immune architecture
Dotaz
Zobrazit nápovědu
Extramedullary disease (EMD) is a high-risk feature of multiple myeloma (MM) and remains a poor prognostic factor, even in the era of novel immunotherapies. Here, we applied spatial transcriptomics (RNA tomography for spatially resolved transcriptomics [tomo-seq] [n = 2] and 10x Visium [n = 12]) and single-cell RNA sequencing (n = 3) to a set of 14 EMD biopsies to dissect the 3-dimensional architecture of tumor cells and their microenvironment. Overall, infiltrating immune and stromal cells showed both intrapatient and interpatient variations, with no uniform distribution over the lesion. We observed substantial heterogeneity at the copy number level within plasma cells, including the emergence of new subclones in circumscribed areas of the tumor, which is consistent with genomic instability. We further identified the spatial expression differences between GPRC5D and TNFRSF17, 2 important antigens for bispecific antibody therapy. EMD masses were infiltrated by various immune cells, including T cells. Notably, exhausted TIM3+/PD-1+ T cells diffusely colocalized with MM cells, whereas functional and activated CD8+ T cells showed a focal infiltration pattern along with M1 macrophages in tumor-free regions. This segregation of fit and exhausted T cells was resolved in the case of response to T-cell-engaging bispecific antibodies. MM and microenvironment cells were embedded in a complex network that influenced immune activation and angiogenesis, and oxidative phosphorylation represented the major metabolic program within EMD lesions. In summary, spatial transcriptomics has revealed a multicellular ecosystem in EMD with checkpoint inhibition and dual targeting as potential new therapeutic avenues.
The PD-1/PD-L1 complex is an immune checkpoint responsible for regulating the natural immune response, but also allows tumors to escape immune surveillance. Inhibition of the PD-1/PD-L1 axis positively contributes to the efficacy of cancer treatment. The only available therapeutics targeting PD-1/PD-L1 are monoclonal antibody-based drugs, which have several limitations. Therefore, small molecule compounds are emerging as an attractive alternative that can potentially overcome the drawbacks of mAb-based therapy. In this article, we present a novel class of small molecule compounds based on the terphenyl scaffold that bind to PD-L1. The general architecture of the presented structures is characterized by axial symmetry and consists of three elements: an m-terphenyl core, an additional aromatic ring, and a solubilizing agent. Using molecular docking, we designed a series of final compounds, which were subsequently synthesized and tested in HTRF assay and NMR binding assay to evaluate their activity. In addition, we performed an in-depth analysis of the mutual arrangement of the phenyl rings of the terphenyl core within the binding pocket of PD-L1 and found several correlations between the plane angle values and the affinity of the compounds towards the protein.
- MeSH
- antigeny CD274 * antagonisté a inhibitory metabolismus chemie MeSH
- antigeny CD279 * antagonisté a inhibitory metabolismus chemie MeSH
- inhibitory kontrolních bodů chemie farmakologie MeSH
- knihovny malých molekul farmakologie chemie MeSH
- lidé MeSH
- molekulární struktura MeSH
- simulace molekulového dockingu * MeSH
- terfenylové sloučeniny * chemie farmakologie MeSH
- vazba proteinů * MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
... duplication: the example of olfactory receptor genes 98 -- 4.4 EXTRAORDINARY GENETIC -- VARIATION IN THE IMMUNE ... ... -- SYSTEM 99 -- Pronounced genetic variation in four classes of immune system proteins 99 -- Programmed ... ... genetic diseases and the development of polygenic risk scores 278 -- 8.3 ASPECTS OF THE GENETIC -- ARCHITECTURE ... ... polygenic and multifactorial nature of common genetic polygenic disease 283 -- The importance of immune ...
2nd ed. 534 s. : il.
"Genetics and Genomics in Medicine is a new textbook written for undergraduate and graduate students, as well as medical researchers, which explains the science behind the uses of genetics and genomics in medicine today. It is not just about rare inherited and chromosomal disorders, but how genetics affects the whole spectrum of human health and disease. DNA technologies are explained, with emphasis on the modern techniques that have revolutionized the use of genetic information in medicine and are indicating the role of genetics in common complex diseases. The detailed, integrative coverage of genetic approaches to treatment and prevention includes pharmacogenomics and the prospects for personalized medicine. Cancers are essentially genetic diseases and are given a dedicated chapter that includes new insights from cancer genome sequencing. Clinical disorders are covered throughout and there are extensive end-of-chapter questions and problems"--Provided by publisher.
