Betulinic Acid Decorated with Polar Groups and Blue Emitting BODIPY Dye: Synthesis, Cytotoxicity, Cell-Cycle Analysis and Anti-HIV Profiling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA20-19906S
Grantová Agentura České Republiky
LM2018130
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018133
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34572290
PubMed Central
PMC8472287
DOI
10.3390/biomedicines9091104
PII: biomedicines9091104
Knihovny.cz E-zdroje
- Klíčová slova
- BODIPY, betulinic acid, bevirimat, cancer, cell-cycle, cytotoxicity, fluorescent microscopy, maturation inhibitor,
- Publikační typ
- časopisecké články MeSH
Betulinic acid (BA) is a potent triterpene, which has shown promising potential in cancer and HIV-1 treatment. Here, we report a synthesis and biological evaluation of 17 new compounds, including BODIPY labelled analogues derived from BA. The analogues terminated by amino moiety showed increased cytotoxicity (e.g., BA had on CCRF-CEM IC50 > 50 μM, amine 3 IC50 0.21 and amine 14 IC50 0.29). The cell-cycle arrest was evaluated and did not show general features for all the tested compounds. A fluorescence microscopy study of six derivatives revealed that only 4 and 6 were detected in living cells. These compounds were colocalized with the endoplasmic reticulum and mitochondria, indicating possible targets in these organelles. The study of anti-HIV-1 activity showed that 8, 10, 16, 17 and 18 have had IC50i > 10 μM. Only completely processed p24 CA was identified in the viruses formed in the presence of compounds 4 and 12. In the cases of 2, 8, 9, 10, 16, 17 and 18, we identified not fully processed p24 CA and p25 CA-SP1 protein. This observation suggests a similar mechanism of inhibition as described for bevirimat.
Zobrazit více v PubMed
Sousa J.L.C., Freire C.S.R., Silvestre A.J.D., Silva A.M.S. Recent developments in the functionalization of betulinic acid and its natural analogues: A route to new bioactive compounds. Molecules. 2019;24:355. doi: 10.3390/molecules24020355. PubMed DOI PMC
Zuco V., Supino R., Righetti S.C., Cleris L., Marchesi E., Gambacorti-Passerini C., Formelli F. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett. 2002;175:17–25. doi: 10.1016/S0304-3835(01)00718-2. PubMed DOI
Pisha E., Chai H., Lee I.S., Chagwedera T.E., Farnsworth N.R., Cordell G.A., Beecher C.W.W., Fong H.H.S., Kinghorn A.D., Brown D.M., et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat. Med. 1995;1:1046–1051. doi: 10.1038/nm1095-1046. PubMed DOI
Noda Y., Kaiya T., Kohda K., Kawazoe Y. Enhanced cytotoxicity of some triterpenes toward leukemia L1210 cells cultured in low pH media: Possibility of a New Mode of Cell Killing. Chem. Pharm. Bull. 1997;45:1665–1670. doi: 10.1248/cpb.45.1665. PubMed DOI
Fujioka T., Kashiwada Y., Kilkuskie R.E., Cosentino L.M., Ballas L.M., Jiang J.B., Janzen W.P., Chen I.-S., Lee K.-H. Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J. Nat. Prod. 1994;57:243–247. doi: 10.1021/np50104a008. PubMed DOI
Kodr D., Rumlová M., Zimmermann T., Džubák P., Drašar P., Jurášek M. Antitumor and anti-HIV derivatives of betulinic acid. Chem. Listy. 2020;114:658–667.
