Colchicine-BODIPY Probes: Evidence for the Involvement of Intracellular Membranes in the Targeting of Colchicine to Tubulin

. 2025 Jul 11 ; 8 (7) : 1965-1985. [epub] 20250613

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40672674

The natural product colchicine (Col) is a medication used to treat severe inflammatory conditions. Although its mechanism of action at the level of the cytoskeleton is known, its subcellular distribution has not yet been properly studied. In this work, we present the first rational approach to assess the intracellular localization and biological activity of this alkaloid. We conjugated Col to green-emitting BODIPY dyes (CBs) with alternative linkers of different lengths (CB1-CB12) via different types of linkages. Connections of Col with BODIPY generally reduced its cytotoxicity to different levels depending on the type of linker. From the analysis of CB effects on cytotoxicity, cell cycle, and tubulin polymerization, we selected the most potent substances for fluorescence microscopy. Treatment of cells with 10 μM conjugates for 15 h showed different effects on microtubule organization. Live-cell imaging revealed that CBs rapidly associated with cellular membranes. Double label experiments unveiled that the CB4, which was the most effective in inhibiting tubulin polymerization, binds to the endoplasmic reticulum (ER) and mitochondria. In silico modeling and SPR analyses confirmed the high potency of CB4 to bind to the colchicine site on tubulin.

Zobrazit více v PubMed

Yasmin F., Najeeb H., Moeed A., Hassan W., Khatri M., Asghar M. S., Naveed A. K., Ullah W., Surani S., Siddiqi T. J.. Safety and efficacy of colchicine in COVID-19 patients: A systematic review and meta-analysis of randomized control trials. PLoS One. 2022:17e0266245. doi: 10.1371/journal.pone.0266245. PubMed DOI PMC

Reyes A. Z., Hu K. A., Teperman J., Wampler Muskardin T. L., Tardif J.-C., Shah B., Pillinger M. H.. Anti-inflammatory therapy for COVID-19 infection: the case for colchicine. Ann. Rheum. Dis. 2021;80:550–557. doi: 10.1136/annrheumdis-2020-219174. PubMed DOI PMC

Agarwal A., Hunt B., Stegemann M., Rochwerg B., Lamontagne F., Siemieniuk R. A., Agoritsas T., Askie L., Lytvyn L., Leo Y. S.. et al. A living WHO guideline on drugs for covid-19. BMJ. 2020;370:m3379. doi: 10.1136/bmj.m3379. PubMed DOI

Gracheva I. A., Shchegravina E. S., Schmalz H.-G., Beletskaya I. P., Fedorov A. Y.. Colchicine alkaloids and synthetic analogues: Current progress and perspectives. J. Med. Chem. 2020;63:10618–10651. doi: 10.1021/acs.jmedchem.0c00222. PubMed DOI

Andreu J. M., Timasheff S. N.. Tubulin bound to colchicine forms polymers different from microtubules. Proc. Natl. Acad. Sci. U.S.A. 1982;79:6753–6756. doi: 10.1073/pnas.79.22.6753. PubMed DOI PMC

Ravelli R. B. G., Gigant B., Curmi P. A., Jourdain I., Lachkar S., Sobel A., Knossow M.. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature. 2004;428:198–202. doi: 10.1038/nature02393. PubMed DOI

Slobodnick A., Shah B., Krasnokutsky S., Pillinger M. H.. Update on colchicine 2017. Rheumatology. 2018;57:i4–i11. doi: 10.1093/rheumatology/kex453. PubMed DOI PMC

Weng J.-H., Koch P. D., Luan H. H., Tu H.-C., Shimada K., Ngan I., Ventura R., Jiang R., Mitchison T. J.. Colchicine acts selectively in the liver to induce hepatokines that inhibit myeloid cell activation. Nat. Metab. 2021;3:513–522. doi: 10.1038/s42255-021-00366-y. PubMed DOI PMC

Korkmaz O., Korkmaz M., Aksoz E.. In vitro effects of colchicine on human erythrocyte membranes: An ESR study. Z. Naturforsch. C. 1997;52:522–529. doi: 10.1515/znc-1997-7-816. PubMed DOI

