Novel Insights into the Immunotherapy of Soft Tissue Sarcomas: Do We Need a Change of Perspective?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34440139
PubMed Central
PMC8393686
DOI
10.3390/biomedicines9080935
PII: biomedicines9080935
Knihovny.cz E-zdroje
- Klíčová slova
- IL-15, TILs, adoptive transfer, checkpoint inhibitors, immune cells, immunotherapy, sarcoma, trabectedin, tumor microenvironment,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Soft tissue sarcomas (STSs) are rare mesenchymal tumors. With more than 80 histological subtypes of STSs, data regarding novel biomarkers of strong prognostic and therapeutic value are very limited. To date, the most important prognostic factor is the tumor grade, and approximately 50% of patients that are diagnosed with high-grade STSs die of metastatic disease within five years. Systemic chemotherapy represents the mainstay of metastatic STSs treatment for decades but induces response in only 15-35% of the patients, irrespective of the histological subtype. In the era of immunotherapy, deciphering the immune cell signatures within the STSs tumors may discriminate immunotherapy responders from non-responders and different immunotherapeutic approaches could be combined based on the predominant cell subpopulations infiltrating the STS tumors. Furthermore, understanding the immune diversity of the STS tumor microenvironment (TME) in different histological subtypes may provide a rationale for stratifying patients according to the TME immune parameters. In this review, we introduce the most important immune cell types infiltrating the STSs tumors and discuss different immunotherapies, as well as promising clinical trials, that would target these immune cells to enhance the antitumor immune responses and improve the prognosis of metastatic STSs patients.
Zobrazit více v PubMed
Yang J., Ren Z., Du X., Hao M., Zhou W. The role of mesenchymal stem/progenitor cells in sarcoma: Update and dispute. Stem Cell Investig. 2014;1:18. doi: 10.3978/j.issn.2306-9759.2014.10.01. PubMed DOI PMC
Merry E., Thway K., Jones R.L., Huang P.H. Predictive and prognostic transcriptomic biomarkers in soft tissue sarcomas. npj Precis. Oncol. 2021;5:17. doi: 10.1038/s41698-021-00157-4. PubMed DOI PMC
Levy A.D., Manning M.A., Al-Refaie W.B., Miettinen M.M. Soft-Tissue Sarcomas of the Abdomen and Pelvis: Radiologic-Pathologic Features, Part 1-Common Sarcomas: From the Radiologic Pathology Archives. Radiographics. 2017;37:462–483. doi: 10.1148/rg.2017160157. PubMed DOI PMC
Gamboa A.C., Gronchi A., Cardona K. Soft-tissue sarcoma in adults: An update on the current state of histiotype-specific management in an era of personalized medicine. CA Cancer J. Clin. 2020;70:200–229. doi: 10.3322/caac.21605. PubMed DOI
Penel N., Grosjean J., Robin Y.M., Vanseymortier L., Clisant S., Adenis A. Frequency of certain established risk factors in soft tissue sarcomas in adults: A prospective descriptive study of 658 cases. Sarcoma. 2008;2008:459386. doi: 10.1155/2008/459386. PubMed DOI PMC
Popovich J.R., Kashyap S., Cassaro S. StatPearls. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2021. Sarcoma. StatPearls Publishing Copyright© 2021.
Cates J.M.M. The AJCC 8th Edition Staging System for Soft Tissue Sarcoma of the Extremities or Trunk: A Cohort Study of the SEER Database. J. Natl. Compr. Cancer Netw. JNCCN. 2018;16:144–152. doi: 10.6004/jnccn.2017.7042. PubMed DOI
Sekimizu M., Ogura K., Yasunaga H., Matsui H., Tanaka S., Inagaki K., Kawai A. Development of nomograms for prognostication of patients with primary soft tissue sarcomas of the trunk and extremity: Report from the Bone and Soft Tissue Tumor Registry in Japan. BMC Cancer. 2019;19:657. doi: 10.1186/s12885-019-5875-y. PubMed DOI PMC
Yoon S.S. The New American Joint Commission on Cancer Staging System for Soft Tissue Sarcomas: Splitting versus Lumping. Ann. Surg. Oncol. 2018;25:1101–1102. doi: 10.1245/s10434-018-6419-4. PubMed DOI PMC
Gronchi A., Ferrari S., Quagliuolo V., Broto J.M., Pousa A.L., Grignani G., Basso U., Blay J.Y., Tendero O., Beveridge R.D., et al. Histotype-tailored neoadjuvant chemotherapy versus standard chemotherapy in patients with high-risk soft-tissue sarcomas (ISG-STS 1001): An international, open-label, randomised, controlled, phase 3, multicentre trial. Lancet. Oncol. 2017;18:812–822. doi: 10.1016/S1470-2045(17)30334-0. PubMed DOI
Komdeur R., Hoekstra H.J., van den Berg E., Molenaar W.M., Pras E., de Vries E.G.E., van der Graaf W.T.A. Metastasis in Soft Tissue Sarcomas: Prognostic Criteria and Treatment Perspectives. Cancer Metastasis Rev. 2002;21:167–183. doi: 10.1023/A:1020893200768. PubMed DOI
Crettenand F., Martin D., Cherix S., Demartines N., Matter M. Occurrence and prognosis of lymph node metastases in patients selected for isolated limb perfusion with soft tissue sarcoma. J. Cancer. 2018;9:3311–3315. doi: 10.7150/jca.25696. PubMed DOI PMC
Emori M., Tsuchie H., Nagasawa H., Sonoda T., Tsukamoto A., Shimizu J., Murahashi Y., Mizushima E., Takada K., Murase K., et al. Early Lymph Node Metastasis May Predict Poor Prognosis in Soft Tissue Sarcoma. Int. J. Surg. Oncol. 2019;2019:6708474. doi: 10.1155/2019/6708474. PubMed DOI PMC
Stamenovic D., Hohenberger P., Roessner E. Pulmonary metastasectomy in soft tissue sarcomas: A systematic review. J. Thorac. Dis. 2021;13:2649–2660. doi: 10.21037/jtd-2019-pm-13. PubMed DOI PMC
Okamoto M., Matsuoka M., Soma T., Arai R., Kato H., Harabayashi T., Adachi H., Shinohara T., Sagawa T., Nishiyama N., et al. Metastases of soft tissue sarcoma to the liver: A Historical Cohort Study from a Hospital-based Cancer Registry. Cancer Med. 2020;9:6159–6165. doi: 10.1002/cam4.3304. PubMed DOI PMC
Chan C.M., Lindsay A.D., Spiguel A.R., Scarborough M.T., Gibbs C.P. Brain metastases from Truncal and extremity bone and soft tissue sarcoma: Single institution study of oncologic outcomes. Rare Tumors. 2020;12 doi: 10.1177/2036361320960060. PubMed DOI PMC
Younis M.H., Summers S., Pretell-Mazzini J. Bone metastasis in extremity soft tissue sarcomas: Risk factors and survival analysis using the SEER registry. Musculoskelet. Surg. 2020 doi: 10.1007/s12306-020-00673-9. PubMed DOI
de Juan Ferré A., Álvarez Álvarez R., Casado Herráez A., Cruz Jurado J., Estival González A., Martín-Broto J., Martínez Marín V., Moreno Vega A., Sebio García A., Valverde Morales C. SEOM Clinical Guideline of management of soft-tissue sarcoma (2020) Clin. Transl. Oncol. 2021;23:922–930. doi: 10.1007/s12094-020-02534-0. PubMed DOI PMC
Sambri A., Caldari E., Fiore M., Zucchini R., Giannini C., Pirini M.G., Spinnato P., Cappelli A., Donati D.M., De Paolis M. Margin Assessment in Soft Tissue Sarcomas: Review of the Literature. Cancers. 2021;13:1687. doi: 10.3390/cancers13071687. PubMed DOI PMC
Spolverato G., Callegaro D., Gronchi A. Defining Which Patients Are at High Risk for Recurrence of Soft Tissue Sarcoma. Curr. Treat. Options Oncol. 2020;21:56. doi: 10.1007/s11864-020-00753-9. PubMed DOI
Wiltink L.M., Haas R.L.M., Gelderblom H., van de Sande M.A.J. Treatment Strategies for Metastatic Soft Tissue Sarcomas. Cancers. 2021;13:1722. doi: 10.3390/cancers13071722. PubMed DOI PMC
Rehders A., Stoecklein N.H., Poremba C., Alexander A., Knoefel W.T., Peiper M. Reexcision of soft tissue sarcoma: Sufficient local control but increased rate of metastasis. World J. Surg. 2009;33:2599–2605. doi: 10.1007/s00268-009-0262-5. PubMed DOI
Bartelstein M.K., Yerramilli D., Christ A.B., Kenan S., Ogura K., Fujiwara T., Fabbri N., Healey J.H. Postradiation Fractures after Combined Modality Treatment in Extremity Soft Tissue Sarcomas. Sarcoma. 2021;2021:8877567. doi: 10.1155/2021/8877567. PubMed DOI PMC
Shah C., Verma V., Takiar R., Vajapey R., Amarnath S., Murphy E., Mesko N.W., Lietman S., Joyce M., Anderson P., et al. Radiation Therapy in the Management of Soft Tissue Sarcoma: A Clinician’s Guide to Timing, Techniques, and Targets. Am. J. Clin. Oncol. 2016;39:630–635. doi: 10.1097/COC.0000000000000319. PubMed DOI
Doi H., Oh R.J., Miura H., Masai N., Shiomi H., Inoue T. Outcomes and toxicity of radiotherapy for refractory bone and soft tissue sarcomas. Mol. Clin. Oncol. 2016;4:83–88. doi: 10.3892/mco.2015.654. PubMed DOI PMC
Tiwari A., Gupta V.G., Bakhshi S. Newer medical therapies for metastatic soft tissue sarcoma. Expert Rev. Anticancer Ther. 2017;17:257–270. doi: 10.1080/14737140.2017.1285229. PubMed DOI
Ratan R., Patel S.R. Chemotherapy for soft tissue sarcoma. Cancer. 2016;122:2952–2960. doi: 10.1002/cncr.30191. PubMed DOI
Gronchi A. Surgery in soft tissue sarcoma: The thin line between a surgical or more conservative approach. Future Oncol. 2021;17:3–6. doi: 10.2217/fon-2021-0449. PubMed DOI
Morgan S.S., Cranmer L.D. Systematic therapy for unresectable or metastatic soft-tissue sarcomas: Past, present, and future. Curr. Oncol. Rep. 2011;13:331–349. doi: 10.1007/s11912-011-0182-z. PubMed DOI
Nixon N.A., Blais N., Ernst S., Kollmannsberger C., Bebb G., Butler M., Smylie M., Verma S. Current landscape of immunotherapy in the treatment of solid tumours, with future opportunities and challenges. Curr. Oncol. 2018;25:e373–e384. doi: 10.3747/co.25.3840. PubMed DOI PMC
Iacovelli R., Ciccarese C., Schutz F.A., Tortora G., de Velasco G. Complete response to immune checkpoint inhibitors-based therapy in advanced renal cell carcinoma patients. A meta-analysis of randomized clinical trials. Urol. Oncol. 2020;38:798.e717–798.e724. doi: 10.1016/j.urolonc.2020.06.021. PubMed DOI
Tang Y., Li Y., Zhang L., Tong G., Ou Z., Wang Z., Zhang H., Qiao G. Pathologic complete response to preoperative immunotherapy in a lung adenocarcinoma patient with bone metastasis: A case report. Thorac. Cancer. 2020;11:1094–1098. doi: 10.1111/1759-7714.13361. PubMed DOI PMC
Gutkin P.M., Hiniker S.M., Swetter S.M., Reddy S.A., Knox S.J. Complete Response of Metastatic Melanoma to Local Radiation and Immunotherapy: 6.5 Year Follow-Up. Cureus. 2018;10:e3723. doi: 10.7759/cureus.3723. PubMed DOI PMC
Zhu J., Powis de Tenbossche C.G., Cané S., Colau D., van Baren N., Lurquin C., Schmitt-Verhulst A.-M., Liljeström P., Uyttenhove C., Van den Eynde B.J. Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat. Commun. 2017;8:1404. doi: 10.1038/s41467-017-00784-1. PubMed DOI PMC
Koumarianou A., Duran-Moreno J. The Sarcoma Immune Landscape: Emerging Challenges, Prognostic Significance and Prospective Impact for Immunotherapy Approaches. Cancers. 2021;13:363. doi: 10.3390/cancers13030363. PubMed DOI PMC
Wisdom A.J., Mowery Y.M., Riedel R.F., Kirsch D.G. Rationale and emerging strategies for immune checkpoint blockade in soft tissue sarcoma. Cancer. 2018;124:3819–3829. doi: 10.1002/cncr.31517. PubMed DOI PMC
Deng J., Zeng W., Kong W., Shi Y., Mou X. The Study of Sarcoma Microenvironment Heterogeneity Associated With Prognosis Based on an Immunogenomic Landscape Analysis. Front. Bioeng. Biotechnol. 2020;8:1003. doi: 10.3389/fbioe.2020.01003. PubMed DOI PMC
Levine L.S., Mahuron K.M., Tsai K.K., Wu C., Mattis D.M., Pauli M.L., Oglesby A., Lee J.C., Spitzer M.H., Krummel M.F., et al. Tumor Immune Profiling-Based Neoadjuvant Immunotherapy for Locally Advanced Melanoma. Ann. Surg. Oncol. 2020;27:4122–4130. doi: 10.1245/s10434-020-08648-7. PubMed DOI PMC
O’Donnell J.S., Teng M.W.L., Smyth M.J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 2019;16:151–167. doi: 10.1038/s41571-018-0142-8. PubMed DOI
Tolba M.F., Omar H.A. Immunotherapy, an evolving approach for the management of triple negative breast cancer: Converting non-responders to responders. Crit. Rev. Oncol. Hematol. 2018;122:202–207. doi: 10.1016/j.critrevonc.2018.01.005. PubMed DOI
Xia A., Zhang Y., Xu J., Yin T., Lu X.J. T Cell Dysfunction in Cancer Immunity and Immunotherapy. Front. Immunol. 2019;10:1719. doi: 10.3389/fimmu.2019.01719. PubMed DOI PMC
Wu Y., Chen W., Xu Z.P., Gu W. PD-L1 Distribution and Perspective for Cancer Immunotherapy-Blockade, Knockdown, or Inhibition. Front. Immunol. 2019;10:2022. doi: 10.3389/fimmu.2019.02022. PubMed DOI PMC
Martínez-Lostao L., Anel A., Pardo J. How Do Cytotoxic Lymphocytes Kill Cancer Cells? Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015;21:5047–5056. doi: 10.1158/1078-0432.CCR-15-0685. PubMed DOI
