Terpenes and Terpenoids Conjugated with BODIPYs: An Overview of Biological and Chemical Properties

. 2024 Apr 26 ; 87 (4) : 1306-1319. [epub] 20240314

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38482846

Advancements in small-molecule research have created the need for sensitive techniques to accurately study biological processes in living systems. Fluorescent-labeled probes have become indispensable tools, particularly those that use boron-dipyrromethene (BODIPY) dyes. Terpenes and terpenoids are organic compounds found in nature that offer diverse biological activities, and BODIPY-based probes play a crucial role in studying these compounds. Monoterpene-BODIPY conjugates have exhibited potential for staining bacterial and fungal cells. Sesquiterpene-BODIPY derivatives have been used to study sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA), indicating their potential for drug development. Owing to their unique properties, diterpenes have been investigated using BODIPY conjugates to evaluate their mechanisms of action. Triterpene-BODIPY conjugates have been synthesized for biological studies, with different spacers affecting their cytotoxicity. Fluorescent probes, inspired by terpenoid-containing vitamins, have also been developed. Derivatives of tocopherol, coenzyme Q10, and vitamin K1 can provide insights into their oxidation-reduction abilities. All these probes have diverse applications, including the study of cell membranes to investigate immune responses and antioxidant properties. Further research in this field can help better understand and use terpenes and terpenoids in various biological contexts.

Zobrazit více v PubMed

Pan S. J.; Zhang H. L.; Wang C. Y.; Yao S. C. L.; Yao S. Q. Target identification of natural products and bioactive compounds using affinity-based probes. Nat. Prod. Rep. 2016, 33 (5), 612–620. 10.1039/C5NP00101C. PubMed DOI

Fetz V.; Prochnow H.; Bronstrup M.; Sasse F. Target identification by image analysis. Nat. Prod. Rep. 2016, 33 (5), 655–667. 10.1039/C5NP00113G. PubMed DOI

Zhang X. J.; Wen J. Y.; Bidasee K. R.; Besch H. R.; Wojcikiewicz R. J. H.; Lee B.; Rubin R. P. Ryanodine and inositol trisphosphate receptors are differentially distributed and expressed in rat parotid gland. Biochem. J. 1999, 363 (Pt 3), 519–527. 10.1042/bj3400519. PubMed DOI PMC

Emmerson P. J.; Archer S.; El-Hamouly W.; Mansour A.; Akil H.; Medzihradsky F. Synthesis and characterization of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-labeled fluorescent ligands for the mu opioid receptor. Biochem. Pharmacol. 1997, 54 (12), 1315–1322. 10.1016/S0006-2952(97)00374-2. PubMed DOI

Xu S. T.; Luo S. S.; Yao H.; Cai H.; Miao X. M.; Wu F.; Yang D. H.; Wu X. M.; Xie W. J.; Yao H. Q.; et al. Probing the anticancer action of oridonin with fluorescent analogues: Visualizing subcellular localization to mitochondria. J. Med. Chem. 2016, 59 (10), 5022–5034. 10.1021/acs.jmedchem.6b00408. PubMed DOI

Umezawa K.; Yoshida M.; Kamiya M.; Yamasoba T.; Urano Y. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics. Nat. Chem. 2017, 9 (3), 279–286. 10.1038/nchem.2648. PubMed DOI

Zhang X.; Ba Q.; Gu Z. N.; Guo D. L.; Zhou Y.; Xu Y. E.; Wang H.; Ye D. J.; Liu H. Fluorescent coumarin-artemisinin conjugates as mitochondria-targeting theranostic probes for enhanced anticancer activities. Chem.—Eur. J. 2015, 21 (48), 17415–17421. 10.1002/chem.201502543. PubMed DOI

Zhou X.; Chen X. B.; Du Z. H.; Zhang Y.; Zhang W. J.; Kong X. R.; Thelen J. J.; Chen C. S.; Chen M. J. Terpenoid esters are the major constituents from leaf lipid droplets of camellia sinensis. Front. Plant Sci. 2019, 10, 179.10.3389/fpls.2019.00179. PubMed DOI PMC