Mons S., Veretout F., Carlier M.-F., Erk I., Lepault J., Trudel E., Salesse C., Ducray P., Mioskowski C., Lebeau L.. The interaction between lipid derivatives of colchicine and tubulin: Consequences of the interaction of the alkaloid with lipid membranes. Biochim. Biophys. Acta Biomembr. 2000;1468:381–395. doi: 10.1016/S0005-2736(00)00279-0. PubMed DOI

Clark J. I., Garland D.. Fluorescein colchicine - Synthesis, purification, and biological activity. J. Cell Biol. 1978;76:619–627. doi: 10.1083/jcb.76.3.619. PubMed DOI PMC

Riva E., Mattarella M., Borrelli S., Christodoulou M. S., Cartelli D., Main M., Faulkner S., Sykes D., Cappelletti G., Snaith J. S., Passarella D.. Preparation of fluorescent tubulin binders. ChemPlusChem. 2013;78:222–226. doi: 10.1002/cplu.201200260. DOI

Hiratsuka T., Kato T.. A fluorescent analog of colcemid, N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-colcemid, as a probe for the colcemid-binding sites of tubulin and microtubules. J. Biol. Chem. 1987;262:6318–6322. doi: 10.1016/S0021-9258(18)45572-X. PubMed DOI

Sengupta S., Puri K. D., Surolia A., Roy S., Bhattacharyya B.. N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)­colcemid, a probe for different classes of colchicine-binding site on tubulin. Eur. J. Biochem. 1993;212:387–393. doi: 10.1111/j.1432-1033.1993.tb17673.x. PubMed DOI

Sengupta S., Mahapatra P. K., Chakrabarti G., Roy S., Bhattacharyya B.. Interaction of a fluorescent analog of N-deacetyl-N-methyl-colchicine (Colcemid) with liver alcohol-dehydrogenase. Eur. J. Biochem. 1995;232:844–848. doi: 10.1111/j.1432-1033.1995.0844a.x. PubMed DOI

Loudet A., Burgess K.. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chem. Rev. 2007;107:4891–4932. doi: 10.1021/cr078381n. PubMed DOI

Li Z. Y., Hong E. Y. H., Poon C. T., Cheng Y. H., Chan M. H. Y., Leung M. Y., Wu L. X., Yam V. W. W.. Synthesis, characterization, supramolecular self-assembly, and organic resistive memory applications of BODIPY derivatives. ACS Mater. Lett. 2023;5:909–919. doi: 10.1021/acsmaterialslett.2c01174. DOI

Gao J. M., Chen X. X., Chen S. Q., Meng H., Wang Y., Li C. S., Feng L.. The BODIPY-based chemosensor for fluorometric/colorimetric dual channel detection of RDX and PA. Anal. Chem. 2019;91:13675–13680. doi: 10.1021/acs.analchem.9b02888. PubMed DOI

Haldar U., Lee H. I.. BODIPY-derived polymeric chemosensor appended with thiosemicarbazone units for the simultaneous detection and separation of Hg­(II) ions in pure aqueous media. ACS Appl. Mater. Interfaces. 2019;11:13685–13693. doi: 10.1021/acsami.9b00408. PubMed DOI

Shi W. J., Yan X. H., Yang J. R., Wei Y. F., Huo Y. T., Su C. L., Yan J. W., Han D. X., Niu L.. Development of five-membered heterocycle BODIPY-based AIE fluorescent probes for dual-organelle viscosity imaging. Anal. Chem. 2023;95:9646–9653. doi: 10.1021/acs.analchem.3c01409. PubMed DOI

Campbell J. W., Tung M. T., Diaz-Rodriguez R. M., Robertson K. N., Beharry A. A., Thompson A.. Introducing the tellurophene-appended BODIPY: PDT agent with mass cytometry tracking capabilities. ACS Med. Chem. Lett. 2021;12:1925–1931. doi: 10.1021/acsmedchemlett.1c00492. PubMed DOI PMC

Jurášek M., Rimpelová S., Kmoníčková E., Drašar P., Ruml T.. Tailor-made fluorescent trilobolide to study its biological relevance. J. Med. Chem. 2014;57:7947–7954. doi: 10.1021/jm500690j. PubMed DOI

Braun D. C., Cao Y., Wang S., Garfield S. H., Min Hur G., Blumberg P. M.. Role of phorbol ester localization in determining protein kinase C or RasGRP3 translocation: real-time analysis using fluorescent ligands and proteins. Mol. Cancer Ther. 2005;4:141–150. doi: 10.1158/1535-7163.141.4.1. PubMed DOI