The loss of control of cell proliferation, apoptosis regulation and contact inhibition leads to tumor development. While benign tumors are restricted to their primary space, i.e. where these tumors first originate, the metastatic tumors not only disseminate- facilitated by hypoxia-driven neovascularization- to distant secondary sites but also show substantial changes in metabolism, tissue architectures, gene expression profiles and immune phenotypes. All these alterations result in radio-, chemo- and immune-resistance rendering these metastatic tumor cells refractory to therapy. Since the beginning of the transformation, these factors- which influence each other- are incorporated to the developing and metastasizing tumor. As a result, the complexities in the heterogeneity of tumor progressively increase. This space-time function in the heterogeneity of tumors is generated by various conditions and factors at the genetic as well as microenvironmental levels, for example, endogenous retroviruses, methylation and epigenetic dysregulation that may be etiology-specific, cancer associated inflammation, remodeling of the extracellular matrix and mesenchymal cell shifted functions. On the one hand, these factors may cause de-differentiation of the tumor cells leading to cancer stem cells that contribute to radio-, chemo- and immune-resistance and recurrence of tumors. On the other hand, they may also enhance the heterogeneity under specific microenvironment-driven proliferation. In this editorial, we intend to underline the importance of heterogeneity in cancer progress, its evaluation and its use in correlation with the tumor evolution in a specific patient as a field of research for achieving precise patient-tailored treatments and amelioration of diagnostic (monitoring) tools and prognostic capacity.
- MeSH
- extracelulární matrix MeSH
- lidé MeSH
- nádorové kmenové buňky MeSH
- nádorové mikroprostředí genetika MeSH
- nádory * genetika MeSH
- patologická angiogeneze MeSH
- proliferace buněk genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- úvodníky MeSH
Significance: The architecture of the mitochondrial network and cristae critically impact cell differentiation and identity. Cells undergoing metabolic reprogramming to aerobic glycolysis (Warburg effect), such as immune cells, stem cells, and cancer cells, go through controlled modifications in mitochondrial architecture, which is critical for achieving the resulting cellular phenotype. Recent Advances: Recent studies in immunometabolism have shown that the manipulation of mitochondrial network dynamics and cristae shape directly affects T cell phenotype and macrophage polarization through altering energy metabolism. Similar manipulations also alter the specific metabolic phenotypes that accompany somatic reprogramming, stem cell differentiation, and cancer cells. The modulation of oxidative phosphorylation activity, accompanied by changes in metabolite signaling, reactive oxygen species generation, and adenosine triphosphate levels, is the shared underlying mechanism. Critical Issues: The plasticity of mitochondrial architecture is particularly vital for metabolic reprogramming. Consequently, failure to adapt the appropriate mitochondrial morphology often compromises the differentiation and identity of the cell. Immune, stem, and tumor cells exhibit striking similarities in their coordination of mitochondrial morphology with metabolic pathways. However, although many general unifying principles can be observed, their validity is not absolute, and the mechanistic links thus need to be further explored. Future Directions: Better knowledge of the molecular mechanisms involved and their relationships to both mitochondrial network and cristae morphology will not only further deepen our understanding of energy metabolism but may also contribute to improved therapeutic manipulation of cell viability, differentiation, proliferation, and identity in many different cell types. Antioxid. Redox Signal. 39, 684-707.
... Proteins as signaling molecules and signaling mediators 35 -- 3.2.4 Proteins and their importance in the immune ... ... membranes 43 -- 4.2.2 Membrane proteins 47 -- 4.2.3 Transfer of substances across membranes 48 -- 4.3 Architecture ...
1st edition 268 stran : ilustrace ; 30 cm
- Konspekt
- Biochemie. Molekulární biologie. Biofyzika
- Učební osnovy. Vyučovací předměty. Učebnice
- NLK Obory
- biologie
- NLK Publikační typ
- učebnice vysokých škol
Pediatric steroid-sensitive nephrotic syndrome (pSSNS) is the most common childhood glomerular disease. Previous genome-wide association studies (GWAS) identified a risk locus in the HLA Class II region and three additional independent risk loci. But the genetic architecture of pSSNS, and its genetically driven pathobiology, is largely unknown. Here, we conduct a multi-population GWAS meta-analysis in 38,463 participants (2440 cases). We then conduct conditional analyses and population specific GWAS. We discover twelve significant associations-eight from the multi-population meta-analysis (four novel), two from the multi-population conditional analysis (one novel), and two additional novel loci from the European meta-analysis. Fine-mapping implicates specific amino acid haplotypes in HLA-DQA1 and HLA-DQB1 driving the HLA Class II risk locus. Non-HLA loci colocalize with eQTLs of monocytes and numerous T-cell subsets in independent datasets. Colocalization with kidney eQTLs is lacking but overlap with kidney cell open chromatin suggests an uncharacterized disease mechanism in kidney cells. A polygenic risk score (PRS) associates with earlier disease onset. Altogether, these discoveries expand our knowledge of pSSNS genetic architecture across populations and provide cell-specific insights into its molecular drivers. Evaluating these associations in additional cohorts will refine our understanding of population specificity, heterogeneity, and clinical and molecular associations.
- MeSH
- celogenomová asociační studie * MeSH
- dítě MeSH
- genetická predispozice k nemoci MeSH
- haplotypy MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- nefrotický syndrom * genetika MeSH
- rizikové faktory MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Histone 3 lysine27-to-methionine (H3-K27M) mutations most frequently occur in diffuse midline gliomas (DMGs) of the childhood pons but are also increasingly recognized in adults. Their potential heterogeneity at different ages and midline locations is vastly understudied. Here, through dissecting the single-cell transcriptomic, epigenomic and spatial architectures of a comprehensive cohort of patient H3-K27M DMGs, we delineate how age and anatomical location shape glioma cell-intrinsic and -extrinsic features in light of the shared driver mutation. We show that stem-like oligodendroglial precursor-like cells, present across all clinico-anatomical groups, display varying levels of maturation dependent on location. We reveal a previously underappreciated relationship between mesenchymal cancer cell states and age, linked to age-dependent differences in the immune microenvironment. Further, we resolve the spatial organization of H3-K27M DMG cell populations and identify a mitotic oligodendroglial-lineage niche. Collectively, our study provides a powerful framework for rational modeling and therapeutic interventions.
The teeth and their supporting tissues provide an easily accessible source of oral stem cells. These different stem cell populations have been extensively studied for their properties, such as high plasticity and clonogenicity, expressing stem cell markers and potency for multilineage differentiation in vitro. Such cells with stem cell properties have been derived and characterised from the dental pulp tissue, the apical papilla region of roots in development, as well as the supporting tissue of periodontal ligament that anchors the tooth within the alveolar socket and the soft gingival tissue. Studying the dental pulp stem cell populations in a continuously growing mouse incisor model, as a traceable in vivo model, enables the researchers to study the properties, origin and behaviour of mesenchymal stem cells. On the other side, the oral mucosa with its remarkable scarless wound healing phenotype, offers a model to study a well-coordinated system of healing because of coordinated actions between epithelial, mesenchymal and immune cells populations. Although described as homogeneous cell populations following their in vitro expansion, the increasing application of approaches that allow tracing of individual cells over time, along with single-cell RNA-sequencing, reveal that different oral stem cells are indeed diverse populations and there is a highly organised map of cell populations according to their location in resident tissues, elucidating diverse stem cell niches within the oral tissues. This review covers the current knowledge of diverse oral stem cells, focusing on the new approaches in studying these cells. These approaches "decode" and "map" the resident cells populations of diverse oral tissues and contribute to a better understanding of the "stem cells niche architecture and interactions. Considering the high accessibility and simplicity in obtaining these diverse stem cells, the new findings offer potential in development of translational tissue engineering approaches and innovative therapeutic solutions.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. METHODS: We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. RESULTS: Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10-8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10-6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10-7; rs73033497, p = 8.8 × 10-7; rs7914279, p = 6.4 × 10-7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10-7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10-7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10-7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). CONCLUSIONS: In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.
- MeSH
- bipolární porucha genetika MeSH
- celogenomová asociační studie MeSH
- depresivní porucha unipolární * genetika MeSH
- endoteliální buňky MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- pohlavní dimorfismus * MeSH
- psychotické poruchy * genetika MeSH
- receptory vaskulárního endoteliálního růstového faktoru MeSH
- schizofrenie genetika MeSH
- sulfurtransferasy MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH