Terpenes and Terpenoids Conjugated with BODIPYs: An Overview of Biological and Chemical Properties
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
38482846
PubMed Central
PMC11061839
DOI
10.1021/acs.jnatprod.3c00961
Knihovny.cz E-zdroje
- MeSH
- fluorescenční barviva chemie MeSH
- lidé MeSH
- molekulární struktura MeSH
- sloučeniny boru * chemie farmakologie MeSH
- terpeny * chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene MeSH Prohlížeč
- fluorescenční barviva MeSH
- sloučeniny boru * MeSH
- terpeny * MeSH
Advancements in small-molecule research have created the need for sensitive techniques to accurately study biological processes in living systems. Fluorescent-labeled probes have become indispensable tools, particularly those that use boron-dipyrromethene (BODIPY) dyes. Terpenes and terpenoids are organic compounds found in nature that offer diverse biological activities, and BODIPY-based probes play a crucial role in studying these compounds. Monoterpene-BODIPY conjugates have exhibited potential for staining bacterial and fungal cells. Sesquiterpene-BODIPY derivatives have been used to study sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA), indicating their potential for drug development. Owing to their unique properties, diterpenes have been investigated using BODIPY conjugates to evaluate their mechanisms of action. Triterpene-BODIPY conjugates have been synthesized for biological studies, with different spacers affecting their cytotoxicity. Fluorescent probes, inspired by terpenoid-containing vitamins, have also been developed. Derivatives of tocopherol, coenzyme Q10, and vitamin K1 can provide insights into their oxidation-reduction abilities. All these probes have diverse applications, including the study of cell membranes to investigate immune responses and antioxidant properties. Further research in this field can help better understand and use terpenes and terpenoids in various biological contexts.
Zobrazit více v PubMed
Pan S. J.; Zhang H. L.; Wang C. Y.; Yao S. C. L.; Yao S. Q. Target identification of natural products and bioactive compounds using affinity-based probes. Nat. Prod. Rep. 2016, 33 (5), 612–620. 10.1039/C5NP00101C. PubMed DOI
Fetz V.; Prochnow H.; Bronstrup M.; Sasse F. Target identification by image analysis. Nat. Prod. Rep. 2016, 33 (5), 655–667. 10.1039/C5NP00113G. PubMed DOI
Zhang X. J.; Wen J. Y.; Bidasee K. R.; Besch H. R.; Wojcikiewicz R. J. H.; Lee B.; Rubin R. P. Ryanodine and inositol trisphosphate receptors are differentially distributed and expressed in rat parotid gland. Biochem. J. 1999, 363 (Pt 3), 519–527. 10.1042/bj3400519. PubMed DOI PMC
Emmerson P. J.; Archer S.; El-Hamouly W.; Mansour A.; Akil H.; Medzihradsky F. Synthesis and characterization of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-labeled fluorescent ligands for the mu opioid receptor. Biochem. Pharmacol. 1997, 54 (12), 1315–1322. 10.1016/S0006-2952(97)00374-2. PubMed DOI
Xu S. T.; Luo S. S.; Yao H.; Cai H.; Miao X. M.; Wu F.; Yang D. H.; Wu X. M.; Xie W. J.; Yao H. Q.; et al. Probing the anticancer action of oridonin with fluorescent analogues: Visualizing subcellular localization to mitochondria. J. Med. Chem. 2016, 59 (10), 5022–5034. 10.1021/acs.jmedchem.6b00408. PubMed DOI