Qin S., Xu L., Yi M., Yu S., Wu K., Luo S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer. 2019;18:155. doi: 10.1186/s12943-019-1091-2. PubMed DOI PMC
Kim H.J., Cantor H. CD4 T-cell subsets and tumor immunity: The helpful and the not-so-helpful. Cancer Immunol. Res. 2014;2:91–98. doi: 10.1158/2326-6066.CIR-13-0216. PubMed DOI
Tay R.E., Richardson E.K., Toh H.C. Revisiting the role of CD4+ T cells in cancer immunotherapy—New insights into old paradigms. Cancer Gene Ther. 2021;28:5–17. doi: 10.1038/s41417-020-0183-x. PubMed DOI PMC
Ostroumov D., Fekete-Drimusz N., Saborowski M., Kühnel F., Woller N. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell. Mol. Life Sci. CMLS. 2018;75:689–713. doi: 10.1007/s00018-017-2686-7. PubMed DOI PMC
Klaver Y., Rijnders M., Oostvogels A., Wijers R., Smid M., Grünhagen D., Verhoef C., Sleijfer S., Lamers C., Debets R. Differential quantities of immune checkpoint-expressing CD8 T cells in soft tissue sarcoma subtypes. J. Immunother. Cancer. 2020;8:e000271. doi: 10.1136/jitc-2019-000271. PubMed DOI PMC
Pollack S.M., He Q., Yearley J.H., Emerson R., Vignali M., Zhang Y., Redman M.W., Baker K.K., Cooper S., Donahue B., et al. T-cell infiltration and clonality correlate with programmed cell death protein 1 and programmed death-ligand 1 expression in patients with soft tissue sarcomas. Cancer. 2017;123:3291–3304. doi: 10.1002/cncr.30726. PubMed DOI PMC
Italiano A., Bellera C., D’Angelo S. PD1/PD-L1 targeting in advanced soft-tissue sarcomas: A pooled analysis of phase II trials. J. Hematol. Oncol. 2020;13:55. doi: 10.1186/s13045-020-00891-5. PubMed DOI PMC
D’Angelo S.P., Shoushtari A.N., Agaram N.P., Kuk D., Qin L.-X., Carvajal R.D., Dickson M.A., Gounder M., Keohan M.L., Schwartz G.K., et al. Prevalence of tumor-infiltrating lymphocytes and PD-L1 expression in the soft tissue sarcoma microenvironment. Hum. Pathol. 2015;46:357–365. doi: 10.1016/j.humpath.2014.11.001. PubMed DOI PMC
Nowicki T.S., Akiyama R., Huang R.R., Shintaku I.P., Wang X., Tumeh P.C., Singh A., Chmielowski B., Denny C., Federman N., et al. Infiltration of CD8 T Cells and Expression of PD-1 and PD-L1 in Synovial Sarcoma. Cancer Immunol. Res. 2017;5:118–126. doi: 10.1158/2326-6066.CIR-16-0148. PubMed DOI PMC
Idos G.E., Kwok J., Bonthala N., Kysh L., Gruber S.B., Qu C. The Prognostic Implications of Tumor Infiltrating Lymphocytes in Colorectal Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2020;10:3360. doi: 10.1038/s41598-020-60255-4. PubMed DOI PMC
Sun Q., Sun H., Wu N., Cong L., Cong X. Prognostic Significance of Tumor-Infiltrating Lymphocyte Grade in Melanoma: A Meta-Analysis. Dermatology. 2020;236:481–492. doi: 10.1159/000505152. PubMed DOI
Lequerica-Fernández P., Suárez-Canto J., Rodriguez-Santamarta T., Rodrigo J.P., Suárez-Sánchez F.J., Blanco-Lorenzo V., Domínguez-Iglesias F., García-Pedrero J.M., de Vicente J.C. Prognostic Relevance of CD4+, CD8+ and FOXP3+ TILs in Oral Squamous Cell Carcinoma and Correlations with PD-L1 and Cancer Stem Cell Markers. Biomedicines. 2021;9:653. doi: 10.3390/biomedicines9060653. PubMed DOI PMC
Rodrigo J.P., Sánchez-Canteli M., López F., Wolf G.T., Hernández-Prera J.C., Williams M.D., Willems S.M., Franchi A., Coca-Pelaz A., Ferlito A. Tumor-Infiltrating Lymphocytes in the Tumor Microenvironment of Laryngeal Squamous Cell Carcinoma: Systematic Review and Meta-Analysis. Biomedicines. 2021;9:486. doi: 10.3390/biomedicines9050486. PubMed DOI PMC
Strizova Z., Bartunkova J., Smrz D. The challenges of adoptive cell transfer in the treatment of human renal cell carcinoma. Cancer Immunol. Immunother. CII. 2019;68:1831–1838. doi: 10.1007/s00262-019-02359-z. PubMed DOI PMC
Wustrack R.L., Shao E., Sheridan J., Zimel M., Cho S.-J., Horvai A.E., Luong D., Kwek S.S., Fong L., Okimoto R.A. Tumor morphology and location associate with immune cell composition in pleomorphic sarcoma. Cancer Immunol. Immunother. 2021 doi: 10.1007/s00262-021-02935-2. PubMed DOI PMC
Movva S., Wen W., Chen W., Millis S.Z., Gatalica Z., Reddy S., von Mehren M., Van Tine B.A. Multi-platform profiling of over 2000 sarcomas: Identification of biomarkers and novel therapeutic targets. Oncotarget. 2015;6:12234–12247. doi: 10.18632/oncotarget.3498. PubMed DOI PMC
Bi Q., Liu Y., Yuan T., Wang H., Li B., Jiang Y., Mo X., Lei Y., Xiao Y., Dong S., et al. Predicted CD4+ T cell infiltration levels could indicate better overall survival in sarcoma patients. J. Int. Med Res. 2021;49:0300060520981539. doi: 10.1177/0300060520981539. PubMed DOI PMC
Manzoni M., Bolognesi M.M., Antoranz A., Mancari R., Carinelli S., Faretta M., Bosisio F.M., Cattoretti G. The Adaptive and Innate Immune Cell Landscape of Uterine Leiomyosarcomas. Sci. Rep. 2020;10:702. doi: 10.1038/s41598-020-57627-1. PubMed DOI PMC
Berraondo P., Sanmamed M.F., Ochoa M.C., Etxeberria I., Aznar M.A., Pérez-Gracia J.L., Rodríguez-Ruiz M.E., Ponz-Sarvise M., Castañón E., Melero I. Cytokines in clinical cancer immunotherapy. Br. J. Cancer. 2019;120:6–15. doi: 10.1038/s41416-018-0328-y. PubMed DOI PMC
Baek S., Kim Y.-M., Kim S.-B., Kim C.-S., Kwon S.-W., Kim Y., Kim H., Lee H. Therapeutic DC vaccination with IL-2 as a consolidation therapy for ovarian cancer patients: A phase I/II trial. Cell. Mol. Immunol. 2015;12:87–95. doi: 10.1038/cmi.2014.40. PubMed DOI PMC
Escobar A., López M., Serrano A., Ramirez M., Pérez C., Aguirre A., González R., Alfaro J., Larrondo M., Fodor M., et al. Dendritic cell immunizations alone or combined with low doses of interleukin-2 induce specific immune responses in melanoma patients. Clin. Exp. Immunol. 2005;142:555–568. doi: 10.1111/j.1365-2249.2005.02948.x. PubMed DOI PMC
Desbois M., Béal C., Charrier M., Besse B., Meurice G., Cagnard N., Jacques Y., Béchard D., Cassard L., Chaput N. IL-15 superagonist RLI has potent immunostimulatory properties on NK cells: Implications for antimetastatic treatment. J. Immunother. Cancer. 2020;8 doi: 10.1136/jitc-2020-000632. PubMed DOI PMC
Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 2020;11:3801. doi: 10.1038/s41467-020-17670-y. PubMed DOI PMC
Lee H.T., Lee S.H., Heo Y.S. Molecular Interactions of Antibody Drugs Targeting PD-1, PD-L1, and CTLA-4 in Immuno-Oncology. Molecules. 2019;24:1190. doi: 10.3390/molecules24061190. PubMed DOI PMC
Mizuno R., Sugiura D., Shimizu K., Maruhashi T., Watada M., Okazaki I.-M., Okazaki T. PD-1 Primarily Targets TCR Signal in the Inhibition of Functional T Cell Activation. Front. Immunol. 2019;10:630. doi: 10.3389/fimmu.2019.00630. PubMed DOI PMC
Sobhani N., Tardiel-Cyril D.R., Davtyan A., Generali D., Roudi R., Li Y. CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers. 2021;13:1440. doi: 10.3390/cancers13061440. PubMed DOI PMC
Tawbi H.A., Burgess M., Bolejack V., Van Tine B.A., Schuetze S.M., Hu J., D’Angelo S., Attia S., Riedel R.F., Priebat D.A., et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): A multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet. Oncol. 2017;18:1493–1501. doi: 10.1016/S1470-2045(17)30624-1. PubMed DOI PMC
D’Angelo S.P., Mahoney M.R., Van Tine B.A., Atkins J., Milhem M.M., Jahagirdar B.N., Antonescu C.R., Horvath E., Tap W.D., Schwartz G.K., et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): Two open-label, non-comparative, randomised, phase 2 trials. Lancet. Oncol. 2018;19:416–426. doi: 10.1016/S1470-2045(18)30006-8. PubMed DOI PMC
Sermer D., Brentjens R. CAR T-cell therapy: Full speed ahead. Hematol. Oncol. 2019;37(Suppl. 1):95–100. doi: 10.1002/hon.2591. PubMed DOI
Shevyrev D., Tereshchenko V. Treg Heterogeneity, Function, and Homeostasis. Front. Immunol. 2020;10:3100. doi: 10.3389/fimmu.2019.03100. PubMed DOI PMC
Smolle M.A., Herbsthofer L., Granegger B., Goda M., Brcic I., Bergovec M., Scheipl S., Prietl B., Pichler M., Gerger A., et al. T-regulatory cells predict clinical outcome in soft tissue sarcoma patients: A clinico-pathological study. Br. J. Cancer. 2021 doi: 10.1038/s41416-021-01456-0. PubMed DOI PMC
Keung E.Z., Tsai J.-W., Ali A.M., Cormier J.N., Bishop A.J., Guadagnolo B.A., Torres K.E., Somaiah N., Hunt K.K., Wargo J.A., et al. Analysis of the immune infiltrate in undifferentiated pleomorphic sarcoma of the extremity and trunk in response to radiotherapy: Rationale for combination neoadjuvant immune checkpoint inhibition and radiotherapy. OncoImmunology. 2018;7:e1385689. doi: 10.1080/2162402X.2017.1385689. PubMed DOI PMC
Que Y., Xiao W., Guan Y.X., Liang Y., Yan S.M., Chen H.Y., Li Q.Q., Xu B.S., Zhou Z.W., Zhang X. PD-L1 Expression Is Associated with FOXP3+ Regulatory T-Cell Infiltration of Soft Tissue Sarcoma and Poor Patient Prognosis. J. Cancer. 2017;8:2018–2025. doi: 10.7150/jca.18683. PubMed DOI PMC
Tanaka A., Sakaguchi S. Targeting Treg cells in cancer immunotherapy. Eur. J. Immunol. 2019;49:1140–1146. doi: 10.1002/eji.201847659. PubMed DOI
Ohue Y., Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 2019;110:2080–2089. doi: 10.1111/cas.14069. PubMed DOI PMC
Doberstein S.K. Bempegaldesleukin (NKTR-214): A CD-122-biased IL-2 receptor agonist for cancer immunotherapy. Expert Opin. Biol. Ther. 2019;19:1223–1228. doi: 10.1080/14712598.2019.1685489. PubMed DOI
Zappasodi R., Serganova I., Cohen I.J., Maeda M., Shindo M., Senbabaoglu Y., Watson M.J., Leftin A., Maniyar R., Verma S., et al. CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. Nature. 2021;591:652–658. doi: 10.1038/s41586-021-03326-4. PubMed DOI PMC
Chua H.L., Serov Y., Brahmi Z. Regulation of FasL expression in natural killer cells. Hum. Immunol. 2004;65:317–327. doi: 10.1016/j.humimm.2004.01.004. PubMed DOI
Voskoboinik I., Smyth M.J., Trapani J.A. Perforin-mediated target-cell death and immune homeostasis. Nat. Rev. Immunol. 2006;6:940–952. doi: 10.1038/nri1983. PubMed DOI
Gaggero S., Witt K., Carlsten M., Mitra S. Cytokines Orchestrating the Natural Killer-Myeloid Cell Crosstalk in the Tumor Microenvironment: Implications for Natural Killer Cell-Based Cancer Immunotherapy. Front. Immunol. 2020;11:621225. doi: 10.3389/fimmu.2020.621225. PubMed DOI PMC
Malmberg K.J., Carlsten M., Björklund A., Sohlberg E., Bryceson Y.T., Ljunggren H.G. Natural killer cell-mediated immunosurveillance of human cancer. Semin. Immunol. 2017;31:20–29. doi: 10.1016/j.smim.2017.08.002. PubMed DOI
Sorbye S.W., Kilvaer T.K., Valkov A., Donnem T., Smeland E., Al-Shibli K., Bremnes R.M., Busund L.-T. Prognostic impact of CD57, CD68, M-CSF, CSF-1R, Ki67 and TGF-beta in soft tissue sarcomas. BMC Clin. Pathol. 2012;12:7. doi: 10.1186/1472-6890-12-7. PubMed DOI PMC
Bücklein V., Adunka T., Mendler A.N., Issels R., Subklewe M., Schmollinger J.C., Noessner E. Progressive natural killer cell dysfunction associated with alterations in subset proportions and receptor expression in soft-tissue sarcoma patients. OncoImmunology. 2016;5:e1178421. doi: 10.1080/2162402X.2016.1178421. PubMed DOI PMC
Judge S.J., Darrow M.A., Thorpe S.W., Gingrich A.A., O’Donnell E.F., Bellini A.R., Sturgill I.R., Vick L.V., Dunai C., Stoffel K.M., et al. Analysis of tumor-infiltrating NK and T cells highlights IL-15 stimulation and TIGIT blockade as a combination immunotherapy strategy for soft tissue sarcomas. J. Immunother. Cancer. 2020;8 doi: 10.1136/jitc-2020-001355. PubMed DOI PMC
Zhang M., Wen B., Anton O.M., Yao Z., Dubois S., Ju W., Sato N., DiLillo D.J., Bamford R.N., Ravetch J.V., et al. IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc. Natl. Acad. Sci. USA. 2018;115:E10915–E10924. doi: 10.1073/pnas.1811615115. PubMed DOI PMC
Waldmann T.A. The biology of interleukin-2 and interleukin-15: Implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 2006;6:595–601. doi: 10.1038/nri1901. PubMed DOI
Sivori S., Vacca P., Del Zotto G., Munari E., Mingari M.C., Moretta L. Human NK cells: Surface receptors, inhibitory checkpoints, and translational applications. Cell. Mol. Immunol. 2019;16:430–441. doi: 10.1038/s41423-019-0206-4. PubMed DOI PMC
Cao Y., Wang X., Jin T., Tian Y., Dai C., Widarma C., Song R., Xu F. Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy. Signal. Transduct. Target. Ther. 2020;29:250. doi: 10.1038/s41392-020-00348-8. PubMed DOI PMC