Kodr D., Stanková J., Rumlová M., Džubák P., Řehulka J., Zimmermann T., Křížová I., Gurská S., Hajdúch M., Drašar P. B., Jurášek M.. Betulinic acid decorated with polar groups and blue emitting BODIPY dye: Synthesis, cytotoxicity, cell-cycle analysis and anti-HIV profiling. Biomedicines. 2021;9:1104. doi: 10.3390/biomedicines9091104. PubMed DOI PMC

Jurášek M., Valečka J., Novotný I., Kejík Z., Fähnrich J., Marešová A., Tauchen J., Bartůněk P., Dolenský B., Jakubek M., Drašar P. B., Králová J.. Synthesis and biological evaluation of cationic TopFluor cholesterol analogues. Bioorg. Chem. 2021;117:105410. doi: 10.1016/j.bioorg.2021.105410. PubMed DOI

Kanyan D., Horacek-Glading M., Wildervanck M. J., Söhnel T., Ware D. C., Brothers P. J.. O-BODIPYs as fluorescent labels for sugars: glucose, xylose and ribose. Org. Chem. Front. 2022;9:720–730. doi: 10.1039/D1QO01418H. DOI

Xia J., Pei Q., Zheng M., Xie Z.. An activatable fluorescent prodrug of paclitaxel and BODIPY. J. Mater. Chem. B. 2021;9:2308–2313. doi: 10.1039/D0TB02510K. PubMed DOI

Zhang T., Zhang W., Zheng M., Xie Z.. Near-infrared BODIPY-paclitaxel conjugates assembling organic nanoparticles for chemotherapy and bioimaging. J. Colloid Interface Sci. 2018;514:584–591. doi: 10.1016/j.jcis.2017.12.074. PubMed DOI

Wijesooriya C. S., Peterson J. A., Shrestha P., Gehrmann E. J., Winter A. H., Smith E. A.. A photoactivatable BODIPY probe for localization-based super-resolution cellular imaging. Angew. Chem., Int. Ed. 2018;57:12685–12689. doi: 10.1002/anie.201805827. PubMed DOI

Lin C. M., Liu J., Jeffries C., Yang L., Lu Y., Lee R. E., Chen T.. Development of BODIPY FL vindoline as a novel and high-affinity pregnane X receptor fluorescent probe. Bioconjugate Chem. 2014;25:1664–1677. doi: 10.1021/bc5002856. PubMed DOI PMC

Arnold L. A., Ranaivo P., Guy R. K.. Synthesis and characterization of BODIPY-labeled colchicine. Bioorg. Med. Chem. Lett. 2008;18:5867–5870. doi: 10.1016/j.bmcl.2008.07.068. PubMed DOI PMC

Agramunt J., Ginesi R., Pedroso E., Grandas A.. Inverse electron-demand Diels–Alder bioconjugation reactions using 7-oxanorbornenes as dienophiles. J. Org. Chem. 2020;85:6593–6604. doi: 10.1021/acs.joc.0c00583. PubMed DOI

Malachowska-Ugarte M., Sperduto C., Ermolovich Y. V., Sauchuk A. L., Jurášek M., Litvinovskaya R. P., Straltsova D., Smolich I., Zhabinskii V. N., Drašar P., Demidchik V., Khripach V. A.. Brassinosteroid-BODIPY conjugates: Design, synthesis, and properties. Steroids. 2015;102:53–59. doi: 10.1016/j.steroids.2015.07.002. PubMed DOI

Panovic I., Montgomery J. R. D., Lancefield C. S., Puri D., Lebl T., Westwood N. J.. Grafting of technical lignins through regioselective triazole formation on β-O-4 linkages. ACS Sustain. Chem. Eng. 2017;5:10640–10648. doi: 10.1021/acssuschemeng.7b02575. DOI

Thiele C., Papan C., Hoelper D., Kusserow K., Gaebler A., Schoene M., Piotrowitz K., Lohmann D., Spandl J., Stevanovic A., Shevchenko A., Kuerschner L.. Tracing fatty acid metabolism by click chemistry. ACS Chem. Biol. 2012;7:2004–2011. doi: 10.1021/cb300414v. PubMed DOI