Umezawa K.; Yoshida M.; Kamiya M.; Yamasoba T.; Urano Y. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics. Nat. Chem. 2017, 9 (3), 279–286. 10.1038/nchem.2648. PubMed DOI
Zhang X.; Ba Q.; Gu Z. N.; Guo D. L.; Zhou Y.; Xu Y. E.; Wang H.; Ye D. J.; Liu H. Fluorescent coumarin-artemisinin conjugates as mitochondria-targeting theranostic probes for enhanced anticancer activities. Chem.—Eur. J. 2015, 21 (48), 17415–17421. 10.1002/chem.201502543. PubMed DOI
Zhou X.; Chen X. B.; Du Z. H.; Zhang Y.; Zhang W. J.; Kong X. R.; Thelen J. J.; Chen C. S.; Chen M. J. Terpenoid esters are the major constituents from leaf lipid droplets of camellia sinensis. Front. Plant Sci. 2019, 10, 179.10.3389/fpls.2019.00179. PubMed DOI PMC
Takahashi M.; Kawamura A.; Kato N.; Nishi T.; Hamachi I.; Ohkanda J. Phosphopeptide-dependent labeling of 14–3-3 ζ proteins by fusicoccin-based fluorescent probes. Angew. Chem., Int. Ed. 2012, 51 (2), 509–512. 10.1002/anie.201106995. PubMed DOI
Antina E.; Bumagina N.; Marfin Y.; Guseva G.; Nikitina L.; Sbytov D.; Telegin F. BODIPY conjugates as functional compounds for medical diagnostics and treatment. Molecules 2022, 27 (4), 1396.10.3390/molecules27041396. PubMed DOI PMC
Loudet A.; Burgess K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chem. Rev. 2007, 107 (11), 4891–4932. 10.1021/cr078381n. PubMed DOI
Tholl D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 2006, 9 (3), 297–304. 10.1016/j.pbi.2006.03.014. PubMed DOI
Juang Y. P.; Liang P. H. Biological and pharmacological effects of synthetic saponins. Molecules 2020, 25 (21), 4974.10.3390/molecules25214974. PubMed DOI PMC
Gang F. L.; Zhu F.; Yang C. F.; Li X. T.; Yang H.; Sun M. X.; Wu W. J.; Zhang J. W. Antifungal, anti-inflamatory and neuritogenic activity of newly-isolated compounds from Disporopsis aspersa. Nat. Prod. Res. 2020, 34 (11), 1521–1527. 10.1080/14786419.2018.1519709. PubMed DOI
Ighachane H.; Boualy B.; Ali M. A.; Sedra M. H.; El Firdoussi L.; Lazrek H. B.. Catalytic synthesis and antifungal activity of new polychlorinated natural terpenes. Adv. Materi. Sci. Eng. 2017, 2017, 1.10.1155/2017/2784303. DOI
Gur’eva Y. A.; Zalevskaya O. A.; Shevchenko O. G.; Slepukhin P. A.; Makarov V. A.; Kuchin A. V. Copper(II) complexes with terpene derivatives of ethylenediamine: synthesis, and antibacterial, antifungal and antioxidant activity. RSC Adv. 2022, 12 (15), 8841–8851. 10.1039/D2RA00223J. PubMed DOI PMC
Novotna E.; Waisser K.; Kunes J.; Palat K.; Buchta V.; Stolarikova J.; Beckert R.; Wsol V. Synthesis and biological activity of quaternary ammonium salt-type agents containing cholesterol and terpenes. Arch. Pharm. 2014, 347 (6), 381–386. 10.1002/ardp.201300407. PubMed DOI
Wu H. F.; Morris-Natschke S. L.; Xu X. D.; Yang M. H.; Cheng Y. Y.; Yu S. S.; Lee K. H. Recent advances in natural anti-HIV triterpenoids and analogs. Med. Res. Rev. 2020, 40 (6), 2339–2385. 10.1002/med.21708. PubMed DOI PMC
Song J. G.; Su J. C.; Song Q. Y.; Huang R. L.; Tang W.; Hu L. J.; Huang X. J.; Jiang R. W.; Li Y. L.; Ye W. C.; et al. Cleistocaltones A and B, antiviral phloroglucinol-terpenoid adducts from Cleistocalyx operculatus. Org. Lett. 2019, 21 (23), 9579–9583. 10.1021/acs.orglett.9b03743. PubMed DOI