Anderson A.C., Joller N., Kuchroo V.K. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity. 2016;44:989–1004. doi: 10.1016/j.immuni.2016.05.001. PubMed DOI PMC
Lanuza P.M., Pesini C., Arias M.A., Calvo C., Ramirez-Labrada A., Pardo J. Recalling the Biological Significance of Immune Checkpoints on NK Cells: A Chance to Overcome LAG3, PD1, and CTLA4 Inhibitory Pathways by Adoptive NK Cell Transfer? Front. Immunol. 2020;10:3010. doi: 10.3389/fimmu.2019.03010. PubMed DOI PMC
Dougall W.C., Kurtulus S., Smyth M.J., Anderson A.C. TIGIT and CD96: New checkpoint receptor targets for cancer immunotherapy. Immunol. Rev. 2017;276:112–120. doi: 10.1111/imr.12518. PubMed DOI
Khan M., Arooj S., Wang H. NK Cell-Based Immune Checkpoint Inhibition. Front. Immunol. 2020;11:167. doi: 10.3389/fimmu.2020.00167. PubMed DOI PMC
Harjunpää H., Guillerey C. TIGIT as an emerging immune checkpoint. Clin. Exp. Immunol. 2020;200:108–119. doi: 10.1111/cei.13407. PubMed DOI PMC
Rosenberg S.A., Restifo N.P., Yang J.C., Morgan R.A., Dudley M.E. Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat. Rev. Cancer. 2008;8:299–308. doi: 10.1038/nrc2355. PubMed DOI PMC
Pinette A., McMichael E., Courtney N.B., Duggan M., Benner B.N., Choueiry F., Yu L., Abood D., Mace T.A., Carson W.E., 3rd An IL-15-based superagonist ALT-803 enhances the NK cell response to cetuximab-treated squamous cell carcinoma of the head and neck. Cancer Immunol. Immunother. CII. 2019;68:1379–1389. doi: 10.1007/s00262-019-02372-2. PubMed DOI PMC
Zhou J., Tang Z., Gao S., Li C., Feng Y., Zhou X. Tumor-Associated Macrophages: Recent Insights and Therapies. Front. Oncol. 2020;10:188. doi: 10.3389/fonc.2020.00188. PubMed DOI PMC
Chen Y., Song Y., Du W., Gong L., Chang H., Zou Z. Tumor-associated macrophages: An accomplice in solid tumor progression. J. Biomed. Sci. 2019;26:78. doi: 10.1186/s12929-019-0568-z. PubMed DOI PMC
Pan Y., Yu Y., Wang X., Zhang T. Tumor-Associated Macrophages in Tumor Immunity. Front. Immunol. 2020;11:583084. doi: 10.3389/fimmu.2020.583084. PubMed DOI PMC
Guerriero J.L., Sotayo A., Ponichtera H.E., Castrillon J.A., Pourzia A.L., Schad S., Johnson S.F., Carrasco R.D., Lazo S., Bronson R.T., et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature. 2017;543:428–432. doi: 10.1038/nature21409. PubMed DOI PMC
Dancsok A.R., Gao D., Lee A.F., Steigen S.E., Blay J.Y., Thomas D.M., Maki R.G., Nielsen T.O., Demicco E.G. Tumor-associated macrophages and macrophage-related immune checkpoint expression in sarcomas. Oncoimmunology. 2020;9:1747340. doi: 10.1080/2162402X.2020.1747340. PubMed DOI PMC
Oike N., Kawashima H., Ogose A., Hotta T., Hatano H., Ariizumi T., Sasaki T., Yamagishi T., Umezu H., Endo N. Prognostic impact of the tumor immune microenvironment in synovial sarcoma. Cancer Sci. 2018;109:3043–3054. doi: 10.1111/cas.13769. PubMed DOI PMC
Tsagozis P., Augsten M., Zhang Y., Li T., Hesla A., Bergh J., Haglund F., Tobin N.P., Ehnman M. An immunosuppressive macrophage profile attenuates the prognostic impact of CD20-positive B cells in human soft tissue sarcoma. Cancer Immunol. Immunother. CII. 2019;68:927–936. doi: 10.1007/s00262-019-02322-y. PubMed DOI PMC
Raj S.K., Kooshki M., Winters M., Russell G.B., Miller L.D., Laurini J.A., Pierre T., Savage P.D. Prognostic implications of tumor associated macrophages (TAMs) in soft tissue sarcoma. J. Clin. Oncol. 2019;37:e22548. doi: 10.1200/JCO.2019.37.15_suppl.e22548. DOI
Lee C.H., Espinosa I., Vrijaldenhoven S., Subramanian S., Montgomery K.D., Zhu S., Marinelli R.J., Peterse J.L., Poulin N., Nielsen T.O., et al. Prognostic significance of macrophage infiltration in leiomyosarcomas. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008;14:1423–1430. doi: 10.1158/1078-0432.CCR-07-1712. PubMed DOI
Ganjoo K.N., Witten D., Patel M., Espinosa I., La T., Tibshirani R., van de Rijn M., Jacobs C., West R.B. The prognostic value of tumor-associated macrophages in leiomyosarcoma: A single institution study. Am. J. Clin. Oncol. 2011;34:82–86. doi: 10.1097/COC.0b013e3181d26d5e. PubMed DOI PMC
Shiraishi D., Fujiwara Y., Horlad H., Saito Y., Iriki T., Tsuboki J., Cheng P., Nakagata N., Mizuta H., Bekki H., et al. CD163 Is Required for Protumoral Activation of Macrophages in Human and Murine Sarcoma. Cancer Res. 2018;78:3255–3266. doi: 10.1158/0008-5472.CAN-17-2011. PubMed DOI
Nabeshima A., Matsumoto Y., Fukushi J., Iura K., Matsunobu T., Endo M., Fujiwara T., Iida K., Fujiwara Y., Hatano M., et al. Tumour-associated macrophages correlate with poor prognosis in myxoid liposarcoma and promote cell motility and invasion via the HB-EGF-EGFR-PI3K/Akt pathways. Br. J. Cancer. 2015;112:547–555. doi: 10.1038/bjc.2014.637. PubMed DOI PMC
Anfray C., Ummarino A., Andón F.T., Allavena P. Current Strategies to Target Tumor-Associated-Macrophages to Improve Anti-Tumor Immune Responses. Cells. 2019;9:46. doi: 10.3390/cells9010046. PubMed DOI PMC
Zhang W., Huang Q., Xiao W., Zhao Y., Pi J., Xu H., Zhao H., Xu J., Evans C.E., Jin H. Advances in Anti-Tumor Treatments Targeting the CD47/SIRPα Axis. Front. Immunol. 2020;11:18. doi: 10.3389/fimmu.2020.00018. PubMed DOI PMC
Edris B., Weiskopf K., Volkmer A.K., Volkmer J.P., Willingham S.B., Contreras-Trujillo H., Liu J., Majeti R., West R.B., Fletcher J.A., et al. Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma. Proc. Natl. Acad. Sci. USA. 2012;109:6656–6661. doi: 10.1073/pnas.1121629109. PubMed DOI PMC
Benner B., Good L., Quiroga D., Schultz T.E., Kassem M., Carson W.E., Cherian M.A., Sardesai S., Wesolowski R. Pexidartinib, a Novel Small Molecule CSF-1R Inhibitor in Use for Tenosynovial Giant Cell Tumor: A Systematic Review of Pre-Clinical and Clinical Development. Drug Des. Dev. Ther. 2020;14:1693–1704. doi: 10.2147/DDDT.S253232. PubMed DOI PMC
Lamb Y.N. Pexidartinib: First Approval. Drugs. 2019;79:1805–1812. doi: 10.1007/s40265-019-01210-0. PubMed DOI PMC
Gordon E.M., Sankhala K.K., Chawla N., Chawla S.P. Trabectedin for Soft Tissue Sarcoma: Current Status and Future Perspectives. Adv. Ther. 2016;33:1055–1071. doi: 10.1007/s12325-016-0344-3. PubMed DOI PMC
Germano G., Frapolli R., Belgiovine C., Anselmo A., Pesce S., Liguori M., Erba E., Uboldi S., Zucchetti M., Pasqualini F., et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 2013;23:249–262. doi: 10.1016/j.ccr.2013.01.008. PubMed DOI
Scurr M. Histology-driven chemotherapy in soft tissue sarcomas. Curr. Treat. Options Oncol. 2011;12:32–45. doi: 10.1007/s11864-011-0140-x. PubMed DOI
Chow M.T., Luster A.D. Chemokines in cancer. Cancer Immunol. Res. 2014;2:1125–1131. doi: 10.1158/2326-6066.CIR-14-0160. PubMed DOI PMC
Fujiwara T., Healey J., Ogura K., Yoshida A., Kondo H., Hata T., Kure M., Tazawa H., Nakata E., Kunisada T., et al. Role of Tumor-Associated Macrophages in Sarcomas. Cancers. 2021;13:1086. doi: 10.3390/cancers13051086. PubMed DOI PMC
Katz D., Palmerini E., Pollack S.M. More Than 50 Subtypes of Soft Tissue Sarcoma: Paving the Path for Histology-Driven Treatments. Am. Soc. Clin. Oncol. Educ. Book. Am. Soc. Clin. Oncol. Annu. Meet. 2018;38:925–938. doi: 10.1200/EDBK_205423. PubMed DOI
Waldman A.D., Fritz J.M., Lenardo M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020;20:651–668. doi: 10.1038/s41577-020-0306-5. PubMed DOI PMC
Zhou M., Bui N., Bolleddu S., Lohman M., Becker H.C., Ganjoo K. Nivolumab plus ipilimumab for soft tissue sarcoma: A single institution retrospective review. Immunotherapy. 2020;12:1303–1312. doi: 10.2217/imt-2020-0155. PubMed DOI
Ayodele O., Razak A.R.A. Immunotherapy in soft-tissue sarcoma. Curr. Oncol. 2020;27:17–23. doi: 10.3747/co.27.5407. PubMed DOI PMC
André P., Denis C., Soulas C., Bourbon-Caillet C., Lopez J., Arnoux T., Bléry M., Bonnafous C., Gauthier L., Morel A., et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731–1743.e1713. doi: 10.1016/j.cell.2018.10.014. PubMed DOI PMC
van Hall T., André P., Horowitz A., Ruan D.F., Borst L., Zerbib R., Narni-Mancinelli E., van der Burg S.H., Vivier E. Monalizumab: Inhibiting the novel immune checkpoint NKG2A. J. Immunother. Cancer. 2019;7:263. doi: 10.1186/s40425-019-0761-3. PubMed DOI PMC
The Immune Contexture of Liposarcoma and Its Clinical Implications