Colchicine-BODIPY Probes: Evidence for the Involvement of Intracellular Membranes in the Targeting of Colchicine to Tubulin
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40672674
PubMed Central
PMC12261228
DOI
10.1021/acsptsci.4c00730
Knihovny.cz E-zdroje
- Klíčová slova
- BODIPY, cell-cycle, colchicine, cytotoxicity, flow-cytometry, fluorescence microscopy, in silico modeling, intracellular membranes, tubulin polymerization,
- Publikační typ
- časopisecké články MeSH
The natural product colchicine (Col) is a medication used to treat severe inflammatory conditions. Although its mechanism of action at the level of the cytoskeleton is known, its subcellular distribution has not yet been properly studied. In this work, we present the first rational approach to assess the intracellular localization and biological activity of this alkaloid. We conjugated Col to green-emitting BODIPY dyes (CBs) with alternative linkers of different lengths (CB1-CB12) via different types of linkages. Connections of Col with BODIPY generally reduced its cytotoxicity to different levels depending on the type of linker. From the analysis of CB effects on cytotoxicity, cell cycle, and tubulin polymerization, we selected the most potent substances for fluorescence microscopy. Treatment of cells with 10 μM conjugates for 15 h showed different effects on microtubule organization. Live-cell imaging revealed that CBs rapidly associated with cellular membranes. Double label experiments unveiled that the CB4, which was the most effective in inhibiting tubulin polymerization, binds to the endoplasmic reticulum (ER) and mitochondria. In silico modeling and SPR analyses confirmed the high potency of CB4 to bind to the colchicine site on tubulin.
Zobrazit více v PubMed
Yasmin F., Najeeb H., Moeed A., Hassan W., Khatri M., Asghar M. S., Naveed A. K., Ullah W., Surani S., Siddiqi T. J.. Safety and efficacy of colchicine in COVID-19 patients: A systematic review and meta-analysis of randomized control trials. PLoS One. 2022:17e0266245. doi: 10.1371/journal.pone.0266245. PubMed DOI PMC
Reyes A. Z., Hu K. A., Teperman J., Wampler Muskardin T. L., Tardif J.-C., Shah B., Pillinger M. H.. Anti-inflammatory therapy for COVID-19 infection: the case for colchicine. Ann. Rheum. Dis. 2021;80:550–557. doi: 10.1136/annrheumdis-2020-219174. PubMed DOI PMC
Agarwal A., Hunt B., Stegemann M., Rochwerg B., Lamontagne F., Siemieniuk R. A., Agoritsas T., Askie L., Lytvyn L., Leo Y. S.. et al. A living WHO guideline on drugs for covid-19. BMJ. 2020;370:m3379. doi: 10.1136/bmj.m3379. PubMed DOI
Gracheva I. A., Shchegravina E. S., Schmalz H.-G., Beletskaya I. P., Fedorov A. Y.. Colchicine alkaloids and synthetic analogues: Current progress and perspectives. J. Med. Chem. 2020;63:10618–10651. doi: 10.1021/acs.jmedchem.0c00222. PubMed DOI
Andreu J. M., Timasheff S. N.. Tubulin bound to colchicine forms polymers different from microtubules. Proc. Natl. Acad. Sci. U.S.A. 1982;79:6753–6756. doi: 10.1073/pnas.79.22.6753. PubMed DOI PMC
Ravelli R. B. G., Gigant B., Curmi P. A., Jourdain I., Lachkar S., Sobel A., Knossow M.. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature. 2004;428:198–202. doi: 10.1038/nature02393. PubMed DOI
Slobodnick A., Shah B., Krasnokutsky S., Pillinger M. H.. Update on colchicine 2017. Rheumatology. 2018;57:i4–i11. doi: 10.1093/rheumatology/kex453. PubMed DOI PMC