Alho D. P. S.; Salvador J. A. R.; Cascante M.; Marin S. Synthesis and antiproliferative activity of novel A-ring cleaved glycyrrhetinic acid derivatives. Molecules 2019, 24 (16), 2938.10.3390/molecules24162938. PubMed DOI PMC
Kowada T.; Maeda H.; Kikuchi K. BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem. Soc. Rev. 2015, 44 (14), 4953–4972. 10.1039/C5CS00030K. PubMed DOI
Guseva G. B.; Antina E. V.; Berezin M. B.; Pavelyev R. S.; Kayumov A. R.; Sharafutdinov I. S.; Lodochnikova O. A.; Islamov D. R.; Usachev K. S.; Boichuk S. V.; et al. Meso-substituted-BODIPY based fluorescent biomarker: Spectral characteristics, photostability and possibilities for practical application. J. Photochem. Photobiol., A 2020, 401, 112783.10.1016/j.jphotochem.2020.112783. DOI
Guseva G. B.; Antina E. V.; Berezin M. B.; Pavelyev R. S.; Kayumov A. R.; Ostolopovskaya O. V.; Gilfanov I. R.; Frolova L. L.; Kutchin A. V.; Akhverdiev R. F.; et al. Design, spectral characteristics, and possibilities for practical application of BODIPY FL-labeled monoterpenoid. ACS Appl. Bio Mater. 2021, 4 (8), 6227–6235. 10.1021/acsabm.1c00550. PubMed DOI
Guseva G. B.; Antina E. V.; Berezin M. B.; Nikitina L. E.; Gilfanov I. R.; Pavelyev R. S.; Lisovskaya S. A.; Frolova L. L.; Ostolopovskaya O. V.; Rakhmatullin I. Z.; et al. Novel BODIPY conjugates with myrtenol: Design, spectral characteristics, and possibilities for practical application. Inorganics 2023, 11 (6), 241.10.3390/inorganics11060241. DOI
Guseva G. B.; Antina E. V.; Berezin M. B.; Smirnova A. S.; Pavelyev R. S.; Gilfanov I. R.; Shevchenko O. G.; Pestova S. V.; Izmest’ev E. S.; Rubtsova S. A.; et al. Design, spectral characteristics, photostability, and possibilities for practical application of BODIPY FL-labeled thioterpenoid. Bioengineering 2022, 9 (5), 210.10.3390/bioengineering9050210. PubMed DOI PMC
Guseva G. B.; Antina E. V.; Berezin M. B.; Ksenofontov A. A.; Bocharov P. S.; Smirnova A. S.; Pavelyev R. S.; Gilfanov I. R.; Pestova S. V.; Izmest’ev E. S.; et al. Conjugate of meso-carboxysubstituted-BODIPY with thioterpenoid as an effective fluorescent probe: Synthesis, structure, spectral characteristics, and molecular docking. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 268, 120638.10.1016/j.saa.2021.120638. PubMed DOI
Silva R. O.; Salvadori M. S.; Sousa F. B. M.; Santos M. S.; Carvalho N. S.; Sousa D. P.; Gomes B. S.; Oliveira F. A.; Barbosa A. L. R.; Freitas R. M.; et al. Evaluation of the anti-inflammatory and antinociceptive effects of myrtenol, a plant-derived monoterpene alcohol, in mice. Flavour Fragr. J. 2014, 29 (3), 184–192. 10.1002/ffj.3195. DOI
Nikitina L. E.; Startseva V. A.; Dorofeeva L. Y.; Artemova N. P.; Kuznetsov I. V.; Lisovskaya S. A.; Glushko N. P. Antifungal activity of bicyclic monoterpenoids and terpenesulfides. Chem. Nat. Compd. 2010, 46 (1), 28–32. 10.1007/s10600-010-9517-5. DOI
Kumar S.; Srivastava S. Establishment of artemisinin combination therapy as first line treatment for combating malaria: Artemisia annua cultivation in India needed for providing sustainable supply chain of artemisinin. Curr. Sci. 2005, 89 (7), 1097–1102.
