. 2014;61(5):356–363. PubMed
Hussien SM, Abdella OH, Abu-Hashim AH, Aboshiesha GA, Taha MA, El-Shemy AS, El-Bader MM. Comparative study between the effect of nitazoxanide and paromomycine in treatment of cryptosporidiosis in hospitalized children. J Egypt Soc Parasitol. 2013;43(2):463–470. PubMed
Manjunatha UH, Vinayak S, Zambriski JA, Chao AT, Sy T, Noble CG, Bonamy GMC, Kondreddi RR, Zou B, Gedeck P, Brooks CF, Herbert GT, Sateriale A, Tandel J, Noh S, Lakshminarayana SB, Lim SH, Goodman LB, Bodenreider C, Feng G, Zhang L, Blasco F, Wagner J, Leong FJ, Striepen B, Diagana TT. A Cryptosporidium PI(4)K inhibitor is a drug candidate for cryptosporidiosis. Nature. 2017;546(7658):376–380. PubMed PMC
Sparks H, Nair G, Castellanos-Gonzalez A, White AC., Jr Treatment of Cryptosporidium: what we know, gaps, and the way forward. Curr Trop Med Rep. 2015;2(3):181–187. PubMed PMC
Briggs AD, Boxall NS, Van Santen D, Chalmers RM, McCarthy ND. Approaches to the detection of very small, common, and easily missed outbreaks that together contribute substantially to human Cryptosporidium infection. Epidemiol Infect. 2014;142(9):1869–1876. PubMed PMC
Girouard D, Gallant J, Akiyoshi DE, Nunnari J, Tzipori S. Failure to propagate Cryptosporidium spp. in cell-free culture. J Parasitol. 2006;92(2):399–400. PubMed
Karanis P, Aldeyarbi HM. Evolution of Cryptosporidium in vitro culture. Int J Parasitol. 2011;41(12):1231–1242. PubMed
Leitch GJ, He Q. Cryptosporidiosis—an overview. J Biomed Res. 2012;25(1):1–16. PubMed PMC
Muller J, Hemphill A. In vitro culture systems for the study of apicomplexan parasites in farm animals. Int J Parasitol. 2013;43(2):115–124. PubMed
Morada M, Lee S, Gunther-Cummins L, Weiss LM, Widmer G, Tzipori S, Yarlett N. Continuous culture of Cryptosporidium parvum using hollow fiber technology. Int J Parasitol. 2016;46(1):21–29. PubMed
Bones AJ, Josse L, More C, Miller CN, Michaelis M, Tsaousis AD. Past and future trends of Cryptosporidium in vitro research. Exp Parasitol. 2019;196:28–37. PubMed PMC
Miller CN, Josse L, Brown I, Blakeman B, Povey J, Yiangou L, Price M, Cinatl JJ, Xue WF, Michaelis M, Tsaousis AD. A cell culture platform for Cryptosporidium that enables long-term cultivation and new tools for the systematic investigation of its biology. Int J Parasitol. 2018;48(3–4):197–201. PubMed PMC
Josse L, Bones AJ, Purton T, Michaelis M, Tsaousis AD. A cell culture platform for the cultivation of Cryptosporidium parvum. Curr Protoc Microbiol. 2019 PubMed
Miller CN, Josse L, Tsaousis AD. Localization of Fe–S biosynthesis machinery in Cryptosporidium parvum mitosome. J Eukaryot Microbiol. 2018;65(6):913–922. PubMed PMC
Sponseller JK, Griffiths JK, Tzipori S. The evolution of respiratory Cryptosporidiosis: evidence for transmission by inhalation. Clin Microbiol Rev. 2014;27(3):575–586. PubMed PMC
Allman EL, Painter HJ, Samra J, Carrasquilla M, Llinás M. Metabolomic profiling of the malaria box reveals antimalarial target pathways. Antimicrob Agents Chemother. 2016;60(11):6635–6649. PubMed PMC
Ng JS, Ryan U, Trengove RD, Maker GL. Development of an untargeted metabolomics method for the analysis of human faecal samples using Cryptosporidium-infected samples. Mol Biochem Parasitol. 2012;185(2):145–150. PubMed
Ng Hublin JS, Ryan U, Trengove R, Maker G. Metabolomic profiling of faecal extracts from Cryptosporidium parvum infection in experimental mouse models. PLoS ONE. 2013;8(10):e77803. PubMed PMC
Saric J, Wang Y, Li J, Coen M, Utzinger J, Marchesi JR, Keiser J, Veselkov K, Lindon JC, Nicholson JK, Holmes E. Species variation in the fecal metabolome gives insight into differential gastrointestinal function. J Proteome Res. 2008;7(1):352–360. PubMed