Takahashi M.; Kawamura A.; Kato N.; Nishi T.; Hamachi I.; Ohkanda J. Phosphopeptide-dependent labeling of 14–3-3 ζ proteins by fusicoccin-based fluorescent probes. Angew. Chem., Int. Ed. 2012, 51 (2), 509–512. 10.1002/anie.201106995. PubMed DOI

Antina E.; Bumagina N.; Marfin Y.; Guseva G.; Nikitina L.; Sbytov D.; Telegin F. BODIPY conjugates as functional compounds for medical diagnostics and treatment. Molecules 2022, 27 (4), 1396.10.3390/molecules27041396. PubMed DOI PMC

Loudet A.; Burgess K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chem. Rev. 2007, 107 (11), 4891–4932. 10.1021/cr078381n. PubMed DOI

Tholl D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 2006, 9 (3), 297–304. 10.1016/j.pbi.2006.03.014. PubMed DOI

Juang Y. P.; Liang P. H. Biological and pharmacological effects of synthetic saponins. Molecules 2020, 25 (21), 4974.10.3390/molecules25214974. PubMed DOI PMC

Gang F. L.; Zhu F.; Yang C. F.; Li X. T.; Yang H.; Sun M. X.; Wu W. J.; Zhang J. W. Antifungal, anti-inflamatory and neuritogenic activity of newly-isolated compounds from Disporopsis aspersa. Nat. Prod. Res. 2020, 34 (11), 1521–1527. 10.1080/14786419.2018.1519709. PubMed DOI

Ighachane H.; Boualy B.; Ali M. A.; Sedra M. H.; El Firdoussi L.; Lazrek H. B.. Catalytic synthesis and antifungal activity of new polychlorinated natural terpenes. Adv. Materi. Sci. Eng. 2017, 2017, 1.10.1155/2017/2784303. DOI

Gur’eva Y. A.; Zalevskaya O. A.; Shevchenko O. G.; Slepukhin P. A.; Makarov V. A.; Kuchin A. V. Copper(II) complexes with terpene derivatives of ethylenediamine: synthesis, and antibacterial, antifungal and antioxidant activity. RSC Adv. 2022, 12 (15), 8841–8851. 10.1039/D2RA00223J. PubMed DOI PMC

Novotna E.; Waisser K.; Kunes J.; Palat K.; Buchta V.; Stolarikova J.; Beckert R.; Wsol V. Synthesis and biological activity of quaternary ammonium salt-type agents containing cholesterol and terpenes. Arch. Pharm. 2014, 347 (6), 381–386. 10.1002/ardp.201300407. PubMed DOI

Wu H. F.; Morris-Natschke S. L.; Xu X. D.; Yang M. H.; Cheng Y. Y.; Yu S. S.; Lee K. H. Recent advances in natural anti-HIV triterpenoids and analogs. Med. Res. Rev. 2020, 40 (6), 2339–2385. 10.1002/med.21708. PubMed DOI PMC

Song J. G.; Su J. C.; Song Q. Y.; Huang R. L.; Tang W.; Hu L. J.; Huang X. J.; Jiang R. W.; Li Y. L.; Ye W. C.; et al. Cleistocaltones A and B, antiviral phloroglucinol-terpenoid adducts from Cleistocalyx operculatus. Org. Lett. 2019, 21 (23), 9579–9583. 10.1021/acs.orglett.9b03743. PubMed DOI

Alho D. P. S.; Salvador J. A. R.; Cascante M.; Marin S. Synthesis and antiproliferative activity of novel A-ring cleaved glycyrrhetinic acid derivatives. Molecules 2019, 24 (16), 2938.10.3390/molecules24162938. PubMed DOI PMC

Kowada T.; Maeda H.; Kikuchi K. BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem. Soc. Rev. 2015, 44 (14), 4953–4972. 10.1039/C5CS00030K. PubMed DOI

Guseva G. B.; Antina E. V.; Berezin M. B.; Pavelyev R. S.; Kayumov A. R.; Sharafutdinov I. S.; Lodochnikova O. A.; Islamov D. R.; Usachev K. S.; Boichuk S. V.; et al. Meso-substituted-BODIPY based fluorescent biomarker: Spectral characteristics, photostability and possibilities for practical application. J. Photochem. Photobiol., A 2020, 401, 112783.10.1016/j.jphotochem.2020.112783. DOI

Guseva G. B.; Antina E. V.; Berezin M. B.; Pavelyev R. S.; Kayumov A. R.; Ostolopovskaya O. V.; Gilfanov I. R.; Frolova L. L.; Kutchin A. V.; Akhverdiev R. F.; et al. Design, spectral characteristics, and possibilities for practical application of BODIPY FL-labeled monoterpenoid. ACS Appl. Bio Mater. 2021, 4 (8), 6227–6235. 10.1021/acsabm.1c00550. PubMed DOI

Guseva G. B.; Antina E. V.; Berezin M. B.; Nikitina L. E.; Gilfanov I. R.; Pavelyev R. S.; Lisovskaya S. A.; Frolova L. L.; Ostolopovskaya O. V.; Rakhmatullin I. Z.; et al. Novel BODIPY conjugates with myrtenol: Design, spectral characteristics, and possibilities for practical application. Inorganics 2023, 11 (6), 241.10.3390/inorganics11060241. DOI

Guseva G. B.; Antina E. V.; Berezin M. B.; Smirnova A. S.; Pavelyev R. S.; Gilfanov I. R.; Shevchenko O. G.; Pestova S. V.; Izmest’ev E. S.; Rubtsova S. A.; et al. Design, spectral characteristics, photostability, and possibilities for practical application of BODIPY FL-labeled thioterpenoid. Bioengineering 2022, 9 (5), 210.10.3390/bioengineering9050210. PubMed DOI PMC

Guseva G. B.; Antina E. V.; Berezin M. B.; Ksenofontov A. A.; Bocharov P. S.; Smirnova A. S.; Pavelyev R. S.; Gilfanov I. R.; Pestova S. V.; Izmest’ev E. S.; et al. Conjugate of meso-carboxysubstituted-BODIPY with thioterpenoid as an effective fluorescent probe: Synthesis, structure, spectral characteristics, and molecular docking. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 268, 120638.10.1016/j.saa.2021.120638. PubMed DOI

Silva R. O.; Salvadori M. S.; Sousa F. B. M.; Santos M. S.; Carvalho N. S.; Sousa D. P.; Gomes B. S.; Oliveira F. A.; Barbosa A. L. R.; Freitas R. M.; et al. Evaluation of the anti-inflammatory and antinociceptive effects of myrtenol, a plant-derived monoterpene alcohol, in mice. Flavour Fragr. J. 2014, 29 (3), 184–192. 10.1002/ffj.3195. DOI

Nikitina L. E.; Startseva V. A.; Dorofeeva L. Y.; Artemova N. P.; Kuznetsov I. V.; Lisovskaya S. A.; Glushko N. P. Antifungal activity of bicyclic monoterpenoids and terpenesulfides. Chem. Nat. Compd. 2010, 46 (1), 28–32. 10.1007/s10600-010-9517-5. DOI

Kumar S.; Srivastava S. Establishment of artemisinin combination therapy as first line treatment for combating malaria: Artemisia annua cultivation in India needed for providing sustainable supply chain of artemisinin. Curr. Sci. 2005, 89 (7), 1097–1102.

Nazari Z. E.; Iranshahi M. Biologically active sesquiterpene coumarins from Ferula species. Phytother. Res. 2011, 25 (3), 315–323. 10.1002/ptr.3311. PubMed DOI

Skytte D. M.; Möller J. V.; Liu H. Z.; Nielsen H. O.; Svenningsen L. E.; Jensen C. M.; Olsen C. E.; Christensen S. B. Elucidation of the topography of the thapsigargin binding site in the sarco-endoplasmic calcium ATPase. Bioorg. Med. Chem. 2010, 18 (15), 5634–5646. 10.1016/j.bmc.2010.06.032. PubMed DOI

Sagara Y.; Fernandez-Belda F.; de Meis L.; Inesi G. Characterization of the inhibition of intracellular Ca2+ transport ATPases by thapsigargin. J. Biol. Chem. 1992, 267 (18), 12606–12613. 10.1016/S0021-9258(18)42320-4. PubMed DOI

Abrenica B.; Gilchrist J. S. C. Nucleoplasmic Ca2+ loading is regulated by mobilization of perinuclear Ca2+. Cell Calcium 2000, 28 (2), 127–136. 10.1054/ceca.2000.0137. PubMed DOI

Vangheluwe P.; Louch W. E.; Ver Heyen M.; Sipido K.; Raeymaekers L.; Wuytack F. Ca2+ transport ATPase isoforms SERCA2a and SERCA2b are targeted to the same sites in the murine heart. Cell Calcium 2003, 34 (6), 457–464. 10.1016/S0143-4160(03)00126-X. PubMed DOI

Abrenica B.; Pierce G. N.; Gilchrist J. S. C. Nucleoplasmic calcium regulation in rabbit aortic vascular smooth muscle cells. Can. J. Physiol. Pharmacol. 2003, 81 (3), 301–310. 10.1139/y03-005. PubMed DOI

Perez-Gordones M. C.; Serrano M. L.; Rojas H.; Martinez J. C.; Uzcanga G.; Mendoza M. Presence of a thapsigargin-sensitive calcium pump in Trypanosoma evansi: Immunological, physiological, molecular and structural evidences. Exp. Parasitol. 2015, 159, 107–117. 10.1016/j.exppara.2015.08.017. PubMed DOI

Jurášek M.; Rimpelová S.; Kmoníčková E.; Drašar P.; Ruml T. Tailor-made fluorescent trilobolide to study its biological relevance. J. Med. Chem. 2014, 57 (19), 7947–7954. 10.1021/jm500690j. PubMed DOI

Škorpilová L.; Rimpelová S.; Jurášek M.; Buděšínský M.; Lokajová J.; Effenberg R.; Slepička P.; Ruml T.; Kmoníčková E.; Drašar P. B.; et al. BODIPY-based fluorescent liposomes with sesquiterpene lactone trilobolide. Beilstein J. Org. Chem. 2017, 13, 1316–1324. 10.3762/bjoc.13.128. PubMed DOI PMC

Liu C. Y.; Zhang H. M.; Christofi F. L. Adenylyl cyclase co-distribution with the CaBPs, calbindin-D-28 and calretinin, varies with cell type: assessment with the fluorescent dye, BODIPY forskolin, in enteric ganglia. Cell Tissue Res. 1998, 293 (1), 57–73. 10.1007/s004410051098. PubMed DOI

Van Petegem F. Ryanodine receptors: Structure and function. J. Biol. Chem. 2012, 287 (38), 31624–31632. 10.1074/jbc.R112.349068. PubMed DOI PMC

Saldana C.; Diaz-Munoz M.; Antaramian A.; Gonzalez-Gallardo A.; Garcia-Solis P.; Morales-Tlalpan V. MCF-7 breast carcinoma cells express ryanodine receptor type 1: functional characterization and subcellular localization. Mol. Cell. Biochem. 2009, 323 (1–2), 39–47. 10.1007/s11010-008-9962-7. PubMed DOI

Braun D. C.; Cao Y. Y.; Wang S. M.; Garfield S. H.; Hur G. M.; Blumberg P. M. Role of phorbol ester localization in determining protein kinase C or RasGRP3 translocation: Real-time analysis using fluorescent ligands and proteins. Mol. Cancer Ther. 2005, 4 (1), 141–150. 10.1158/1535-7163.141.4.1. PubMed DOI

Czikora A.; Lundberg D. J.; Abramovitz A.; Lewin N. E.; Kedei N.; Peach M. L.; Zhou X. L.; Merritt R. C.; Craft E. A.; Braun D. C.; et al. Structural Basis for the Failure of the C1 Domain of Ras Guanine Nucleotide Releasing Protein 2 (RasGRP2) to Bind Phorbol Ester with High Affinity. J. Biol. Chem. 2016, 291 (21), 11133–11147. 10.1074/jbc.M116.725333. PubMed DOI PMC

Ikezoe T.; Chen S. S.; Tong X. J.; Heber D.; Taguchi H.; Koeffler H. P. Oridonin induces growth inhibition and apoptosis of a variety of human cancer cells. Int. J. Oncol. 2003, 23 (4), 1187–1193. 10.3892/ijo.23.4.1187. PubMed DOI

Hu H. Z.; Yang Y. B.; Xu X. D.; Shen H. W.; Shu Y. M.; Ren Z.; Li X. M.; Shen H. M.; Zeng H. T. Oridonin induces apoptosis via PI3K/Akt pathway in cervical carcinoma HeLa cell line. Acta Pharmacol. Sin. 2007, 28 (11), 1819–1826. 10.1111/j.1745-7254.2007.00667.x. PubMed DOI

He H. B.; Jiang H.; Chen Y.; Ye J.; Wang A. L.; Wang C.; Liu Q. S.; Liang G. L.; Deng X. M.; Jiang W.; et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun. 2018, 9 (1), 2550.10.1038/s41467-018-04947-6. PubMed DOI PMC

Vasaturo M.; Cotugno R.; Fiengo L.; Vinegoni C.; Dal Piaz F.; De Tommasi N. The anti-tumor diterpene oridonin is a direct inhibitor of Nucleolin in cancer cells. Sci. Rep. 2018, 8 (1), 16735.10.1038/s41598-018-35088-x. PubMed DOI PMC

Huang J. L.; Yan X. L.; Li W.; Fan R. Z.; Li S.; Chen J. H.; Zhang Z. H.; Sang J.; Gan L.; Tang G. H.; et al. Discovery of highly potent daphnane diterpenoids uncovers importin-beta 1 as a druggable vulnerability in castration-resistant prostate cancer. J. Am. Chem. Soc. 2022, 144 (38), 17522–17532. 10.1021/jacs.2c06449. PubMed DOI

Dehelean C. A.; Marcovici I.; Soica C.; Mioc M.; Coricovac D.; Iurciuc S.; Cretu O. M.; Pinzaru I.. Plant-Derived Anticancer Compounds as New Perspectives in Drug Discovery and Alternative Therapy. Molecules 2021, 26 ( (4), ), 1109.10.3390/molecules26041109. PubMed DOI PMC

Kellogg E. H.; Hejab N. M. A.; Howes S.; Northcote P.; Miller J. H.; Diaz J. F.; Downing K. H.; Nogales E. Insights into the distinct mechanisms of action of taxane and non-taxane microtubule stabilizers from Cryo-EM structures. J. Mol. Biol. 2017, 429 (5), 633–646. 10.1016/j.jmb.2017.01.001. PubMed DOI PMC

Mitchell M. J.; Billingsley M. M.; Haley R. M.; Wechsler M. E.; Peppas N. A.; Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discovery 2021, 20 (2), 101–124. 10.1038/s41573-020-0090-8. PubMed DOI PMC

Sun T. T.; Lin W. H.; Zhang W.; Xie Z. G. Self-assembly of amphiphilic drug-dye conjugates into nanoparticles for imaging and chemotherapy. Chem.—Asian J. 2016, 11 (22), 3174–3177. 10.1002/asia.201601206. PubMed DOI

Zhang T.; Zhang W.; Zheng M.; Xie Z. G. Near-infrared BODIPY-paclitaxel conjugates assembling organic nanoparticles for chemotherapy and bioimaging. J. Colloid Interface Sci. 2018, 514, 584–591. 10.1016/j.jcis.2017.12.074. PubMed DOI

Xia J. X.; Pei Q.; Zheng M.; Xie Z. G. An activatable fluorescent prodrug of paclitaxel and BODIPY. J. Mater. Chem. B 2021, 9 (9), 2308–2313. 10.1039/D0TB02510K. PubMed DOI

Wijesooriya C. S.; Peterson J. A.; Shrestha P.; Gehrmann E. J.; Winter A. H.; Smith E. A. A photoactivatable BODIPY Probe for localization-based super-resolution cellular imaging. Angew. Chem., Int. Ed. 2018, 57 (39), 12685–12689. 10.1002/anie.201805827. PubMed DOI

Rogers D.; Phillips F. L.; Joshi B. S.; Viswanathan N. Revised structures of the triterpenes Q, T, and U from Salacia prinoides DC; X-ray crystal structure of triterpene T. J. Chem. Soc., Chem. Commun. 1980, (22), 1048–1049. 10.1039/c39800001048. DOI

Vo N. N. Q.; Nomura Y.; Muranaka T.; Fukushima E. O. Structure-activity relationships of pentacyclic triterpenoids as inhibitors of cyclooxygenase and lipoxygenase enzymes. J. Nat. Prod. 2019, 82 (12), 3311–3320. 10.1021/acs.jnatprod.9b00538. PubMed DOI

Villarroel-Vicente C.; Gutierrez-Palomo S.; Ferri J.; Cortes D.; Cabedo N. Natural products and analogs as preventive agents for metabolic syndrome via peroxisome proliferator-activated receptors: An overview. Eur. J. Med. Chem. 2021, 221, 113535.10.1016/j.ejmech.2021.113535. PubMed DOI

Yang H. J.; Dou Q. P. Targeting apoptosis pathway with natural terpenoids: Implications for treatment of breast and prostate cancer. Curr. Drug Targets 2010, 11 (6), 733–744. 10.2174/138945010791170842. PubMed DOI PMC

Rybalkina E. Y.; Moiseeva N. I.; Karamysheva A. F.; Eroshenko D. V.; Konysheva A. V.; Nazarov A. V.; Grishko V. V. Triterpenoids with modified A-ring as modulators of P-gp-dependent drug-resistance in cancer cells. Chem. Biol. Interact. 2021, 348, 109645.10.1016/j.cbi.2021.109645. PubMed DOI

Fulda S.; Friesen C.; Los M.; Scaffidi C.; Mier W.; Benedict M.; Nunez G.; Krammer P. H.; Peter M. E.; Debatin K. M. Betulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer Res. 1997, 57 (21), 4956–4964. PubMed

Xu Y.; Shu B.; Tian Y.; Wang G. X.; Wang Y. J.; Wang J. W.; Dong Y. F. Oleanolic acid induces osteosarcoma cell apoptosis by inhibition of Notch signaling. Mol. Carcinog. 2018, 57 (7), 896–902. 10.1002/mc.22810. PubMed DOI

Bhola P. D.; Letai A. Mitochondria-judges and executioners of cell death sentences. Mol. Cell 2016, 61 (5), 695–704. 10.1016/j.molcel.2016.02.019. PubMed DOI PMC

Krajcovicova S.; Stankova J.; Dzubak P.; Hajduch M.; Soural M.; Urban M. A Synthetic approach for the rapid preparation of BODIPY conjugates and their use in imaging of cellular drug uptake and distribution. Chem.—Eur. J. 2018, 24 (19), 4957–4966. 10.1002/chem.201706093. PubMed DOI

Dubinin M. V.; Semenova A. A.; Ilzorkina A. I.; Penkov N. V.; Nedopekina D. A.; Sharapov V. A.; Khoroshavina E. I.; Davletshin E. V.; Belosludtseva N. V.; Spivak A. Y.; et al. Mitochondria-targeted prooxidant effects of betulinic acid conjugated with delocalized lipophilic cation F16. Free Radic. Biol. Med. 2021, 168, 55–69. 10.1016/j.freeradbiomed.2021.03.036. PubMed DOI

Gu M.; Zhao P.; Zhang S. Y.; Fan S. J.; Yang L.; Tong Q. C.; Ji G.; Huan C. Betulinic acid alleviates endoplasmic reticulum stress-mediated nonalcoholic fatty liver disease through activation of farnesoid X receptors in mice. Br. J. Pharmacol. 2019, 176 (7), 847–863. 10.1111/bph.14570. PubMed DOI PMC

Brandes B.; Hoenke S.; Fischer L.; Csuk R. Design, synthesis and cytotoxicity of BODIPY FL labelled triterpenoids. Eur. J. Med. Chem. 2020, 185, 111858.10.1016/j.ejmech.2019.111858. PubMed DOI

Hoenke S.; Serbian I.; Deigner H. P.; Csuk R. Mitocanic di- and triterpenoid rhodamine B conjugates. Molecules 2020, 25 (22), 5443.10.3390/molecules25225443. PubMed DOI PMC

Gubaidullin R.; Nedopekina D.; Tukhbatullin A.; Davletshin E.; Spivak A. Design, synthesis, and photophysical properties of BODIPY-labeled lupane triterpenoids. Chem. Proc. 2021, 3 (1), 11.10.3390/ecsoc-24-08102. DOI

Spivak A. Y.; Davletshin E. V.; Gubaidullin R. R.; Tukhbatullin A. A.; Nedopekina D. A. Synthesis of Bodipy-labeled fluorescent betulinic acid derivatives with a terminal triphenylphosphonium group on side-chain C-28. Chem. Nat. Compd. 2022, 58 (6), 1062–1068. 10.1007/s10600-022-03869-6. DOI

Kodr D.; Stanková J.; Rumlová M.; Džubák P.; Řehulka J.; Zimmermann T.; Křížová I.; Gurská S.; Hajdúch M.; Drašar P. B.; et al. Betulinic acid decorated with polar groups and blue emitting BODIPY Dye: Synthesis, cytotoxicity, cell-cycle analysis and anti-HIV profiling. Biomedicines 2021, 9 (9), 1104.10.3390/biomedicines9091104. PubMed DOI PMC

Bildziukevich U.; Rarova L.; Janovska L.; Saman D.; Wimmer Z. Enhancing effect of cystamine in its amides with betulinic acid as antimicrobial and antitumor agent in vitro. Steroids 2019, 148, 91–98. 10.1016/j.steroids.2019.04.004. PubMed DOI

Kensil C. R.; Patel U.; Lennick M.; Marciani D. Separation and characterization of saponins with adjuvant activity from Quillaja-Saponaria molina cortex. J. Immunol. 1991, 146 (2), 431–437. 10.4049/jimmunol.146.2.431. PubMed DOI

Lacaille-Dubois M. A. Updated insights into the mechanism of action and clinical profile of the immunoadjuvant QS-21: A review. Phytomedicine 2019, 60, 152905.10.1016/j.phymed.2019.152905. PubMed DOI PMC

Soltysik S.; Bedore D. A.; Kensil C. R. Adjuvant acitvity of QS-21 isomers. Ann. N.Y. Acad. Sci. 1993, 690, 392–395. 10.1111/j.1749-6632.1993.tb44041.x. PubMed DOI

Jacobsen N. E.; Fairbrother W. J.; Kensil C. R.; Lim A.; Wheeler D. A.; Powell M. F. Structure of the saponin adjuvant QS-21 and its base-catalyzed isomerization product by H-1 and natural abundance C-13 NMR spectroscopy. Carbohydr. Res. 1996, 280 (1), 1–14. 10.1016/0008-6215(95)00278-2. PubMed DOI

Chea E. K.; Fernandez-Tejada A.; Damani P.; Adams M. M.; Gardner J. R.; Livingston P. O.; Ragupathi G.; Gin D. Y. Synthesis and preclinical evaluation of QS-21 variants leading to simplified vaccine adjuvants and mechanistic probes. J. Am. Chem. Soc. 2012, 134 (32), 13448–13457. 10.1021/ja305121q. PubMed DOI PMC

West R.; Panagabko C.; Atkinson J. Synthesis and characterization of BODIPY-alpha-tocopherol: A fluorescent form of vitamin E. J. Org. Chem. 2010, 75 (9), 2883–2892. 10.1021/jo100095n. PubMed DOI PMC

Oleynik P.; Ishihara Y.; Cosa G. Design and synthesis of a BODIPY-alpha-tocopherol adduct for use as an off/on fluorescent antioxidant indicator. J. Am. Chem. Soc. 2007, 129 (7), 1842–1843. 10.1021/ja066789g. PubMed DOI

Krumoya K.; Friedland S.; Cosa G. How lipid unsaturation, peroxyl radical partitioning, and chromanol lipophilic tail affect the antioxidant activity of alpha-tocopherol: Direct visualization via high-throughput fluorescence studies conducted with fluorogenic alpha-tocopherol analogues. J. Am. Chem. Soc. 2012, 134 (24), 10102–10113. 10.1021/ja301680m. PubMed DOI

Wang X. Y.; Bou S.; Klymchenko A. S.; Anton N.; Collot M. Ultrabright green-emitting nanoemulsions based on natural lipids-BODIPY conjugates. Nanomaterials 2021, 11 (3), 826.10.3390/nano11030826. PubMed DOI PMC

Greene L. E.; Godin R.; Cosa G. Fluorogenic ubiquinone analogue for monitoring chemical and biological redox processes. J. Am. Chem. Soc. 2016, 138 (35), 11327–11334. 10.1021/jacs.6b06899. PubMed DOI

Belzile M. N.; Godin R.; Durantini A. M.; Cosa G. Monitoring chemical and biological electron transfer reactions with a fluorogenic vitamin K analogue probe. J. Am. Chem. Soc. 2016, 138 (50), 16388–16397. 10.1021/jacs.6b09735. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace