Blending Powder Process for Recycling Sintered Nd-Fe-B Magnets
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
14.616.21.0093, unique identification number: RFMEFI61618X0093
Ministry of Science and Higher Education of the Russian Federation
LTARF18031
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
32650445
PubMed Central
PMC7411784
DOI
10.3390/ma13143049
PII: ma13143049
Knihovny.cz E-zdroje
- Klíčová slova
- Nd-Fe-B magnets, coercive force, grain-boundary diffusion, hydrogen decrepitation, recycling, remanence,
- Publikační typ
- časopisecké články MeSH
The wide application of Nd-Fe-B permanent magnets, in addition to rare-earth metal resource constraints, creates the necessity of the development of efficient technologies for recycling sintered Nd-Fe-B permanent magnets. In the present study, a magnet-to-magnet recycling process is considered. As starting materials, magnets of different grades were used, which were processed by hydrogen decrepitation and blending the powder with NdHx. Composition inhomogeneity in the Nd2Fe14B-based magnetic phase grains in the recycled magnets and the existence of a core-shell structure consisting of a Nd-rich (Dy-depleted) core and Nd-depleted (Dy-enriched) shell are demonstrated. The formation of this structure results from the grain boundary diffusion process of Dy that occurs during the sintering of magnets prepared from a mixture of Dy-free (N42) and Dy-containing magnets. The increase in the coercive force of the N42 magnet was shown to be 52%. The simultaneous retention of the remanence, and even its increase, were observed and explained by the improved isolation of the main magnetic phase grains as well as their alignment.
Institute of Low Temperature and Structure Research Polish Academy of Sciences 50 422 Wroclaw Poland
Zobrazit více v PubMed
Zakotnik M., Tudor C.O. Commercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with ‘designer properties’ that exceed those of starting materials. Waste Manag. 2015;44:48–54. doi: 10.1016/j.wasman.2015.07.041. PubMed DOI
Zakotnik M., Tudor C.O. Mass production of recycled NdFeB-type sintered magnets and a novel grain boundary modification process. In: Hadjipanayis G.C., Chen C.H., Liu J.P., editors. Proceedings of the 23rd International Workshop on Rare Earth and Future Permanent Magnets & their Applications; Annapolis, MD, USA. 17–21 August 2014; Red Hook, NY, USA: Curran Associates, Inc.; 2014. pp. 220–224.
Lukin A., Kolchugina N.B., Burkhanov G.S., Klyueva N.E., Skotnicova K. Role of terbium hydride additions in the formation of microstructure and magnetic properties of sintered Nd-Pr-Dy-Fe-B magnets. Inorg. Mater. Appl. Res. 2013;4:256–259. doi: 10.1134/S207511331303009X. DOI
Zakotnik M., Tudor C.O., Peiry L.T., Afiuny P., Skomski R., Hatch G.P. Analysis of energy usage in Nd-Fe-B magnet to magnet recycling. Environ. Technol. Innov. 2016;5:117–126. doi: 10.1016/j.eti.2016.01.002. DOI
Skotnicova K., Burkhanov G.S., Kolchugina N.B., Kursa M., Cegan T., Lukin A.A., Zivotsky O., Prokofev P.A., Jurica J., Li Y. Structural and magnetic engineering of (Nd, Pr, Dy, Tb)-Fe-B sintered magnets with Tb3Co0.6Cu0.4Hx composition in the powder mixture. J. Magn. Magn. Mater. 2020;498:166220. doi: 10.1016/j.jmmm.2019.166220. DOI
Zakotnik M., Harris I.R., Williams A.J. Possible methods of recycling NdFeB-type sintered magnets using the HD/degassing process. J. Alloy. Compd. 2008;450:525–531. doi: 10.1016/j.jallcom.2007.01.134. DOI
Zakotnik M., Harris I.R., Williams A.J. Multiple recycling of NdFeB-type sintered magnets. J. Alloy. Compd. 2009;469:314–321. doi: 10.1016/j.jallcom.2008.01.114. DOI
Liu W., Li C., Zakotnik M., Yue M., Zhang D., Huang X. Recycling of waste Nd-Fe-B sintered magnets by doping with dysprosium hydride nanoparticles. J. Rare Earths. 2015;33:846–849. doi: 10.1016/S1002-0721(14)60494-4. DOI
Walton A., Yi H., Rowson N.A., Speight J.D., Mann V.S.J., Sheridan R.S., Bradshaw A., Harris I.R., Williams A.J. The use of hydrogen to separate and recycle neodymium-iron-boron-type magnets from electronic waste. J. Clean Prod. 2015;104:236e241. doi: 10.1016/j.jclepro.2015.05.033. DOI
Mann V.S.J., Љkulj I., Balderman J., Pickering L., Degri M.J., Bradshaw A., Blomgren J., Liebanas F.O., Sjolin S., Rowson N.A., et al. Large scale production of sintered magnets from recycled hard disk drive scrap. In: Gutfleisch O., editor. Proceedings of the 24th International Workshop on Rare Earth and Future Permanent Magnets & Their Applications; Darmstadt, Germany. 28 August–1 September 2016; Darmstadt, Germany: TechnischeUniversität Darmstadt; 2016. pp. 564–569.
Herbst J.F. R2Fe14B materials: Intrinsic properties and technological aspects. Rev. Mod. Phys. 1991;63:819–898. doi: 10.1103/RevModPhys.63.819. DOI
Hallemans B., Wollants P., Roos J.R. Thermodynamic assessment of the Fe-Nd-B phase diagram. J. Phase Equil. 1995;16:137–149. doi: 10.1007/BF02664851. DOI
Oono N., Sagawa M., Kasada R., Matsui H., Kimura A. Production of thick high-performance sintered neodymium magnets by grain boundary diffusion treatment with dysprosium-nickel-aluminum alloy. J. Magn. Magn. Mater. 2011;323:297–300. doi: 10.1016/j.jmmm.2010.09.021. DOI
Choi M., Cho S., Song Y., Park S., Kim Y. Simultaneous enhancement in coercivity and remanence of Nd2Fe14B permanent magnet by grain boundary diffusion process using NdHx. Curr. Appl. Phys. 2015;15:461–467. doi: 10.1016/j.cap.2015.01.025. DOI
Pal S.K., Güth K., Woodcock T.G., Schultz L., Gutfleisch O. Properties of isolated single crystalline and textured polycrystalline nano/sub-micrometre Nd2Fe14B particles obtained from milling of HDDR powder. J. Phys. D Appl. Phys. 2013;46:375004. doi: 10.1088/0022-3727/46/37/375004. DOI