Malysheva Y. B., Combes S., Allegro D., Peyrot V., Knochel P., Gavryushin A. E., Fedorov A. Y.. Synthesis and biological evaluation of novel anticancer bivalent colchicine–tubulizine hybrids. Bioorg. Med. Chem. 2012;20:4271–4278. doi: 10.1016/j.bmc.2012.05.072. PubMed DOI

Nicolaus N., Zapke J., Riesterer P., Neudörfl J.-M., Prokop A., Oschkinat H., Schmalz H.-G.. Azides derived from colchicine and their use in library synthesis: A practical entry to new bioactive derivatives of an old natural drug. ChemMedChem. 2010;5:661–665. doi: 10.1002/cmdc.201000063. PubMed DOI

Thomopoulou P., Sachs J., Teusch N., Mariappan A., Gopalakrishnan J., Schmalz H.-G.. New colchicine-derived triazoles and their influence on cytotoxicity and microtubule morphology. ACS Med. Chem. Lett. 2016;7:188–191. doi: 10.1021/acsmedchemlett.5b00418. PubMed DOI PMC

Jurášek M., Rimpelová S., Pavlíčková V., Ruml T., Lapčík O., Drašar P. B.. Synthesis and biological evaluation of nandrolone–BODIPY conjugates. Steroids. 2015;97:62–66. doi: 10.1016/j.steroids.2014.10.002. PubMed DOI

Khan S. S., Hanelt S., Liebscher J.. Versatile synthesis of 1,2,3-triazolium-based ionic liquids. ARKIVOC. 2009;12:193–208. doi: 10.3998/ark.5550190.0010.c17. DOI

Canseco-Gonzalez D., Albrecht M.. Wingtip substituents tailor the catalytic activity of ruthenium triazolylidene complexes in base-free alcohol oxidation. Dalton Trans. 2013;42:7424–7432. doi: 10.1039/c3dt32939a. PubMed DOI

Telegina L. N., Kelbysheva E. S., Strelkova T. V., Ezernitskaya M. G., Borisov Y. A., Smol'yakov A. F., Peregudov A. S., Rodionov A. N., Ikonnikov N. S., Loim N. M.. Transalkylation and migration of N-substituent upon alkylation of 1,2,3-triazoles containing good leaving N-substituents. Eur. J. Org. Chem. 2016;35:5897–5906. doi: 10.1002/ejoc.201601146. DOI

Singh B., Kumar A., Joshi P., Guru S. K., Kumar S., Wani Z. A., Mahajan G., Hussain A., Qazi A. K., Kumar A., Bharate S. S., Gupta B. D., Sharma P. R., Hamid A., Saxena A. K., Mondhe D. M., Bhushan S., Bharate S. B., Vishwakarma R. A.. Colchicine derivatives with potent anticancer activity and reduced P-glycoprotein induction liability. Org. Biomol. Chem. 2015;13:5674–5689. doi: 10.1039/C5OB00406C. PubMed DOI

Krzywik J., Nasulewicz-Goldeman A., Mozga W., Wietrzyk J., Huczyński A.. Novel double-modified colchicine derivatives bearing 1,2,3-triazole: Design, synthesis, and biological activity evaluation. ACS Omega. 2021;6:26583–26600. doi: 10.1021/acsomega.1c03948. PubMed DOI PMC

Nosková V., Džubák P., Kuzmina G., Ludková A., Stehlík D., Trojanec R., Janoštáková A., Kořínková G., Mihál V., Hajdúch M.. In vitro chemoresistance profile and expression/function of MDR associated proteins in resistant cell lines derived from CCRF-CEM, K562, A549 and MDA MB 231 parental cells. Neoplasma. 2002;49:418–425. PubMed

Safa A. R., Stern R. K., Choi K., Agresti M., Tamai I., Mehta N. D., Roninson I. B.. Molecular basis of preferential resistance to colchicine in multidrug-resistant human cells conferred by Gly-185----Val-185 substitution in P-glycoprotein. Proc. Natl. Acad. Sci. U.S.A. 1990;87:7225–7229. doi: 10.1073/pnas.87.18.7225. PubMed DOI PMC

Loo B. V. D., Hong Y., Hancock V., Martin J. F., Erusalimsky J. D.. Antimicrotubule agents induce polyploidization of human leukaemic cell lines with megakaryocytic features. Eur. J. Clin. Invest. 1993;23:621–629. doi: 10.1111/j.1365-2362.1993.tb00723.x. PubMed DOI

Chen X. M., Liu J., Wang T., Shang J.. Colchicine-induced apoptosis in human normal liver L-02 cells by mitochondrial mediated pathways. Toxicol. In Vitro. 2012;26:649–655. doi: 10.1016/j.tiv.2012.01.024. PubMed DOI

Kumar A., Singh B., Mahajan G., Sharma P. R., Bharate S. B., Mintoo M. J., Mondhe D. M.. A novel colchicine-based microtubule inhibitor exhibits potent antitumor activity by inducing mitochondrial mediated apoptosis in MIA PaCa-2 pancreatic cancer cells. Tumour Biol. 2016;37:13121–13136. doi: 10.1007/s13277-016-5160-5. PubMed DOI

Mahendran D., Selvam K., Kumari S., Venkateswara Swamy K., Geetha N., Venkatachalam P.. Thiocolchicoside and colchicine induced apoptosis in breast cancer (MCF-7) cells via up-regulated expression of p53 tumor suppressor protein gene: An in vitro and in silico docking approaches. J. Biol. Act. Prod. Nat. 2020;10:264–274. doi: 10.1080/22311866.2020.1815575. DOI

Gorman A. M., Bonfoco E., Zhivotovsky B., Orrenius S., Ceccatelli S.. Cytochrome c release and caspase-3 activation during colchicine-induced apoptosis of cerebellar granule cells. Eur. J. Neurosci. 1999;11:1067–1072. doi: 10.1046/j.1460-9568.1999.00512.x. PubMed DOI

Leung Y. Y., Yao Hui L. L., Kraus V. B.. ColchicineUpdate on mechanisms of action and therapeutic uses. Semin. Arthritis Rheum. 2015;45:341–350. doi: 10.1016/j.semarthrit.2015.06.013. PubMed DOI PMC

Lobel J., MacDonald I. J., Ciesielski M. J., Barone T., Potter W. R., Pollina J., Plunkett R. J., Fenstermaker R. A., Dougherty T. J.. 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) in a nude rat glioma model: implications for photodynamic therapy. Lasers Surg. Med. 2001;29:397–405. doi: 10.1002/lsm.10001. PubMed DOI

Saxton W. M., Hollenbeck P. J.. The axonal transport of mitochondria. J. Cell Sci. 2012;125:2095–2104. doi: 10.1242/jcs.053850. PubMed DOI PMC

Waterman-Storer C. M., Salmon E. D.. Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr. Biol. 1998;8:798–806. doi: 10.1016/S0960-9822(98)70321-5. PubMed DOI

Pochampally S., Hartman K. L., Wang R., Wang J. X., Yun M. K., Parmar K., Park H., Meibohm B., White S. W., Li W., Miller D. D.. Design, synthesis, and biological evaluation of pyrimidine dihydroquinoxalinone derivatives as tubulin colchicine site-binding agents that displayed potent anticancer activity both in vitro and in vivo. ACS Pharmacol. Transl. Sci. 2023;6:526–545. doi: 10.1021/acsptsci.2c00108. PubMed DOI PMC

Deng S. S., Banerjee S., Chen H., Pochampally S., Wang Y. X., Yun M. K., White S. W., Parmar K., Meibohm B., Hartman K. L., Wu Z. Z., Miller D. D., Li W.. SB226, an inhibitor of tubulin polymerization, inhibits paclitaxel-resistant melanoma growth and spontaneous metastasis. Cancer Lett. 2023;555:216046. doi: 10.1016/j.canlet.2022.216046. PubMed DOI PMC

Tan L., Wu C. Y., Zhang J. F., Yu Q. W., Wang X. Y., Zhang L. L., Ge M. Y., Wang Z. J., Ouyang L., Wang Y. X.. Design, synthesis, and biological evaluation of heterocyclic-fused pyrimidine chemotypes guided by X-ray crystal structure with potential antitumor and anti-multidrug resistance efficacy targeting the colchicine binding site. J. Med. Chem. 2023;66:3588–3620. doi: 10.1021/acs.jmedchem.2c02115. PubMed DOI

Zhang C., Yang N., Yang C. H., Ding H. S., Luo C., Zhang Y., Wu M. J., Zhang X. W., Shen X., Jiang H. L., Meng L. H., Ding J.. S9, a novel anticancer agent, exerts its anti -proliferative activity by interfering with both PI3K-Akt-mTOR signaling and microtubule cytoskeleton. PLoS One. 2009;4:e4881. doi: 10.1371/journal.pone.0004881. PubMed DOI PMC

Krishnan K. S., Bengtsson C., Good J. A. D., Mirkhanov S., Chorell E., Johansson L.B.Å., Almqvist F.. Synthesis of fluorescent ring-fused 2-pyridone peptidomimetics. J. Org. Chem. 2013;78:12207–12213. doi: 10.1021/jo401844y. PubMed DOI

Wang J., Hou Y., Li C., Zhang B., Wang X.. Selectivity tune of fluoride ion sensing for phenolic OH-containing BODIPY dyes. Sens. Actuators B: Chem. 2011;157:586–593. doi: 10.1016/j.snb.2011.05.027. DOI

Bagnato J. D., Eilers A. L., Horton R. A., Grissom C. B.. Synthesis and characterization of a cobalamin–colchicine conjugate as a novel tumor-targeted cytotoxin. J. Org. Chem. 2004;69:8987–8996. doi: 10.1021/jo049953w. PubMed DOI

Velapoldi R. A., Tønnesen H. H.. Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectral region. J. Fluoresc. 2004;14:465–472. doi: 10.1023/B:JOFL.0000031828.96368.c1. PubMed DOI

Bourderioux A., Nauš P., Perlíková P., Pohl R., Pichová I., Votruba I., Džubák P., Konečný P., Hajdúch M., Stray K. M., Wang T., Ray A. S., Feng J. Y., Birkus G., Cihlář T., Hocek M.. Synthesis and significant cytostatic activity of 7-hetaryl-7-deazaadenosines. J. Med. Chem. 2011;54:5498–5507. doi: 10.1021/jm2005173. PubMed DOI

Arnaoutova I., Kleinman H. K.. In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat. Protoc. 2010;5:628–635. doi: 10.1038/nprot.2010.6. PubMed DOI

Nováková M., Dráberová E., Schürmann W., Czihak G., Viklický V., Dráber P.. γ-Tubulin redistribution in taxol-treated mitotic cells probed by monoclonal antibodies. Cell Motil. 1996;33:38–51. doi: 10.1002/(SICI)1097-0169(1996)33:1<38::AID-CM5>3.0.CO;2-E. PubMed DOI

Viklicky V., Draber P., Haek J., Bartek J.. Production and characterization of a monoclonal antitubulin antibody. Cell Biol. Int. Rep. 1982;6:725–731. doi: 10.1016/0309-1651(82)90164-3. PubMed DOI

Dráber P., Dráberová E., Zicconi D., Sellitto C., Viklický V., Cappuccinelli P.. Heterogeneity of microtubules recognized by monoclonal antibodies to alpha-tubulin. Eur. J. Cell. Biol. 1986;41:82–88. PubMed

Vinopal S., Černohorská M., Sulimenko V., Sulimenko T., Vosecká V., Flemr M., Dráberová E., Dráber P.. γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis. PLoS One. 2012;7:e29919. doi: 10.1371/journal.pone.0029919. PubMed DOI PMC

Sali A., Blundell T. L.. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI

Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E.. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Trott O., Olson A. J.. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Landrum, G. RDKit; Open-Source Cheminformatics Software, 2021.

Cxcalc utility was used for ligand protonation, Cxcalc version 19.22.0, ChemAxon

Hess B., Kutzner C., van der Spoel D., Lindahl E.. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory. Comput. 2008;4:435–447. doi: 10.1021/ct700301q. PubMed DOI

Pronk S., Pall S., Schulz R., Larsson P., Bjelkmar P., Apostolov R., Shirts M. R., Smith J. C., Kasson P. M., van der Spoel D., Hess B., Lindahl E.. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29:845–854. doi: 10.1093/bioinformatics/btt055. PubMed DOI PMC

Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J. L., Dror R. O., Shaw D. E.. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–1958. doi: 10.1002/prot.22711. PubMed DOI PMC

Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. . Gaussian 09; Gaussian, Inc.: Wallingford CT, 2016.

Bouysset C., Fiorucci S.. ProLIF: A library to encode molecular interactions as fingerprints. J. ChemInform. 2021;13:72. doi: 10.1186/s13321-021-00548-6. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...