-
Je něco špatně v tomto záznamu ?
Mitochondrial Dynamics and Cristae Shape Changes During Metabolic Reprogramming
I. Kawano, B. Bazila, P. Ježek, A. Dlasková
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
37212238
DOI
10.1089/ars.2023.0268
Knihovny.cz E-zdroje
- MeSH
- energetický metabolismus MeSH
- glykolýza MeSH
- metabolické sítě a dráhy MeSH
- mitochondriální dynamika * MeSH
- mitochondrie * metabolismus MeSH
- oxidativní fosforylace MeSH
- přeprogramování buněk MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Significance: The architecture of the mitochondrial network and cristae critically impact cell differentiation and identity. Cells undergoing metabolic reprogramming to aerobic glycolysis (Warburg effect), such as immune cells, stem cells, and cancer cells, go through controlled modifications in mitochondrial architecture, which is critical for achieving the resulting cellular phenotype. Recent Advances: Recent studies in immunometabolism have shown that the manipulation of mitochondrial network dynamics and cristae shape directly affects T cell phenotype and macrophage polarization through altering energy metabolism. Similar manipulations also alter the specific metabolic phenotypes that accompany somatic reprogramming, stem cell differentiation, and cancer cells. The modulation of oxidative phosphorylation activity, accompanied by changes in metabolite signaling, reactive oxygen species generation, and adenosine triphosphate levels, is the shared underlying mechanism. Critical Issues: The plasticity of mitochondrial architecture is particularly vital for metabolic reprogramming. Consequently, failure to adapt the appropriate mitochondrial morphology often compromises the differentiation and identity of the cell. Immune, stem, and tumor cells exhibit striking similarities in their coordination of mitochondrial morphology with metabolic pathways. However, although many general unifying principles can be observed, their validity is not absolute, and the mechanistic links thus need to be further explored. Future Directions: Better knowledge of the molecular mechanisms involved and their relationships to both mitochondrial network and cristae morphology will not only further deepen our understanding of energy metabolism but may also contribute to improved therapeutic manipulation of cell viability, differentiation, proliferation, and identity in many different cell types. Antioxid. Redox Signal. 39, 684-707.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24001183
- 003
- CZ-PrNML
- 005
- 20240213094421.0
- 007
- ta
- 008
- 240109s2023 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1089/ars.2023.0268 $2 doi
- 035 __
- $a (PubMed)37212238
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kawano, Ippei $u Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0009000735523986
- 245 10
- $a Mitochondrial Dynamics and Cristae Shape Changes During Metabolic Reprogramming / $c I. Kawano, B. Bazila, P. Ježek, A. Dlasková
- 520 9_
- $a Significance: The architecture of the mitochondrial network and cristae critically impact cell differentiation and identity. Cells undergoing metabolic reprogramming to aerobic glycolysis (Warburg effect), such as immune cells, stem cells, and cancer cells, go through controlled modifications in mitochondrial architecture, which is critical for achieving the resulting cellular phenotype. Recent Advances: Recent studies in immunometabolism have shown that the manipulation of mitochondrial network dynamics and cristae shape directly affects T cell phenotype and macrophage polarization through altering energy metabolism. Similar manipulations also alter the specific metabolic phenotypes that accompany somatic reprogramming, stem cell differentiation, and cancer cells. The modulation of oxidative phosphorylation activity, accompanied by changes in metabolite signaling, reactive oxygen species generation, and adenosine triphosphate levels, is the shared underlying mechanism. Critical Issues: The plasticity of mitochondrial architecture is particularly vital for metabolic reprogramming. Consequently, failure to adapt the appropriate mitochondrial morphology often compromises the differentiation and identity of the cell. Immune, stem, and tumor cells exhibit striking similarities in their coordination of mitochondrial morphology with metabolic pathways. However, although many general unifying principles can be observed, their validity is not absolute, and the mechanistic links thus need to be further explored. Future Directions: Better knowledge of the molecular mechanisms involved and their relationships to both mitochondrial network and cristae morphology will not only further deepen our understanding of energy metabolism but may also contribute to improved therapeutic manipulation of cell viability, differentiation, proliferation, and identity in many different cell types. Antioxid. Redox Signal. 39, 684-707.
- 650 12
- $a mitochondriální dynamika $7 D063154
- 650 12
- $a mitochondrie $x metabolismus $7 D008928
- 650 _2
- $a energetický metabolismus $7 D004734
- 650 _2
- $a oxidativní fosforylace $7 D010085
- 650 _2
- $a metabolické sítě a dráhy $7 D053858
- 650 _2
- $a glykolýza $7 D006019
- 650 _2
- $a přeprogramování buněk $7 D065150
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Bazila, Bazila $u Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $u First Faculty of Medicine, Charles University, Prague, Czech Republic $1 https://orcid.org/0009000614334089
- 700 1_
- $a Ježek, Petr $u Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000227209395 $7 xx0030581
- 700 1_
- $a Dlasková, Andrea $u Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000286263703
- 773 0_
- $w MED00006026 $t Antioxidants & redox signaling $x 1557-7716 $g Roč. 39, č. 10-12 (2023), s. 684-707
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37212238 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240109 $b ABA008
- 991 __
- $a 20240213094418 $b ABA008
- 999 __
- $a ok $b bmc $g 2049656 $s 1210877
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 39 $c 10-12 $d 684-707 $e 20230919 $i 1557-7716 $m Antioxidants & redox signaling $n Antioxid Redox Signal $x MED00006026
- LZP __
- $a Pubmed-20240109