Nazari Z. E.; Iranshahi M. Biologically active sesquiterpene coumarins from Ferula species. Phytother. Res. 2011, 25 (3), 315–323. 10.1002/ptr.3311. PubMed DOI
Skytte D. M.; Möller J. V.; Liu H. Z.; Nielsen H. O.; Svenningsen L. E.; Jensen C. M.; Olsen C. E.; Christensen S. B. Elucidation of the topography of the thapsigargin binding site in the sarco-endoplasmic calcium ATPase. Bioorg. Med. Chem. 2010, 18 (15), 5634–5646. 10.1016/j.bmc.2010.06.032. PubMed DOI
Sagara Y.; Fernandez-Belda F.; de Meis L.; Inesi G. Characterization of the inhibition of intracellular Ca2+ transport ATPases by thapsigargin. J. Biol. Chem. 1992, 267 (18), 12606–12613. 10.1016/S0021-9258(18)42320-4. PubMed DOI
Abrenica B.; Gilchrist J. S. C. Nucleoplasmic Ca2+ loading is regulated by mobilization of perinuclear Ca2+. Cell Calcium 2000, 28 (2), 127–136. 10.1054/ceca.2000.0137. PubMed DOI
Vangheluwe P.; Louch W. E.; Ver Heyen M.; Sipido K.; Raeymaekers L.; Wuytack F. Ca2+ transport ATPase isoforms SERCA2a and SERCA2b are targeted to the same sites in the murine heart. Cell Calcium 2003, 34 (6), 457–464. 10.1016/S0143-4160(03)00126-X. PubMed DOI
Abrenica B.; Pierce G. N.; Gilchrist J. S. C. Nucleoplasmic calcium regulation in rabbit aortic vascular smooth muscle cells. Can. J. Physiol. Pharmacol. 2003, 81 (3), 301–310. 10.1139/y03-005. PubMed DOI
Perez-Gordones M. C.; Serrano M. L.; Rojas H.; Martinez J. C.; Uzcanga G.; Mendoza M. Presence of a thapsigargin-sensitive calcium pump in Trypanosoma evansi: Immunological, physiological, molecular and structural evidences. Exp. Parasitol. 2015, 159, 107–117. 10.1016/j.exppara.2015.08.017. PubMed DOI
Jurášek M.; Rimpelová S.; Kmoníčková E.; Drašar P.; Ruml T. Tailor-made fluorescent trilobolide to study its biological relevance. J. Med. Chem. 2014, 57 (19), 7947–7954. 10.1021/jm500690j. PubMed DOI
Škorpilová L.; Rimpelová S.; Jurášek M.; Buděšínský M.; Lokajová J.; Effenberg R.; Slepička P.; Ruml T.; Kmoníčková E.; Drašar P. B.; et al. BODIPY-based fluorescent liposomes with sesquiterpene lactone trilobolide. Beilstein J. Org. Chem. 2017, 13, 1316–1324. 10.3762/bjoc.13.128. PubMed DOI PMC
Liu C. Y.; Zhang H. M.; Christofi F. L. Adenylyl cyclase co-distribution with the CaBPs, calbindin-D-28 and calretinin, varies with cell type: assessment with the fluorescent dye, BODIPY forskolin, in enteric ganglia. Cell Tissue Res. 1998, 293 (1), 57–73. 10.1007/s004410051098. PubMed DOI
Van Petegem F. Ryanodine receptors: Structure and function. J. Biol. Chem. 2012, 287 (38), 31624–31632. 10.1074/jbc.R112.349068. PubMed DOI PMC
Saldana C.; Diaz-Munoz M.; Antaramian A.; Gonzalez-Gallardo A.; Garcia-Solis P.; Morales-Tlalpan V. MCF-7 breast carcinoma cells express ryanodine receptor type 1: functional characterization and subcellular localization. Mol. Cell. Biochem. 2009, 323 (1–2), 39–47. 10.1007/s11010-008-9962-7. PubMed DOI
Braun D. C.; Cao Y. Y.; Wang S. M.; Garfield S. H.; Hur G. M.; Blumberg P. M. Role of phorbol ester localization in determining protein kinase C or RasGRP3 translocation: Real-time analysis using fluorescent ligands and proteins. Mol. Cancer Ther. 2005, 4 (1), 141–150. 10.1158/1535-7163.141.4.1. PubMed DOI
Czikora A.; Lundberg D. J.; Abramovitz A.; Lewin N. E.; Kedei N.; Peach M. L.; Zhou X. L.; Merritt R. C.; Craft E. A.; Braun D. C.; et al. Structural Basis for the Failure of the C1 Domain of Ras Guanine Nucleotide Releasing Protein 2 (RasGRP2) to Bind Phorbol Ester with High Affinity. J. Biol. Chem. 2016, 291 (21), 11133–11147. 10.1074/jbc.M116.725333. PubMed DOI PMC
Ikezoe T.; Chen S. S.; Tong X. J.; Heber D.; Taguchi H.; Koeffler H. P. Oridonin induces growth inhibition and apoptosis of a variety of human cancer cells. Int. J. Oncol. 2003, 23 (4), 1187–1193. 10.3892/ijo.23.4.1187. PubMed DOI
Hu H. Z.; Yang Y. B.; Xu X. D.; Shen H. W.; Shu Y. M.; Ren Z.; Li X. M.; Shen H. M.; Zeng H. T. Oridonin induces apoptosis via PI3K/Akt pathway in cervical carcinoma HeLa cell line. Acta Pharmacol. Sin. 2007, 28 (11), 1819–1826. 10.1111/j.1745-7254.2007.00667.x. PubMed DOI
He H. B.; Jiang H.; Chen Y.; Ye J.; Wang A. L.; Wang C.; Liu Q. S.; Liang G. L.; Deng X. M.; Jiang W.; et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun. 2018, 9 (1), 2550.10.1038/s41467-018-04947-6. PubMed DOI PMC
Vasaturo M.; Cotugno R.; Fiengo L.; Vinegoni C.; Dal Piaz F.; De Tommasi N. The anti-tumor diterpene oridonin is a direct inhibitor of Nucleolin in cancer cells. Sci. Rep. 2018, 8 (1), 16735.10.1038/s41598-018-35088-x. PubMed DOI PMC
Huang J. L.; Yan X. L.; Li W.; Fan R. Z.; Li S.; Chen J. H.; Zhang Z. H.; Sang J.; Gan L.; Tang G. H.; et al. Discovery of highly potent daphnane diterpenoids uncovers importin-beta 1 as a druggable vulnerability in castration-resistant prostate cancer. J. Am. Chem. Soc. 2022, 144 (38), 17522–17532. 10.1021/jacs.2c06449. PubMed DOI
Dehelean C. A.; Marcovici I.; Soica C.; Mioc M.; Coricovac D.; Iurciuc S.; Cretu O. M.; Pinzaru I.. Plant-Derived Anticancer Compounds as New Perspectives in Drug Discovery and Alternative Therapy. Molecules 2021, 26 ( (4), ), 1109.10.3390/molecules26041109. PubMed DOI PMC
Kellogg E. H.; Hejab N. M. A.; Howes S.; Northcote P.; Miller J. H.; Diaz J. F.; Downing K. H.; Nogales E. Insights into the distinct mechanisms of action of taxane and non-taxane microtubule stabilizers from Cryo-EM structures. J. Mol. Biol. 2017, 429 (5), 633–646. 10.1016/j.jmb.2017.01.001. PubMed DOI PMC
Mitchell M. J.; Billingsley M. M.; Haley R. M.; Wechsler M. E.; Peppas N. A.; Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discovery 2021, 20 (2), 101–124. 10.1038/s41573-020-0090-8. PubMed DOI PMC
Sun T. T.; Lin W. H.; Zhang W.; Xie Z. G. Self-assembly of amphiphilic drug-dye conjugates into nanoparticles for imaging and chemotherapy. Chem.—Asian J. 2016, 11 (22), 3174–3177. 10.1002/asia.201601206. PubMed DOI
Zhang T.; Zhang W.; Zheng M.; Xie Z. G. Near-infrared BODIPY-paclitaxel conjugates assembling organic nanoparticles for chemotherapy and bioimaging. J. Colloid Interface Sci. 2018, 514, 584–591. 10.1016/j.jcis.2017.12.074. PubMed DOI
Xia J. X.; Pei Q.; Zheng M.; Xie Z. G. An activatable fluorescent prodrug of paclitaxel and BODIPY. J. Mater. Chem. B 2021, 9 (9), 2308–2313. 10.1039/D0TB02510K. PubMed DOI
Wijesooriya C. S.; Peterson J. A.; Shrestha P.; Gehrmann E. J.; Winter A. H.; Smith E. A. A photoactivatable BODIPY Probe for localization-based super-resolution cellular imaging. Angew. Chem., Int. Ed. 2018, 57 (39), 12685–12689. 10.1002/anie.201805827. PubMed DOI
Rogers D.; Phillips F. L.; Joshi B. S.; Viswanathan N. Revised structures of the triterpenes Q, T, and U from Salacia prinoides DC; X-ray crystal structure of triterpene T. J. Chem. Soc., Chem. Commun. 1980, (22), 1048–1049. 10.1039/c39800001048. DOI
Vo N. N. Q.; Nomura Y.; Muranaka T.; Fukushima E. O. Structure-activity relationships of pentacyclic triterpenoids as inhibitors of cyclooxygenase and lipoxygenase enzymes. J. Nat. Prod. 2019, 82 (12), 3311–3320. 10.1021/acs.jnatprod.9b00538. PubMed DOI
Villarroel-Vicente C.; Gutierrez-Palomo S.; Ferri J.; Cortes D.; Cabedo N. Natural products and analogs as preventive agents for metabolic syndrome via peroxisome proliferator-activated receptors: An overview. Eur. J. Med. Chem. 2021, 221, 113535.10.1016/j.ejmech.2021.113535. PubMed DOI
Yang H. J.; Dou Q. P. Targeting apoptosis pathway with natural terpenoids: Implications for treatment of breast and prostate cancer. Curr. Drug Targets 2010, 11 (6), 733–744. 10.2174/138945010791170842. PubMed DOI PMC
Rybalkina E. Y.; Moiseeva N. I.; Karamysheva A. F.; Eroshenko D. V.; Konysheva A. V.; Nazarov A. V.; Grishko V. V. Triterpenoids with modified A-ring as modulators of P-gp-dependent drug-resistance in cancer cells. Chem. Biol. Interact. 2021, 348, 109645.10.1016/j.cbi.2021.109645. PubMed DOI
Fulda S.; Friesen C.; Los M.; Scaffidi C.; Mier W.; Benedict M.; Nunez G.; Krammer P. H.; Peter M. E.; Debatin K. M. Betulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer Res. 1997, 57 (21), 4956–4964. PubMed
Xu Y.; Shu B.; Tian Y.; Wang G. X.; Wang Y. J.; Wang J. W.; Dong Y. F. Oleanolic acid induces osteosarcoma cell apoptosis by inhibition of Notch signaling. Mol. Carcinog. 2018, 57 (7), 896–902. 10.1002/mc.22810. PubMed DOI
Bhola P. D.; Letai A. Mitochondria-judges and executioners of cell death sentences. Mol. Cell 2016, 61 (5), 695–704. 10.1016/j.molcel.2016.02.019. PubMed DOI PMC
Krajcovicova S.; Stankova J.; Dzubak P.; Hajduch M.; Soural M.; Urban M. A Synthetic approach for the rapid preparation of BODIPY conjugates and their use in imaging of cellular drug uptake and distribution. Chem.—Eur. J. 2018, 24 (19), 4957–4966. 10.1002/chem.201706093. PubMed DOI
Dubinin M. V.; Semenova A. A.; Ilzorkina A. I.; Penkov N. V.; Nedopekina D. A.; Sharapov V. A.; Khoroshavina E. I.; Davletshin E. V.; Belosludtseva N. V.; Spivak A. Y.; et al. Mitochondria-targeted prooxidant effects of betulinic acid conjugated with delocalized lipophilic cation F16. Free Radic. Biol. Med. 2021, 168, 55–69. 10.1016/j.freeradbiomed.2021.03.036. PubMed DOI
Gu M.; Zhao P.; Zhang S. Y.; Fan S. J.; Yang L.; Tong Q. C.; Ji G.; Huan C. Betulinic acid alleviates endoplasmic reticulum stress-mediated nonalcoholic fatty liver disease through activation of farnesoid X receptors in mice. Br. J. Pharmacol. 2019, 176 (7), 847–863. 10.1111/bph.14570. PubMed DOI PMC
Brandes B.; Hoenke S.; Fischer L.; Csuk R. Design, synthesis and cytotoxicity of BODIPY FL labelled triterpenoids. Eur. J. Med. Chem. 2020, 185, 111858.10.1016/j.ejmech.2019.111858. PubMed DOI
Hoenke S.; Serbian I.; Deigner H. P.; Csuk R. Mitocanic di- and triterpenoid rhodamine B conjugates. Molecules 2020, 25 (22), 5443.10.3390/molecules25225443. PubMed DOI PMC
Gubaidullin R.; Nedopekina D.; Tukhbatullin A.; Davletshin E.; Spivak A. Design, synthesis, and photophysical properties of BODIPY-labeled lupane triterpenoids. Chem. Proc. 2021, 3 (1), 11.10.3390/ecsoc-24-08102. DOI
Spivak A. Y.; Davletshin E. V.; Gubaidullin R. R.; Tukhbatullin A. A.; Nedopekina D. A. Synthesis of Bodipy-labeled fluorescent betulinic acid derivatives with a terminal triphenylphosphonium group on side-chain C-28. Chem. Nat. Compd. 2022, 58 (6), 1062–1068. 10.1007/s10600-022-03869-6. DOI
