• Je něco špatně v tomto záznamu ?

Mitochondrial Dynamics and Cristae Shape Changes During Metabolic Reprogramming

I. Kawano, B. Bazila, P. Ježek, A. Dlasková

. 2023 ; 39 (10-12) : 684-707. [pub] 20230919

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc24001183

Significance: The architecture of the mitochondrial network and cristae critically impact cell differentiation and identity. Cells undergoing metabolic reprogramming to aerobic glycolysis (Warburg effect), such as immune cells, stem cells, and cancer cells, go through controlled modifications in mitochondrial architecture, which is critical for achieving the resulting cellular phenotype. Recent Advances: Recent studies in immunometabolism have shown that the manipulation of mitochondrial network dynamics and cristae shape directly affects T cell phenotype and macrophage polarization through altering energy metabolism. Similar manipulations also alter the specific metabolic phenotypes that accompany somatic reprogramming, stem cell differentiation, and cancer cells. The modulation of oxidative phosphorylation activity, accompanied by changes in metabolite signaling, reactive oxygen species generation, and adenosine triphosphate levels, is the shared underlying mechanism. Critical Issues: The plasticity of mitochondrial architecture is particularly vital for metabolic reprogramming. Consequently, failure to adapt the appropriate mitochondrial morphology often compromises the differentiation and identity of the cell. Immune, stem, and tumor cells exhibit striking similarities in their coordination of mitochondrial morphology with metabolic pathways. However, although many general unifying principles can be observed, their validity is not absolute, and the mechanistic links thus need to be further explored. Future Directions: Better knowledge of the molecular mechanisms involved and their relationships to both mitochondrial network and cristae morphology will not only further deepen our understanding of energy metabolism but may also contribute to improved therapeutic manipulation of cell viability, differentiation, proliferation, and identity in many different cell types. Antioxid. Redox Signal. 39, 684-707.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24001183
003      
CZ-PrNML
005      
20240213094421.0
007      
ta
008      
240109s2023 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1089/ars.2023.0268 $2 doi
035    __
$a (PubMed)37212238
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kawano, Ippei $u Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0009000735523986
245    10
$a Mitochondrial Dynamics and Cristae Shape Changes During Metabolic Reprogramming / $c I. Kawano, B. Bazila, P. Ježek, A. Dlasková
520    9_
$a Significance: The architecture of the mitochondrial network and cristae critically impact cell differentiation and identity. Cells undergoing metabolic reprogramming to aerobic glycolysis (Warburg effect), such as immune cells, stem cells, and cancer cells, go through controlled modifications in mitochondrial architecture, which is critical for achieving the resulting cellular phenotype. Recent Advances: Recent studies in immunometabolism have shown that the manipulation of mitochondrial network dynamics and cristae shape directly affects T cell phenotype and macrophage polarization through altering energy metabolism. Similar manipulations also alter the specific metabolic phenotypes that accompany somatic reprogramming, stem cell differentiation, and cancer cells. The modulation of oxidative phosphorylation activity, accompanied by changes in metabolite signaling, reactive oxygen species generation, and adenosine triphosphate levels, is the shared underlying mechanism. Critical Issues: The plasticity of mitochondrial architecture is particularly vital for metabolic reprogramming. Consequently, failure to adapt the appropriate mitochondrial morphology often compromises the differentiation and identity of the cell. Immune, stem, and tumor cells exhibit striking similarities in their coordination of mitochondrial morphology with metabolic pathways. However, although many general unifying principles can be observed, their validity is not absolute, and the mechanistic links thus need to be further explored. Future Directions: Better knowledge of the molecular mechanisms involved and their relationships to both mitochondrial network and cristae morphology will not only further deepen our understanding of energy metabolism but may also contribute to improved therapeutic manipulation of cell viability, differentiation, proliferation, and identity in many different cell types. Antioxid. Redox Signal. 39, 684-707.
650    12
$a mitochondriální dynamika $7 D063154
650    12
$a mitochondrie $x metabolismus $7 D008928
650    _2
$a energetický metabolismus $7 D004734
650    _2
$a oxidativní fosforylace $7 D010085
650    _2
$a metabolické sítě a dráhy $7 D053858
650    _2
$a glykolýza $7 D006019
650    _2
$a přeprogramování buněk $7 D065150
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Bazila, Bazila $u Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $u First Faculty of Medicine, Charles University, Prague, Czech Republic $1 https://orcid.org/0009000614334089
700    1_
$a Ježek, Petr $u Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000227209395 $7 xx0030581
700    1_
$a Dlasková, Andrea $u Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000286263703
773    0_
$w MED00006026 $t Antioxidants & redox signaling $x 1557-7716 $g Roč. 39, č. 10-12 (2023), s. 684-707
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37212238 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240109 $b ABA008
991    __
$a 20240213094418 $b ABA008
999    __
$a ok $b bmc $g 2049656 $s 1210877
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 39 $c 10-12 $d 684-707 $e 20230919 $i 1557-7716 $m Antioxidants & redox signaling $n Antioxid Redox Signal $x MED00006026
LZP    __
$a Pubmed-20240109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...