Fulda S., Friesen C., Los M., Scaffidi C., Mier W., Benedict M., Nunez G., Krammer P.H., Peter M.E., Debatin K.M. Betulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer Res. 1997;57:4956–4964. PubMed
Fulda S., Scaffidi C., Susin S.A., Krammer P.H., Kroemer G., Peter M.E., Debatin K.M. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J. Biol. Chem. 1998;273:33942–33948. doi: 10.1074/jbc.273.51.33942. PubMed DOI
Liu W.K., Ho J.C.K., Cheung F.W.K., Liu B.P.L., Ye W.C., Che C.T. Apoptotic activity of betulinic acid derivatives on murine melanoma B16 cell line. Eur. J. Pharmacol. 2004;498:71–78. doi: 10.1016/j.ejphar.2004.07.103. PubMed DOI
Fulda S., Jeremias I., Steiner H.H., Pietsch T., Debatin K.M. Betulinic acid: A new cytotoxic agent against malignant brain-tumor cells. Int. J. Cancer. 1999;82:435–441. doi: 10.1002/(SICI)1097-0215(19990730)82:3<435::AID-IJC18>3.0.CO;2-1. PubMed DOI
Mullauer F.B., van Bloois L., Daalhuisen J.B., Ten Brink M.S., Storm G., Medema J.P., Schiffelers R.M., Kessler J.H. Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anti-Cancer Drug. 2011;22:223–233. doi: 10.1097/CAD.0b013e3283421035. PubMed DOI
Takada Y., Aggarwal B.B. Betulinic acid suppresses carcinogen-induced NF-kappa B activation through inhibition of I kappa B alpha kinase and p65 phosphorylation: Abrogation of cyclooxygenase-2 and matrix metalloprotease-9. J. Immunol. 2003;171:3278–3286. doi: 10.4049/jimmunol.171.6.3278. PubMed DOI
Melzig M.F., Bormann H. Betulinic acid inhibits aminopeptidase N activity. Planta Med. 1998;64:655–657. doi: 10.1055/s-2006-957542. PubMed DOI
Kwon H.J., Shim J.S., Kim J.H., Cho H.Y., Yum Y.N., Kim S.H., Yu J. Betulinic acid inhibits growth factor-induced in vitro angiogenesis via the modulation of mitochondrial function in endothelial cells. Jpn. J. Cancer Res. 2002;93:417–425. doi: 10.1111/j.1349-7006.2002.tb01273.x. PubMed DOI PMC
Kashiwada Y., Nagao T., Hashimoto A., Ikeshiro Y., Okabe H., Cosentino L.M., Lee K.-H. Anti-AIDS agents 38. Anti-HIV activity of 3-O-acyl ursolic acid derivatives. J. Nat. Prod. 2000;63:1619–1622. doi: 10.1021/np990633v. PubMed DOI
Sundquist W.I., Krausslich H.G. HIV-1 Assembly, budding, and maturation. Cold Spring Harb. Perspect. Med. 2012;2:a006924. doi: 10.1101/cshperspect.a006924. PubMed DOI PMC
Smith P.F., Ogundele A., Forrest A., Wilton J., Salzwedel K., Doto J., Allaway G.P., Martin D.E. Phase I and II study of the safety, virologic effect, and pharmacokinetics/pharmacodynamics of single-dose 3-O-(3′,3′-dimethylsuccinyl)betulinic acid (bevirimat) against human immunodeficiency virus infection. Antimicrob. Agents Chemother. 2007;51:3574–3581. doi: 10.1128/AAC.00152-07. PubMed DOI PMC
Martin D.E., Blum R., Wilton J., Doto J., Galbraith H., Burgess G.L., Smith P.C., Ballow C. Safety and pharmacokinetics of bevirimat (PA-457), a novel inhibitor of human immunodeficiency virus maturation, in healthy volunteers. Antimicrob. Agents Chemother. 2007;51:3063. doi: 10.1128/AAC.01391-06. PubMed DOI PMC
Martin D.E., Blum R., Doto J., Galbraith H., Ballow C. Multiple-Dose Pharmacokinetics and safety of bevirimat, a novel inhibitor of HIV maturation, in healthy volunteers. Clin. Pharmacokinet. 2007;46:589–598. doi: 10.2165/00003088-200746070-00004. PubMed DOI
Margot N.A., Gibbs C.S., Miller M.D. Phenotypic susceptibility to bevirimat in isolates from HIV-1-infected patients without prior exposure to bevirimat. Antimicrob. Agents Chemother. 2010;54:2345–2353. doi: 10.1128/AAC.01784-09. PubMed DOI PMC