Weng J.-H., Koch P. D., Luan H. H., Tu H.-C., Shimada K., Ngan I., Ventura R., Jiang R., Mitchison T. J.. Colchicine acts selectively in the liver to induce hepatokines that inhibit myeloid cell activation. Nat. Metab. 2021;3:513–522. doi: 10.1038/s42255-021-00366-y. PubMed DOI PMC
Korkmaz O., Korkmaz M., Aksoz E.. In vitro effects of colchicine on human erythrocyte membranes: An ESR study. Z. Naturforsch. C. 1997;52:522–529. doi: 10.1515/znc-1997-7-816. PubMed DOI
Mons S., Veretout F., Carlier M.-F., Erk I., Lepault J., Trudel E., Salesse C., Ducray P., Mioskowski C., Lebeau L.. The interaction between lipid derivatives of colchicine and tubulin: Consequences of the interaction of the alkaloid with lipid membranes. Biochim. Biophys. Acta Biomembr. 2000;1468:381–395. doi: 10.1016/S0005-2736(00)00279-0. PubMed DOI
Clark J. I., Garland D.. Fluorescein colchicine - Synthesis, purification, and biological activity. J. Cell Biol. 1978;76:619–627. doi: 10.1083/jcb.76.3.619. PubMed DOI PMC
Riva E., Mattarella M., Borrelli S., Christodoulou M. S., Cartelli D., Main M., Faulkner S., Sykes D., Cappelletti G., Snaith J. S., Passarella D.. Preparation of fluorescent tubulin binders. ChemPlusChem. 2013;78:222–226. doi: 10.1002/cplu.201200260. DOI
Hiratsuka T., Kato T.. A fluorescent analog of colcemid, N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-colcemid, as a probe for the colcemid-binding sites of tubulin and microtubules. J. Biol. Chem. 1987;262:6318–6322. doi: 10.1016/S0021-9258(18)45572-X. PubMed DOI
Sengupta S., Puri K. D., Surolia A., Roy S., Bhattacharyya B.. N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)colcemid, a probe for different classes of colchicine-binding site on tubulin. Eur. J. Biochem. 1993;212:387–393. doi: 10.1111/j.1432-1033.1993.tb17673.x. PubMed DOI
Sengupta S., Mahapatra P. K., Chakrabarti G., Roy S., Bhattacharyya B.. Interaction of a fluorescent analog of N-deacetyl-N-methyl-colchicine (Colcemid) with liver alcohol-dehydrogenase. Eur. J. Biochem. 1995;232:844–848. doi: 10.1111/j.1432-1033.1995.0844a.x. PubMed DOI
Loudet A., Burgess K.. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chem. Rev. 2007;107:4891–4932. doi: 10.1021/cr078381n. PubMed DOI
Li Z. Y., Hong E. Y. H., Poon C. T., Cheng Y. H., Chan M. H. Y., Leung M. Y., Wu L. X., Yam V. W. W.. Synthesis, characterization, supramolecular self-assembly, and organic resistive memory applications of BODIPY derivatives. ACS Mater. Lett. 2023;5:909–919. doi: 10.1021/acsmaterialslett.2c01174. DOI
Gao J. M., Chen X. X., Chen S. Q., Meng H., Wang Y., Li C. S., Feng L.. The BODIPY-based chemosensor for fluorometric/colorimetric dual channel detection of RDX and PA. Anal. Chem. 2019;91:13675–13680. doi: 10.1021/acs.analchem.9b02888. PubMed DOI
Haldar U., Lee H. I.. BODIPY-derived polymeric chemosensor appended with thiosemicarbazone units for the simultaneous detection and separation of Hg(II) ions in pure aqueous media. ACS Appl. Mater. Interfaces. 2019;11:13685–13693. doi: 10.1021/acsami.9b00408. PubMed DOI
Shi W. J., Yan X. H., Yang J. R., Wei Y. F., Huo Y. T., Su C. L., Yan J. W., Han D. X., Niu L.. Development of five-membered heterocycle BODIPY-based AIE fluorescent probes for dual-organelle viscosity imaging. Anal. Chem. 2023;95:9646–9653. doi: 10.1021/acs.analchem.3c01409. PubMed DOI
Campbell J. W., Tung M. T., Diaz-Rodriguez R. M., Robertson K. N., Beharry A. A., Thompson A.. Introducing the tellurophene-appended BODIPY: PDT agent with mass cytometry tracking capabilities. ACS Med. Chem. Lett. 2021;12:1925–1931. doi: 10.1021/acsmedchemlett.1c00492. PubMed DOI PMC
Jurášek M., Rimpelová S., Kmoníčková E., Drašar P., Ruml T.. Tailor-made fluorescent trilobolide to study its biological relevance. J. Med. Chem. 2014;57:7947–7954. doi: 10.1021/jm500690j. PubMed DOI
Braun D. C., Cao Y., Wang S., Garfield S. H., Min Hur G., Blumberg P. M.. Role of phorbol ester localization in determining protein kinase C or RasGRP3 translocation: real-time analysis using fluorescent ligands and proteins. Mol. Cancer Ther. 2005;4:141–150. doi: 10.1158/1535-7163.141.4.1. PubMed DOI
Kodr D., Stanková J., Rumlová M., Džubák P., Řehulka J., Zimmermann T., Křížová I., Gurská S., Hajdúch M., Drašar P. B., Jurášek M.. Betulinic acid decorated with polar groups and blue emitting BODIPY dye: Synthesis, cytotoxicity, cell-cycle analysis and anti-HIV profiling. Biomedicines. 2021;9:1104. doi: 10.3390/biomedicines9091104. PubMed DOI PMC
Jurášek M., Valečka J., Novotný I., Kejík Z., Fähnrich J., Marešová A., Tauchen J., Bartůněk P., Dolenský B., Jakubek M., Drašar P. B., Králová J.. Synthesis and biological evaluation of cationic TopFluor cholesterol analogues. Bioorg. Chem. 2021;117:105410. doi: 10.1016/j.bioorg.2021.105410. PubMed DOI
Kanyan D., Horacek-Glading M., Wildervanck M. J., Söhnel T., Ware D. C., Brothers P. J.. O-BODIPYs as fluorescent labels for sugars: glucose, xylose and ribose. Org. Chem. Front. 2022;9:720–730. doi: 10.1039/D1QO01418H. DOI
Xia J., Pei Q., Zheng M., Xie Z.. An activatable fluorescent prodrug of paclitaxel and BODIPY. J. Mater. Chem. B. 2021;9:2308–2313. doi: 10.1039/D0TB02510K. PubMed DOI
Zhang T., Zhang W., Zheng M., Xie Z.. Near-infrared BODIPY-paclitaxel conjugates assembling organic nanoparticles for chemotherapy and bioimaging. J. Colloid Interface Sci. 2018;514:584–591. doi: 10.1016/j.jcis.2017.12.074. PubMed DOI
Wijesooriya C. S., Peterson J. A., Shrestha P., Gehrmann E. J., Winter A. H., Smith E. A.. A photoactivatable BODIPY probe for localization-based super-resolution cellular imaging. Angew. Chem., Int. Ed. 2018;57:12685–12689. doi: 10.1002/anie.201805827. PubMed DOI
Lin C. M., Liu J., Jeffries C., Yang L., Lu Y., Lee R. E., Chen T.. Development of BODIPY FL vindoline as a novel and high-affinity pregnane X receptor fluorescent probe. Bioconjugate Chem. 2014;25:1664–1677. doi: 10.1021/bc5002856. PubMed DOI PMC
Arnold L. A., Ranaivo P., Guy R. K.. Synthesis and characterization of BODIPY-labeled colchicine. Bioorg. Med. Chem. Lett. 2008;18:5867–5870. doi: 10.1016/j.bmcl.2008.07.068. PubMed DOI PMC
Agramunt J., Ginesi R., Pedroso E., Grandas A.. Inverse electron-demand Diels–Alder bioconjugation reactions using 7-oxanorbornenes as dienophiles. J. Org. Chem. 2020;85:6593–6604. doi: 10.1021/acs.joc.0c00583. PubMed DOI
Malachowska-Ugarte M., Sperduto C., Ermolovich Y. V., Sauchuk A. L., Jurášek M., Litvinovskaya R. P., Straltsova D., Smolich I., Zhabinskii V. N., Drašar P., Demidchik V., Khripach V. A.. Brassinosteroid-BODIPY conjugates: Design, synthesis, and properties. Steroids. 2015;102:53–59. doi: 10.1016/j.steroids.2015.07.002. PubMed DOI
Panovic I., Montgomery J. R. D., Lancefield C. S., Puri D., Lebl T., Westwood N. J.. Grafting of technical lignins through regioselective triazole formation on β-O-4 linkages. ACS Sustain. Chem. Eng. 2017;5:10640–10648. doi: 10.1021/acssuschemeng.7b02575. DOI
Thiele C., Papan C., Hoelper D., Kusserow K., Gaebler A., Schoene M., Piotrowitz K., Lohmann D., Spandl J., Stevanovic A., Shevchenko A., Kuerschner L.. Tracing fatty acid metabolism by click chemistry. ACS Chem. Biol. 2012;7:2004–2011. doi: 10.1021/cb300414v. PubMed DOI
Malysheva Y. B., Combes S., Allegro D., Peyrot V., Knochel P., Gavryushin A. E., Fedorov A. Y.. Synthesis and biological evaluation of novel anticancer bivalent colchicine–tubulizine hybrids. Bioorg. Med. Chem. 2012;20:4271–4278. doi: 10.1016/j.bmc.2012.05.072. PubMed DOI
Nicolaus N., Zapke J., Riesterer P., Neudörfl J.-M., Prokop A., Oschkinat H., Schmalz H.-G.. Azides derived from colchicine and their use in library synthesis: A practical entry to new bioactive derivatives of an old natural drug. ChemMedChem. 2010;5:661–665. doi: 10.1002/cmdc.201000063. PubMed DOI
Thomopoulou P., Sachs J., Teusch N., Mariappan A., Gopalakrishnan J., Schmalz H.-G.. New colchicine-derived triazoles and their influence on cytotoxicity and microtubule morphology. ACS Med. Chem. Lett. 2016;7:188–191. doi: 10.1021/acsmedchemlett.5b00418. PubMed DOI PMC
Jurášek M., Rimpelová S., Pavlíčková V., Ruml T., Lapčík O., Drašar P. B.. Synthesis and biological evaluation of nandrolone–BODIPY conjugates. Steroids. 2015;97:62–66. doi: 10.1016/j.steroids.2014.10.002. PubMed DOI
Khan S. S., Hanelt S., Liebscher J.. Versatile synthesis of 1,2,3-triazolium-based ionic liquids. ARKIVOC. 2009;12:193–208. doi: 10.3998/ark.5550190.0010.c17. DOI
Canseco-Gonzalez D., Albrecht M.. Wingtip substituents tailor the catalytic activity of ruthenium triazolylidene complexes in base-free alcohol oxidation. Dalton Trans. 2013;42:7424–7432. doi: 10.1039/c3dt32939a. PubMed DOI
Telegina L. N., Kelbysheva E. S., Strelkova T. V., Ezernitskaya M. G., Borisov Y. A., Smol'yakov A. F., Peregudov A. S., Rodionov A. N., Ikonnikov N. S., Loim N. M.. Transalkylation and migration of N-substituent upon alkylation of 1,2,3-triazoles containing good leaving N-substituents. Eur. J. Org. Chem. 2016;35:5897–5906. doi: 10.1002/ejoc.201601146. DOI
Singh B., Kumar A., Joshi P., Guru S. K., Kumar S., Wani Z. A., Mahajan G., Hussain A., Qazi A. K., Kumar A., Bharate S. S., Gupta B. D., Sharma P. R., Hamid A., Saxena A. K., Mondhe D. M., Bhushan S., Bharate S. B., Vishwakarma R. A.. Colchicine derivatives with potent anticancer activity and reduced P-glycoprotein induction liability. Org. Biomol. Chem. 2015;13:5674–5689. doi: 10.1039/C5OB00406C. PubMed DOI
Krzywik J., Nasulewicz-Goldeman A., Mozga W., Wietrzyk J., Huczyński A.. Novel double-modified colchicine derivatives bearing 1,2,3-triazole: Design, synthesis, and biological activity evaluation. ACS Omega. 2021;6:26583–26600. doi: 10.1021/acsomega.1c03948. PubMed DOI PMC
Nosková V., Džubák P., Kuzmina G., Ludková A., Stehlík D., Trojanec R., Janoštáková A., Kořínková G., Mihál V., Hajdúch M.. In vitro chemoresistance profile and expression/function of MDR associated proteins in resistant cell lines derived from CCRF-CEM, K562, A549 and MDA MB 231 parental cells. Neoplasma. 2002;49:418–425. PubMed
Safa A. R., Stern R. K., Choi K., Agresti M., Tamai I., Mehta N. D., Roninson I. B.. Molecular basis of preferential resistance to colchicine in multidrug-resistant human cells conferred by Gly-185----Val-185 substitution in P-glycoprotein. Proc. Natl. Acad. Sci. U.S.A. 1990;87:7225–7229. doi: 10.1073/pnas.87.18.7225. PubMed DOI PMC
Loo B. V. D., Hong Y., Hancock V., Martin J. F., Erusalimsky J. D.. Antimicrotubule agents induce polyploidization of human leukaemic cell lines with megakaryocytic features. Eur. J. Clin. Invest. 1993;23:621–629. doi: 10.1111/j.1365-2362.1993.tb00723.x. PubMed DOI
Chen X. M., Liu J., Wang T., Shang J.. Colchicine-induced apoptosis in human normal liver L-02 cells by mitochondrial mediated pathways. Toxicol. In Vitro. 2012;26:649–655. doi: 10.1016/j.tiv.2012.01.024. PubMed DOI
Kumar A., Singh B., Mahajan G., Sharma P. R., Bharate S. B., Mintoo M. J., Mondhe D. M.. A novel colchicine-based microtubule inhibitor exhibits potent antitumor activity by inducing mitochondrial mediated apoptosis in MIA PaCa-2 pancreatic cancer cells. Tumour Biol. 2016;37:13121–13136. doi: 10.1007/s13277-016-5160-5. PubMed DOI
Mahendran D., Selvam K., Kumari S., Venkateswara Swamy K., Geetha N., Venkatachalam P.. Thiocolchicoside and colchicine induced apoptosis in breast cancer (MCF-7) cells via up-regulated expression of p53 tumor suppressor protein gene: An in vitro and in silico docking approaches. J. Biol. Act. Prod. Nat. 2020;10:264–274. doi: 10.1080/22311866.2020.1815575. DOI
Gorman A. M., Bonfoco E., Zhivotovsky B., Orrenius S., Ceccatelli S.. Cytochrome c release and caspase-3 activation during colchicine-induced apoptosis of cerebellar granule cells. Eur. J. Neurosci. 1999;11:1067–1072. doi: 10.1046/j.1460-9568.1999.00512.x. PubMed DOI
Leung Y. Y., Yao Hui L. L., Kraus V. B.. ColchicineUpdate on mechanisms of action and therapeutic uses. Semin. Arthritis Rheum. 2015;45:341–350. doi: 10.1016/j.semarthrit.2015.06.013. PubMed DOI PMC
Lobel J., MacDonald I. J., Ciesielski M. J., Barone T., Potter W. R., Pollina J., Plunkett R. J., Fenstermaker R. A., Dougherty T. J.. 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) in a nude rat glioma model: implications for photodynamic therapy. Lasers Surg. Med. 2001;29:397–405. doi: 10.1002/lsm.10001. PubMed DOI
Saxton W. M., Hollenbeck P. J.. The axonal transport of mitochondria. J. Cell Sci. 2012;125:2095–2104. doi: 10.1242/jcs.053850. PubMed DOI PMC
Waterman-Storer C. M., Salmon E. D.. Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr. Biol. 1998;8:798–806. doi: 10.1016/S0960-9822(98)70321-5. PubMed DOI
Pochampally S., Hartman K. L., Wang R., Wang J. X., Yun M. K., Parmar K., Park H., Meibohm B., White S. W., Li W., Miller D. D.. Design, synthesis, and biological evaluation of pyrimidine dihydroquinoxalinone derivatives as tubulin colchicine site-binding agents that displayed potent anticancer activity both in vitro and in vivo. ACS Pharmacol. Transl. Sci. 2023;6:526–545. doi: 10.1021/acsptsci.2c00108. PubMed DOI PMC
Deng S. S., Banerjee S., Chen H., Pochampally S., Wang Y. X., Yun M. K., White S. W., Parmar K., Meibohm B., Hartman K. L., Wu Z. Z., Miller D. D., Li W.. SB226, an inhibitor of tubulin polymerization, inhibits paclitaxel-resistant melanoma growth and spontaneous metastasis. Cancer Lett. 2023;555:216046. doi: 10.1016/j.canlet.2022.216046. PubMed DOI PMC
Tan L., Wu C. Y., Zhang J. F., Yu Q. W., Wang X. Y., Zhang L. L., Ge M. Y., Wang Z. J., Ouyang L., Wang Y. X.. Design, synthesis, and biological evaluation of heterocyclic-fused pyrimidine chemotypes guided by X-ray crystal structure with potential antitumor and anti-multidrug resistance efficacy targeting the colchicine binding site. J. Med. Chem. 2023;66:3588–3620. doi: 10.1021/acs.jmedchem.2c02115. PubMed DOI
Zhang C., Yang N., Yang C. H., Ding H. S., Luo C., Zhang Y., Wu M. J., Zhang X. W., Shen X., Jiang H. L., Meng L. H., Ding J.. S9, a novel anticancer agent, exerts its anti -proliferative activity by interfering with both PI3K-Akt-mTOR signaling and microtubule cytoskeleton. PLoS One. 2009;4:e4881. doi: 10.1371/journal.pone.0004881. PubMed DOI PMC
Krishnan K. S., Bengtsson C., Good J. A. D., Mirkhanov S., Chorell E., Johansson L.B.Å., Almqvist F.. Synthesis of fluorescent ring-fused 2-pyridone peptidomimetics. J. Org. Chem. 2013;78:12207–12213. doi: 10.1021/jo401844y. PubMed DOI
Wang J., Hou Y., Li C., Zhang B., Wang X.. Selectivity tune of fluoride ion sensing for phenolic OH-containing BODIPY dyes. Sens. Actuators B: Chem. 2011;157:586–593. doi: 10.1016/j.snb.2011.05.027. DOI
Bagnato J. D., Eilers A. L., Horton R. A., Grissom C. B.. Synthesis and characterization of a cobalamin–colchicine conjugate as a novel tumor-targeted cytotoxin. J. Org. Chem. 2004;69:8987–8996. doi: 10.1021/jo049953w. PubMed DOI
Velapoldi R. A., Tønnesen H. H.. Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectral region. J. Fluoresc. 2004;14:465–472. doi: 10.1023/B:JOFL.0000031828.96368.c1. PubMed DOI
Bourderioux A., Nauš P., Perlíková P., Pohl R., Pichová I., Votruba I., Džubák P., Konečný P., Hajdúch M., Stray K. M., Wang T., Ray A. S., Feng J. Y., Birkus G., Cihlář T., Hocek M.. Synthesis and significant cytostatic activity of 7-hetaryl-7-deazaadenosines. J. Med. Chem. 2011;54:5498–5507. doi: 10.1021/jm2005173. PubMed DOI
Arnaoutova I., Kleinman H. K.. In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat. Protoc. 2010;5:628–635. doi: 10.1038/nprot.2010.6. PubMed DOI
Nováková M., Dráberová E., Schürmann W., Czihak G., Viklický V., Dráber P.. γ-Tubulin redistribution in taxol-treated mitotic cells probed by monoclonal antibodies. Cell Motil. 1996;33:38–51. doi: 10.1002/(SICI)1097-0169(1996)33:1<38::AID-CM5>3.0.CO;2-E. PubMed DOI
Viklicky V., Draber P., Haek J., Bartek J.. Production and characterization of a monoclonal antitubulin antibody. Cell Biol. Int. Rep. 1982;6:725–731. doi: 10.1016/0309-1651(82)90164-3. PubMed DOI
Dráber P., Dráberová E., Zicconi D., Sellitto C., Viklický V., Cappuccinelli P.. Heterogeneity of microtubules recognized by monoclonal antibodies to alpha-tubulin. Eur. J. Cell. Biol. 1986;41:82–88. PubMed
Vinopal S., Černohorská M., Sulimenko V., Sulimenko T., Vosecká V., Flemr M., Dráberová E., Dráber P.. γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis. PLoS One. 2012;7:e29919. doi: 10.1371/journal.pone.0029919. PubMed DOI PMC
Sali A., Blundell T. L.. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI
Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E.. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Trott O., Olson A. J.. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Landrum, G. RDKit; Open-Source Cheminformatics Software, 2021.
Cxcalc utility was used for ligand protonation, Cxcalc version 19.22.0, ChemAxon
Hess B., Kutzner C., van der Spoel D., Lindahl E.. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory. Comput. 2008;4:435–447. doi: 10.1021/ct700301q. PubMed DOI
Pronk S., Pall S., Schulz R., Larsson P., Bjelkmar P., Apostolov R., Shirts M. R., Smith J. C., Kasson P. M., van der Spoel D., Hess B., Lindahl E.. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29:845–854. doi: 10.1093/bioinformatics/btt055. PubMed DOI PMC
Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J. L., Dror R. O., Shaw D. E.. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–1958. doi: 10.1002/prot.22711. PubMed DOI PMC
Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. . Gaussian 09; Gaussian, Inc.: Wallingford CT, 2016.
Bouysset C., Fiorucci S.. ProLIF: A library to encode molecular interactions as fingerprints. J. ChemInform. 2021;13:72. doi: 10.1186/s13321-021-00548-6. PubMed DOI PMC