Tedros B, Somorjai RL, Smith IC. MR metabolomics of fecal extracts: applications in the study of bowel diseases. Magn Reson Chem. 2009;47:S54–S61. PubMed
Hong Y, Ahn Y, Park J, Lee J, Lee H, Huh C, Kim D, Ryu DH, Hwang G. 1H NMR-based metabonomic assessment of probiotic effects in a colitis mouse model. Arch Pharm Res. 2010;33(7):1091–1101. PubMed
Wu J, An Y, Yao J, Wang Y, Tang H. An optimised sample preparation method for NMR-based faecal metabonomic analysis. Analyst. 2010;135(5):1023–1030. PubMed
Jacobs DM, Deltimple N, van Velzen E, van Dorsten FA, Bingham M, Vaughan EE, van Duynhoven J. 1H NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome. NMR Biomed. 2008;21(6):615–626. PubMed
Sengupta A, Ghosh S, Das BK, Panda A, Tripathy R, Pied S, Ravindran B, Pathak S, Sharma S, Sonawat HM. Host metabolic responses to Plasmodium falciparum infections evaluated by 1H NMR metabolomics. Mol BioSyst. 2016;12(11):3324–3332. PubMed
Kostidis S. Quantitative analysis of central energy metabolism in cell culture samples. In: Giera M, editor. Clinical metabolomics: methods and protocols. New York: Springer; 2018. pp. 329–342. PubMed
Kim TT, Parajuli N, Sung MM, Bairwa SC, Levasseur J, Soltys CM, Wishart DS, Madsen K, Schertzer JD, Dyck JRB. Fecal transplant from resveratrol-fed donors improves glycaemia and cardiovascular features of the metabolic syndrome in mice. Am J Physiol Endocrinol Metab. 2018;315(4):E511–E519. PubMed
Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res. 2015;43(W1):W251–W257. PubMed PMC
Kvac M, Havrdova N, Hlaskova L, Dankova T, Kandera J, Jezkova J, Vitovec J, Sak B, Ortega Y, Xiao L, Modry D, Chelladurai JR, Prantlova V, McEvoy J. Cryptosporidium proliferans n. sp. (Apicomplexa: Cryptosporidiidae): molecular and biological evidence of cryptic species within gastric cryptosporidium of mammals. PLoS ONE. 2016;11(1):e0147090. PubMed PMC
Novak P, Tepes P, Fistric I, Bratos I, Gabelica V. The application of LC-NMR and LC–MS for the separation and rapid structure elucidation of an unknown impurity in 5-aminosalicylic acid. J Pharm Biomed Anal. 2006;40(5):1268–1272. PubMed
Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science. 2004;304(5669):441–445. PubMed
Doyle PS, Kanaani J, Wang CC. Hypoxanthine, guanine, xanthine phosphoribosyltransferase activity in Cryptosporidium parvum. Exp Parasitol. 1998;89(1):9–15. PubMed
Clark DP. New insights into human cryptosporidiosis. Clin Microbiol Rev. 1999;12(4):554–563. PubMed PMC
Feng H, Nie W, Sheoran A, Zhang Q, Tzipori S. Bile acids enhance invasiveness of Cryptosporidium spp. into cultured cells. Infect Immun. 2006;74(6):3342–3346. PubMed PMC
Gold D, Stein B, Tzipori S. The utilization of sodium taurocholate in excystation of Cryptosporidium parvum and infection of tissue culture. J Parasitol. 2001;87(5):997–1000. PubMed
King BJ, Keegan AR, Phillips R, Fanok S, Monis PT. Dissection of the hierarchy and synergism of the bile derived signal on Cryptosporidium parvum excystation and infectivity. Parasitology. 2012;139(12):1533–1546. PubMed
Kar S, Daugschies A, Cakmak A, Yilmazer N, Dittmar K, Bangoura B. Cryptosporidium parvum oocyst viability and behaviour of the residual body during the excystation process. Parasitol Res. 2011;109(6):1719–1723. PubMed
Goodgame RW, Kimball K, Ou CN, White AC, Jr, Genta RM, Lifschitz CH, Chappell CL. Intestinal function and injury in acquired immunodeficiency syndrome-related cryptosporidiosis. Gastroenterology. 1995;108(4):1075–1082. PubMed
Kapembwa MS, Bridges C, Joseph AE, Fleming SC, Batman P, Griffin GE. Ileal and jejunal absorptive function in patients with AIDS and enterococcidial infection. J Infect. 1990;21(1):43–53. PubMed
Augagneur Y, Jaubert L, Schiavoni M, Pachikara N, Garg A, Usmani-Brown S, Wesolowski D, Zeller S, Ghosal A, Cornillot E, Said HM, Kumar P, Altman S, Ben Mamoun C. Identification and functional analysis of the primary pantothenate transporter, PfPAT, of the human malaria parasite Plasmodium falciparum. J Biol Chem. 2013;288(28):20558–20567. PubMed PMC
Tsaousis AD, Kunji ER, Goldberg AV, Lucocq JM, Hirt RP, Embley TM. A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi. Nature. 2008;453(7194):553–556. PubMed
Giris M, Depboylu B, Dogru-Abbasoglu S, Erbil Y, Olgac V, Alis H, Aykac-Toker G, Uysal M. Effect of taurine on oxidative stress and apoptosis-related protein expression in trinitrobenzene sulphonic acid-induced colitis. Clin Exp Immunol. 2008;152(1):102–110. PubMed PMC
Green TR, Fellman JH, Eicher AL, Pratt KL. Antioxidant role and subcellular location of hypotaurine and taurine in human neutrophils. Biochim Biophys Acta. 1991;1073(1):91–97. PubMed
Zhang M, Izumi I, Kagamimori S, Sokejima S, Yamagami T, Liu Z, Qi B. Role of taurine supplementation to prevent exercise-induced oxidative stress in healthy young men. Amino Acids. 2004;26(2):203–207. PubMed
Lin S, Sanders DS, Gleeson JT, Osborne C, Messham L, Kurien M. Long-term outcomes in patients diagnosed with bile-acid diarrhoea. Eur J Gastroenterol Hepatol. 2016;28(2):240–245. PubMed
Niggli V, Sigel E, Carafoli E. Inhibition of the purified and reconstituted calcium pump of erythrocytes by micro M levels of DIDS and NAP-taurine. FEBS Lett. 1982;138(2):164–166. PubMed
Yu H, Guo Z, Shen S, Shan W. Effects of taurine on gut microbiota and metabolism in mice. Amino Acids. 2016;48(7):1601–1617. PubMed
Guo F, Zhang H, Payne HR, Zhu G. Differential gene expression and protein localization of Cryptosporidium parvum fatty acyl-CoA synthetase isoforms. J Eukaryot Microbiol. 2016;63(2):233–246. PubMed PMC
Seeber F, Soldati-Favre D. Metabolic pathways in the apicoplast of apicomplexa. Int Rev Cell Mol Biol. 2010;281:161–228. PubMed
Meloni BP, Andrew Thompson RC. Simplified methods for obtaining purified oocysts from mice and for growing Cryptosporidium parvum in vitro. J Parasitol. 1996;82(5):757–762. PubMed
Milacek P, Vitovec J. Differential staining of Cryptosporidia by aniline-carbol-methyl violet and tartrazine in smears from faeces and scrapings of intestinal mucosa. 1985;32(1):50. PubMed
Morgan-Ryan UM, Fall A, Ward LA, Hijjawi N, Sulaiman I, Fayer R, Thompson RC, Olson M, Lal A, Xiao L. Cryptosporidium hominis n. sp. (Apicomplexa: Cryptosporidiidae) from Homo sapiens. J Eukaryot Microbiol. 2002;49(6):433–440. PubMed
Bastow EL, Peswani AR, Tarrant DSJ, Pentland DR, Chen X, Morgan A, Staniforth GL, Tullet JM, Rowe ML, Howard MJ, Tuite MF, Gourlay CW. New links between SOD1 and metabolic dysfunction from a yeast model of amyotrophic lateral sclerosis. J Cell Sci. 2016;129(21):4118. PubMed PMC
Holyoake LV, Hunt S, Sanguinetti G, Cook GM, Howard MJ, Rowe ML, Poole RK, Shepherd M. CydDC-mediated reductant export in Escherichia coli controls the transcriptional wiring of energy metabolism and combats nitrosative stress. Biochem J. 2016;473(6):693–701. PubMed PMC
Tarrant DJ, Stirpe M, Rowe M, Howard MJ, von der Haar T, Gourlay CW. Inappropriate expression of the translation elongation factor 1A disrupts genome stability and metabolism. J Cell Sci. 2016;129(24):4455–4465. PubMed PMC
Wagstaff JL, Masterton RJ, Povey JF, Smales CM, Howard MJ. (1)H NMR spectroscopy profiling of metabolic reprogramming of Chinese hamster ovary cells upon a temperature shift during culture. PLoS ONE. 2013;8(10):e77195. PubMed PMC