Kodr D.; Stanková J.; Rumlová M.; Džubák P.; Řehulka J.; Zimmermann T.; Křížová I.; Gurská S.; Hajdúch M.; Drašar P. B.; et al. Betulinic acid decorated with polar groups and blue emitting BODIPY Dye: Synthesis, cytotoxicity, cell-cycle analysis and anti-HIV profiling. Biomedicines 2021, 9 (9), 1104.10.3390/biomedicines9091104. PubMed DOI PMC
Bildziukevich U.; Rarova L.; Janovska L.; Saman D.; Wimmer Z. Enhancing effect of cystamine in its amides with betulinic acid as antimicrobial and antitumor agent in vitro. Steroids 2019, 148, 91–98. 10.1016/j.steroids.2019.04.004. PubMed DOI
Kensil C. R.; Patel U.; Lennick M.; Marciani D. Separation and characterization of saponins with adjuvant activity from Quillaja-Saponaria molina cortex. J. Immunol. 1991, 146 (2), 431–437. 10.4049/jimmunol.146.2.431. PubMed DOI
Lacaille-Dubois M. A. Updated insights into the mechanism of action and clinical profile of the immunoadjuvant QS-21: A review. Phytomedicine 2019, 60, 152905.10.1016/j.phymed.2019.152905. PubMed DOI PMC
Soltysik S.; Bedore D. A.; Kensil C. R. Adjuvant acitvity of QS-21 isomers. Ann. N.Y. Acad. Sci. 1993, 690, 392–395. 10.1111/j.1749-6632.1993.tb44041.x. PubMed DOI
Jacobsen N. E.; Fairbrother W. J.; Kensil C. R.; Lim A.; Wheeler D. A.; Powell M. F. Structure of the saponin adjuvant QS-21 and its base-catalyzed isomerization product by H-1 and natural abundance C-13 NMR spectroscopy. Carbohydr. Res. 1996, 280 (1), 1–14. 10.1016/0008-6215(95)00278-2. PubMed DOI
Chea E. K.; Fernandez-Tejada A.; Damani P.; Adams M. M.; Gardner J. R.; Livingston P. O.; Ragupathi G.; Gin D. Y. Synthesis and preclinical evaluation of QS-21 variants leading to simplified vaccine adjuvants and mechanistic probes. J. Am. Chem. Soc. 2012, 134 (32), 13448–13457. 10.1021/ja305121q. PubMed DOI PMC
West R.; Panagabko C.; Atkinson J. Synthesis and characterization of BODIPY-alpha-tocopherol: A fluorescent form of vitamin E. J. Org. Chem. 2010, 75 (9), 2883–2892. 10.1021/jo100095n. PubMed DOI PMC
Oleynik P.; Ishihara Y.; Cosa G. Design and synthesis of a BODIPY-alpha-tocopherol adduct for use as an off/on fluorescent antioxidant indicator. J. Am. Chem. Soc. 2007, 129 (7), 1842–1843. 10.1021/ja066789g. PubMed DOI
Krumoya K.; Friedland S.; Cosa G. How lipid unsaturation, peroxyl radical partitioning, and chromanol lipophilic tail affect the antioxidant activity of alpha-tocopherol: Direct visualization via high-throughput fluorescence studies conducted with fluorogenic alpha-tocopherol analogues. J. Am. Chem. Soc. 2012, 134 (24), 10102–10113. 10.1021/ja301680m. PubMed DOI
Wang X. Y.; Bou S.; Klymchenko A. S.; Anton N.; Collot M. Ultrabright green-emitting nanoemulsions based on natural lipids-BODIPY conjugates. Nanomaterials 2021, 11 (3), 826.10.3390/nano11030826. PubMed DOI PMC
Greene L. E.; Godin R.; Cosa G. Fluorogenic ubiquinone analogue for monitoring chemical and biological redox processes. J. Am. Chem. Soc. 2016, 138 (35), 11327–11334. 10.1021/jacs.6b06899. PubMed DOI
Belzile M. N.; Godin R.; Durantini A. M.; Cosa G. Monitoring chemical and biological electron transfer reactions with a fluorogenic vitamin K analogue probe. J. Am. Chem. Soc. 2016, 138 (50), 16388–16397. 10.1021/jacs.6b09735. PubMed DOI