Zhao Y., Gu Q., Morris-Natschke S.L., Chen C.-H., Lee K.-H. Incorporation of privileged structures into bevirimat can improve activity against wild-type and bevirimat-resistant HIV-1. J. Med. Chem. 2016;59:9262–9268. doi: 10.1021/acs.jmedchem.6b00461. PubMed DOI PMC
Zhao Y., Chen C.-H., Morris-Natschke S.L., Lee K.-H. Design, synthesis, and structure activity relationship analysis of new betulinic acid derivatives as potent HIV inhibitors. Eur. J. Med. Chem. 2021;215:113287. doi: 10.1016/j.ejmech.2021.113287. PubMed DOI PMC
Mukherjee R., Jaggi M., Rajendran P., Siddiqui M.J.A., Srivastava S.K., Vardhan A., Burman A.C. Betulinic acid and its derivatives as anti-angiogenic agents. Bioorg. Med. Chem. Lett. 2004;14:2181–2184. doi: 10.1016/j.bmcl.2004.02.044. PubMed DOI
Kim J.Y., Koo H.M., Kim D.S.H.L. Development of C-20 modified betulinic acid derivatives as antitumor agents. Bioorg. Med. Chem. Lett. 2001;11:2405–2408. doi: 10.1016/S0960-894X(01)00460-7. PubMed DOI
Chowdhury A.R., Mandal S., Mittra B., Sharma S., Mukhopadhyay S., Majumder H.K. Betulinic acid, a potent inhibitor of eukaryotic topoisomerase I: Identification of the inhibitory step, the major functional group responsible and development of more potent derivatives. Med. Sci. Monit. 2002;8:BR254–BR265. PubMed
Bildziukevich U., Rarova L., Janovska L., Saman D., Wimmer Z. Enhancing effect of cystamine in its amides with betulinic acid as antimicrobial and antitumor agent in vitro. Steroids. 2019;148:91–98. doi: 10.1016/j.steroids.2019.04.004. PubMed DOI
Bildziukevich U., Vida N., Rárová L., Kolář M., Šaman D., Havlíček L., Drašar P., Wimmer Z. Polyamine derivatives of betulinic acid and beta-sitosterol: A comparative investigation. Steroids. 2015;100:27–35. doi: 10.1016/j.steroids.2015.04.005. PubMed DOI
Brandes B., Hoenke S., Fischer L., Csuk R. Design, synthesis and cytotoxicity of BODIPY-FL labelled triterpenoids. Eur. J. Med. Chem. 2020;185:111858. doi: 10.1016/j.ejmech.2019.111858. PubMed DOI
Krajčovičová S., Staňková J., Džubák P., Hajdúch M., Soural M., Urban M. A synthetic approach for the rapid preparation of BODIPY conjugates and their use in imaging of cellular drug uptake and distribution. Chem. Eur. J. 2018;24:4957–4966. doi: 10.1002/chem.201706093. PubMed DOI
Sommerwerk S., Heller L., Kerzig C., Kramell A.E., Csuk R. Rhodamine B conjugates of triterpenoic acids are cytotoxic mitocans even at nanomolar concentrations. Eur. J. Med. Chem. 2017;127:1–9. doi: 10.1016/j.ejmech.2016.12.040. PubMed DOI
Pal A., Ganguly A., Chowdhuri S., Yousuf M., Ghosh A., Barui A.K., Kotcherlakota R., Adhikari S., Banerjee R. Bis-arylidene oxindole-betulinic acid conjugate: A fluorescent cancer cell detector with potent anticancer activity. ACS Med. Chem. Lett. 2015;6:612–616. doi: 10.1021/acsmedchemlett.5b00095. PubMed DOI PMC
Rumlová M., Křížová I., Keprová A., Hadravová R., Doležal M., Strohalmová K., Pichová I., Hájek M., Ruml T. HIV-1 protease-induced apoptosis. Retrovirology. 2014;11:37. doi: 10.1186/1742-4690-11-37. PubMed DOI PMC
Dostálková A., Kaufman F., Křížová I., Kultová A., Strohalmová K., Hadravová R., Ruml T., Rumlová M. Mutations in the basic region of the Mason-Pfizer monkey virus nucleocapsid protein affect reverse transcription, genomic RNA packaging, and the virus assembly site. J. Virol. 2018;92:e00106-18. doi: 10.1128/JVI.00106-18. PubMed DOI PMC
Křížová I., Hadravová R., Štokrová J., Günterová J., Doležal M., Ruml T., Rumlová M., Pichová I. The G-patch domain of Mason-Pfizer monkey virus is a part of reverse transcriptase. J. Virol. 2012;86:1988. doi: 10.1128/JVI.06638-11. PubMed DOI PMC
Strohalmová-Bohmová K., Spiwok V., Lepšík M., Hadravová R., Křížová I., Ulbrich P., Pichová I., Bednárová L., Ruml T., Rumlová M. Role of Mason-Pfizer monkey virus CA-NC spacer peptide-like domain in assembly of immature particles. J. Virol. 2014;88:14148. doi: 10.1128/JVI.02286-14. PubMed DOI PMC
Goud T.V., Tutar A., Biellmann J.-F. Synthesis of 8-heteroatom-substituted 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene dyes (BODIPY) Tetrahedron. 2006;62:5084–5091. doi: 10.1016/j.tet.2006.03.036. DOI
Kim D., Ma D., Kim M., Jung Y., Kim N.H., Lee C., Cho S.W., Park S., Huh Y., Jung J., et al. Fluorescent labeling of protein using blue-emitting 8-amino-BODIPY derivatives. J. Fluoresc. 2017;27:2231–2238. doi: 10.1007/s10895-017-2164-5. PubMed DOI
Chang Y.-T., Alamudi S.H., Satapathy R., Su D. Background-free fluorescent probes for live cell imaging. WO2017078623A1. US Patent. 2017
Qian K., Bori I.D., Chen C.-H., Huang L., Lee K.-H. Anti-AIDS agents 90. Novel C-28 modified bevirimat analogues as potent HIV maturation inhibitors. J. Med. Chem. 2012;55:8128–8136. doi: 10.1021/jm301040s. PubMed DOI PMC
Staudinger H., Meyer J. Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und Phosphinimine. Helv. Chim. Acta. 1919;2:635–646. doi: 10.1002/hlca.19190020164. DOI
Neises B., Steglich W. Simple method for the esterification of carboxylic acids. Angew. Chem. Int. Ed. 1978;17:522–524. doi: 10.1002/anie.197805221. DOI
Kotsantis P., Silva L.M., Irmscher S., Jones R.M., Folkes L., Gromak N., Petermann E. Increased global transcription activity as a mechanism of replication stress in cancer. Nat. Commun. 2016;7:13087. doi: 10.1038/ncomms13087. PubMed DOI PMC
Fantin V.R., St-Pierre J., Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9:425–434. doi: 10.1016/j.ccr.2006.04.023. PubMed DOI
Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B. Mitochondria-targeted triphenylphosphonium-based compounds: Syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 2017;117:10043–10120. doi: 10.1021/acs.chemrev.7b00042. PubMed DOI PMC
Evers M., Poujade C., Soler F., Ribeill Y., James C., Lelievre Y., Gueguen J.C., Reisdorf D., Morize I., Pauwels R., et al. Betulinic acid derivatives: A new class of human immunodeficiency virus type 1 specific inhibitors with a new mode of action. J. Med. Chem. 1996;39:1056–1068. doi: 10.1021/jm950670t. PubMed DOI
Kashiwada Y., Hashimoto F., Cosentino L.M., Chen C.H., Garrett P.E., Lee K.H. Betulinic acid and dihydrobetulinic acid derivatives as potent anti-HIV agents. J. Med. Chem. 1996;39:1016–1017. doi: 10.1021/jm950922q. PubMed DOI
Soler F., Poujade C., Evers M., Carry J.C., Henin Y., Bousseau A., Huet T., Pauwels R., DeClercq E., Mayaux J.F., et al. Betulinic acid derivatives: A new class of specific inhibitors of human immunodeficiency virus type 1 entry. J. Med. Chem. 1996;39:1069–1083. doi: 10.1021/jm950669u. PubMed DOI
Li F., Goila-Gaur R., Salzwedel K., Kilgore N.R., Reddick M., Matallana C., Castillo A., Zoumplis D., Martin D.E., Orenstein J.M., et al. PA-457: A potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc. Natl. Acad. Sci. USA. 2003;100:13555–13560. doi: 10.1073/pnas.2234683100. PubMed DOI PMC
Schur F.K.M., Obr M., Hagen W.J.H., Wan W., Jakobi A.J., Kirkpatrick J.M., Sachse C., Krausslich H.G., Briggs J.A.G. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science. 2016;353:506–508. doi: 10.1126/science.aaf9620. PubMed DOI
Adamson C.S., Sakalian M., Salzwedel K., Freed E.O. Polymorphisms in Gag spacer peptide 1 confer varying levels of resistance to the HIV-1 maturation inhibitor bevirimat. Retrovirology. 2010;7:1–8. doi: 10.1186/1742-4690-7-36. PubMed DOI PMC
Lu W.X., Salzwedel K., Wang D., Chakravarty S., Freed E.O., Wild C.T., Li F. A single polymorphism in HIV-1 subtype C SP1 is sufficient to confer natural resistance to the maturation inhibitor bevirimat. Antimicrob. Agents Chemother. 2011;55:3324–3329. doi: 10.1128/AAC.01435-10. PubMed DOI PMC
Van Baelen K., Salzwedel K., Rondelez E., Van Eygen V., De Vos S., Verheyen A., Steegen K., Verlinden Y., Allaway G.P., Stuyver L.J. Susceptibility of human immunodeficiency virus type 1 to the maturation inhibitor bevirimat is modulated by baseline polymorphisms in Gag spacer peptide 1. Antimicrob. Agents Chemother. 2009;53:2185–2188. doi: 10.1128/AAC.01650-08. PubMed DOI PMC
Coric P., Turcaud S., Souquet F., Briant L., Gay B., Royer J., Chazal N., Bouaziz S. Synthesis and biological evaluation of a new derivative of bevirimat that targets the Gag CA-SP1 cleavage site. Eur. J. Med. Chem. 2013;62:453–465. doi: 10.1016/j.ejmech.2013.01.013. PubMed DOI
Wang D., Lu W.X., Li F. Pharmacological intervention of HIV-1 maturation. Acta Pharm. Sin. B. 2015;5:493–499. doi: 10.1016/j.apsb.2015.05.004. PubMed DOI PMC
Gu M., Zhao P., Zhang S.Y., Fan S.J., Yang L., Tong Q.C., Ji G., Huan C. Betulinic acid alleviates endoplasmic reticulum stress-mediated nonalcoholic fatty liver disease through activation of farnesoid X receptors in mice. Brit. J. Pharmacol. 2019;176:847–863. doi: 10.1111/bph.14570. PubMed DOI PMC
Ye Y.Q., Zhang T., Yuan H.Q., Li D.F., Lou H.X., Fan P.H. Mitochondria-targeted lupane triterpenoid derivatives and their selective apoptosis-inducing anticancer mechanisms. J. Med. Chem. 2017;60:6353–6363. doi: 10.1021/acs.jmedchem.7b00679. PubMed DOI
Dubinin M.V., Semenova A.A., Ilzorkina A.I., Mikheeva I.B., Yashin V.A., Penkov N.V., Vydrina V.A., Ishmuratov G.Y., Sharapov V.A., Khoroshavina E.I., et al. Effect of betulin and betulonic acid on isolated rat liver mitochondria and liposomes. Biochim. Biophys. Acta-Biomembr. 2020;1862 doi: 10.1016/j.bbamem.2020.183383. PubMed DOI
Dubinin M.V., Semenova A.A., Nedopekina D.A., Davletshin E.V., Spivak A.Y., Belosludtsev K.N. Effect of F16-betulin conjugate on mitochondrial membranes and its role in cell death initiation. Membranes. 2021;11:352. doi: 10.3390/membranes11050352. PubMed DOI PMC
Dubinin M.V., Semenova A.A., Ilzorkina A.I., Penkov N.V., Nedopekina D.A., Sharapov V.A., Khoroshavina E.I., Davletshin E.V., Belosludtseva N.V., Spivak A.Y., et al. Mitochondria-targeted prooxidant effects of betulinic acid conjugated with delocalized lipophilic cation F16. Free Radic. Bio. Med. 2021;168:55–69. doi: 10.1016/j.freeradbiomed.2021.03.036. PubMed DOI
Wang X., Lu X.C., Zhu R.L., Zhang K.X., Li S., Chen Z.J., Li L.X. Betulinic acid induces apoptosis in differentiated PC12 cells via ROS-mediated mitochondrial pathway. Neurochem. Res. 2017;42:1130–1140. doi: 10.1007/s11064-016-2147-y. PubMed DOI
Terpenes and Terpenoids Conjugated with BODIPYs: An Overview of Biological and Chemical Properties
Plant Secondary Metabolites Used for the Treatment of Diseases and Drug Development