Dual role of IFNγ in reprogramming the undifferentiated pleomorphic sarcoma cell line JBT19 towards cytotoxic chemotherapy and antitumor immunity
Status PubMed-not-MEDLINE Jazyk angličtina Země Řecko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41473700
PubMed Central
PMC12746228
DOI
10.3892/ol.2025.15431
PII: OL-31-2-15431
Knihovny.cz E-zdroje
- Klíčová slova
- chemotherapy, immunotherapy, interferon-γ, repro-gramming, undifferentiated pleomorphic sarcoma,
- Publikační typ
- časopisecké články MeSH
Soft tissue sarcomas are therapeutically challenging. Among soft tissue sarcoma subtypes, undifferentiated pleomorphic sarcoma (UPS) exhibits one of the most pronounced disparities between its comparatively higher responsiveness to immunotherapy and its limited responsiveness to conventional cytotoxic chemotherapy. The interplay between immunotherapy and cytotoxic chemotherapy is still largely unknown. Interferon-γ (IFNγ) is a key player in antitumor immunity and contributes to the modulation of the tumor microenvironment, which impacts both immune and cancer cells. The mechanism by which this interplay can affect cancer cell chemosensitivity and immune sensitivity is difficult to predict. The present study aimed to investigate the interplay of IFNγ signaling in the UPS cell line JBT19. It was identified that IFNγ treatment significantly decreased the proliferation of JBT19 cells and increased the surface expression levels of cluster of differentiation (CD)44, CD47, CD95 (Fas), major histocompatibility complex (MHC)-I and programmed death-ligand 1 (PD-L1). In addition, IFNγ strongly upregulated surface expression levels of MHC-II and converted JBT19 cells into docetaxel-resistant cells. The IFNγ-induced changes were sustained but reversible after 3 weeks of cell culture without IFNγ. Regardless of IFNγ treatment, JBT19 cells could elicit and amplify the adaptive immune response in vitro. The in vitro JBT19-reactive lymphocytes effectively eliminated both IFNγ-treated and non-treated JBT19 cells, thus overcoming IFNγ-induced chemoresistance. To the best of our knowledge, the present study demonstrated a dual role of IFNγ towards cancer cell chemoresistance and immunostimulatory potential for the first time. The present study findings may have potential implications for combining immunotherapy with cytotoxic chemotherapy in cancer treatment in the future.
Zobrazit více v PubMed
Sun H, Liu J, Hu F, Xu M, Leng A, Jiang F, Chen K. Current research and management of undifferentiated pleomorphic sarcoma/myofibrosarcoma. Front Genet. 2023;14:1109491. doi: 10.3389/fgene.2023.1109491. PubMed DOI PMC
Wu JT, Nowak E, Imamura J, Leng J, Shepard D, Campbell SR, Scott J, Nystrom L, Mesko N, Schwartz GK, Burke ZDC. Immunotherapy in the treatment of undifferentiated pleomorphic sarcoma and myxofibrosarcoma. Curr Treat Options Oncol. 2025;26:891–909. doi: 10.1007/s11864-025-01349-x. PubMed DOI PMC
Wang J, Wu L. First-line immunotherapy for advanced non-small cell lung cancer: Current progress and future prospects. Cancer Biol Med. 2023;21:117–124. PubMed PMC
Reardon S. First cell therapy for solid tumours heads to the clinic: What it means for cancer treatment. Nature. 2024 Mar 11; doi: 10.1038/d41586-024-00673-w (Epub ahead of print) PubMed
Huang Y, Zhou H, Zhao G, Wang M, Luo J, Liu J. Immune checkpoint inhibitors serve as the First-line treatment for advanced head and neck cancer. Laryngoscope. 2024;134:749–761. doi: 10.1002/lary.30971. PubMed DOI
Lamba N, Ott PA, Iorgulescu JB. Use of First-line immune checkpoint inhibitors and association with overall survival among patients with metastatic melanoma in the Anti-PD-1 Era. JAMA Netw Open. 2022;5:e2225459. doi: 10.1001/jamanetworkopen.2022.25459. PubMed DOI PMC
Yau T, Galle PR, Decaens T, Sangro B, Qin S, da Fonseca LG, Karachiwala H, Blanc JF, Park JW, Gane E, et al. Nivolumab plus ipilimumab versus lenvatinib or sorafenib as first-line treatment for unresectable hepatocellular carcinoma (CheckMate 9DW): An Open-label, randomised, phase 3 trial. Lancet. 2025;405:1851–1864. doi: 10.1016/S0140-6736(25)00403-9. PubMed DOI
Diker O, Olgun P. Salvage chemotherapy in patients with nonsmall cell lung cancer after prior immunotherapy: Aa retrospective, real-life experience study. Anticancer Drugs. 2022;33:752–757. doi: 10.1097/CAD.0000000000001330. PubMed DOI
Assi HI, Zerdan MB, Hodroj M, Khoury M, Naji NS, Amhaz G, Zeidane RA, El Karak F. Value of chemotherapy post immunotherapy in stage IV non-small cell lung cancer (NSCLC) Oncotarget. 2023;14:517–525. doi: 10.18632/oncotarget.28444. PubMed DOI PMC
Sordo-Bahamonde C, Lorenzo-Herrero S, Gonzalez-Rodriguez AP, Martínez-Pérez A, Rodrigo JP, García-Pedrero JM, Gonzalez S. Chemo-immunotherapy: A new trend in cancer treatment. Cancers (Basel) 2023;15:2912. doi: 10.3390/cancers15112912. PubMed DOI PMC
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: The dawn of cancer treatment. Signal Transduct Target Ther. 2022;7:258. doi: 10.1038/s41392-022-01102-y. PubMed DOI PMC
Ni L, Lu J. Interferon gamma in cancer immunotherapy. Cancer Med. 2018;7:4509–4516. doi: 10.1002/cam4.1700. PubMed DOI PMC
Castro F, Cardoso AP, Goncalves RM, Serre K, Oliveira MJ. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol. 2018;9:847. doi: 10.3389/fimmu.2018.00847. PubMed DOI PMC
Martinez-Lostao L, Anel A, Pardo J. How do cytotoxic lymphocytes kill cancer cells? Clin Cancer Res. 2015;21:5047–5056. doi: 10.1158/1078-0432.CCR-15-0685. PubMed DOI
Bhat P, Leggatt G, Waterhouse N, Frazer IH. Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis. 2017;8:e2836. doi: 10.1038/cddis.2017.67. PubMed DOI PMC
Mazet JM, Mahale JN, Tong O, Watson RA, Lechuga-Vieco AV, Pirgova G, Lau VWC, Attar M, Koneva LA, Sansom SN, et al. IFNgamma signaling in cytotoxic T cells restricts anti-tumor responses by inhibiting the maintenance and diversity of intra-tumoral stem-like T cells. Nat Commun. 2023;14:321. doi: 10.1038/s41467-023-35948-9. PubMed DOI PMC
Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-γ in tumor progression and regression: A review. Biomark Res. 2020;8:49. doi: 10.1186/s40364-020-00228-x. PubMed DOI PMC
Jing ZL, Liu GL, Zhou N, Xu DY, Feng N, Lei Y, Ma LL, Tang MS, Tong GH, Tang N, Deng YJ. Interferon-γ in the tumor microenvironment promotes the expression of B7H4 in colorectal cancer cells, thereby inhibiting cytotoxic T cells. Sci Rep. 2024;14:6053. doi: 10.1038/s41598-024-56681-3. PubMed DOI PMC
Abiko K, Matsumura N, Hamanishi J, Horikawa N, Murakami R, Yamaguchi K, Yoshioka Y, Baba T, Konishi I, Mandai M. IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br J Cancer. 2015;112:1501–1509. doi: 10.1038/bjc.2015.101. PubMed DOI PMC
Wong CW, Huang YY, Hurlstone A. The role of IFN-γ-signalling in response to immune checkpoint blockade therapy. Essays Biochem. 2023;67:991–1002. doi: 10.1042/EBC20230001. PubMed DOI PMC
Reijers ILM, Rao D, Versluis JM, Menzies AM, Dimitriadis P, Wouters MW, Spillane AJ, Klop WMC, Broeks A, Bosch LJW, et al. IFN-γ signature enables selection of neoadjuvant treatment in patients with stage III melanoma. J Exp Med. 2023;220:e20221952. doi: 10.1084/jem.20221952. PubMed DOI PMC
Casadei B, Argnani L, Morigi A, Lolli G, Broccoli A, Pellegrini C, Nanni L, Stefoni V, Coppola PE, Carella M, et al. Effectiveness of chemotherapy after anti-PD-1 blockade failure for relapsed and refractory Hodgkin lymphoma. Cancer Med. 2020;9:7830–7836. doi: 10.1002/cam4.3262. PubMed DOI PMC
Saleh K, Daste A, Martin N, Pons-Tostivint E, Auperin A, Herrera-Gomez RG, Baste-Rotllan N, Bidault F, Guigay J, Le Tourneau C, et al. Response to salvage chemotherapy after progression on immune checkpoint inhibitors in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Eur J Cancer. 2019;121:123–129. doi: 10.1016/j.ejca.2019.08.026. PubMed DOI
Goldinger SM, Buder-Bakhaya K, Lo SN, Forschner A, McKean M, Zimmer L, Khoo C, Dummer R, Eroglu Z, Buchbinder EI, et al. Chemotherapy after immune checkpoint inhibitor failure in metastatic melanoma: A retrospective multicentre analysis. Eur J Cancer. 2022;162:22–33. doi: 10.1016/j.ejca.2021.11.022. PubMed DOI
Black M, Barsoum IB, Truesdell P, Cotechini T, Macdonald-Goodfellow SK, Petroff M, Siemens DR, Koti M, Craig AW, Graham CH. Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell chemoresistance associated with increased metastasis. Oncotarget. 2016;7:10557–10567. doi: 10.18632/oncotarget.7235. PubMed DOI PMC
Lazcano R, Barreto CM, Salazar R, Carapeto F, Traweek RS, Leung CH, Gite S, Mehta J, Ingram DR, Wani KM, et al. The immune landscape of undifferentiated pleomorphic sarcoma. Front Oncol. 2022;12:1008484. doi: 10.3389/fonc.2022.1008484. PubMed DOI PMC
Wei X, Ruan H, Zhang Y, Qin T, Zhang Y, Qin Y, Li W. Pan-cancer analysis of IFN-gamma with possible immunotherapeutic significance: A verification of single-cell sequencing and bulk omics research. Front Immunol. 2023;14:1202150. doi: 10.3389/fimmu.2023.1202150. PubMed DOI PMC
Taborska P, Lukac P, Stakheev D, Rajsiglova L, Kalkusova K, Strnadova K, Lacina L, Dvorankova B, Novotny J, Kolar M, et al. Novel PD-L1- and collagen-expressing patient-derived cell line of undifferentiated pleomorphic sarcoma (JBT19) as a model for cancer immunotherapy. Sci Rep. 2023;13:19079. doi: 10.1038/s41598-023-46305-7. PubMed DOI PMC
Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW. Establishment and characterization of a human prostatic carcinoma cell line (PC-3) Invest Urol. 1979;17:16–23. PubMed
Taborska P, Stakheev D, Svobodova H, Strizova Z, Bartunkova J, Smrz D. Acute conditioning of Antigen-expanded CD8+ T cells via the GSK3β-mTORC axis differentially dictates their immediate and distal responses after antigen rechallenge. Cancers (Basel) 2020;12:3766. doi: 10.3390/cancers12123766. PubMed DOI PMC
Smrž D, Kim MS, Zhang S, Mock BA, Smrzová S, DuBois W, Simakova O, Maric I, Wilson TM, Metcalfe DD, Gilfillan AM. mTORC1 and mTORC2 differentially regulate homeostasis of neoplastic and non-neoplastic human mast cells. Blood. 2011;118:6803–6813. doi: 10.1182/blood-2011-06-359984. PubMed DOI PMC
Smrž D, Dráberová L, Dráber P. Non-apoptotic phosphatidylserine externalization induced by engagement of glycosylphosphatidylinositol-anchored proteins. J Biol Chem. 2007;282:10487–10497. doi: 10.1074/jbc.M611090200. PubMed DOI
Taborska P, Bartunkova J, Smrz D. Simultaneous in vitro generation of human CD34+-derived dendritic cells and mast cells from non-mobilized peripheral blood mononuclear cells. J Immunol Methods. 2018;458:63–73. doi: 10.1016/j.jim.2018.04.005. PubMed DOI
Taborska P, Lastovicka J, Stakheev D, Strizova Z, Bartunkova J, Smrz D. SARS-CoV-2 spike glycoprotein-reactive T cells can be readily expanded from COVID-19 vaccinated donors. Immun Inflamm Dis. 2021;9:1452–1467. doi: 10.1002/iid3.496. PubMed DOI PMC
Stakheev D, Taborska P, Kalkusova K, Bartunkova J, Smrz D. LL-37 as a powerful molecular tool for boosting the performance of ex vivo-Produced human dendritic cells for cancer immunotherapy. Pharmaceutics. 2022;14:2747. doi: 10.3390/pharmaceutics14122747. PubMed DOI PMC
Stakheev D, Taborska P, Strizova Z, Podrazil M, Bartunkova J, Smrz D. The WNT/β-catenin signaling inhibitor XAV939 enhances the elimination of LNCaP and PC-3 prostate cancer cells by prostate cancer patient lymphocytes in vitro. Sci Rep. 2019;9:4761. doi: 10.1038/s41598-019-41182-5. PubMed DOI PMC
Molgora M, Cortez VS, Colonna M. Killing the invaders: NK cell impact in tumors and Anti-tumor therapy. Cancers (Basel) 2021;13:595. doi: 10.3390/cancers13040595. PubMed DOI PMC
Zhang S, Liu W, Hu B, Wang P, Lv X, Chen S, Shao Z. Prognostic significance of Tumor-infiltrating natural killer cells in solid tumors: A systematic review and Meta-analysis. Front Immunol. 2020;11:1242. doi: 10.3389/fimmu.2020.01242. PubMed DOI PMC
Sun YP, Ke YL, Li X. Prognostic value of CD8+ tumor-infiltrating T cells in patients with breast cancer: A systematic review and meta-analysis. Oncol Lett. 2023;25:39. doi: 10.3892/ol.2022.13625. PubMed DOI PMC
Yaghobi Z, Movassaghpour A, Talebi M, Abdoli Shadbad M, Hajiasgharzadeh K, Pourvahdani S, Baradaran B. The role of CD44 in cancer chemoresistance: A concise review. Eur J Pharmacol. 2021;903:174147. doi: 10.1016/j.ejphar.2021.174147. PubMed DOI
Wang H, Tan M, Zhang S, Li X, Gao J, Zhang D, Hao Y, Gao S, Liu J, Lin B. Expression and significance of CD44, CD47 and c-met in ovarian clear cell carcinoma. Int J Mol Sci. 2015;16:3391–3404. doi: 10.3390/ijms16023391. PubMed DOI PMC
Yoshida K, Tsujimoto H, Matsumura K, Kinoshita M, Takahata R, Matsumoto Y, Hiraki S, Ono S, Seki S, Yamamoto J, Hase K. CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer. Cancer Med. 2015;4:1322–1333. doi: 10.1002/cam4.478. PubMed DOI PMC
Peter ME, Hadji A, Murmann AE, Brockway S, Putzbach W, Pattanayak A, Ceppi P. The role of CD95 and CD95 ligand in cancer. Cell Death Differ. 2015;22:549–559. doi: 10.1038/cdd.2015.3. PubMed DOI PMC
Tilsed CM, Fisher SA, Nowak AK, Lake RA, Lesterhuis WJ. Cancer chemotherapy: Insights into cellular and tumor microenvironmental mechanisms of action. Front Oncol. 2022;12:960317. doi: 10.3389/fonc.2022.960317. PubMed DOI PMC
Montero A, Fossella F, Hortobagyi G, Valero V. Docetaxel for treatment of solid tumours: A systematic review of clinical data. Lancet Oncol. 2005;6:229–239. doi: 10.1016/S1470-2045(05)70094-2. PubMed DOI
Imran M, Saleem S, Chaudhuri A, Ali J, Baboota S. Docetaxel: An update on its molecular mechanisms, therapeutic trajectory and nanotechnology in the treatment of breast, lung and prostate cancer. J Drug Delivery Sci Technol. 2020:60.
Sangfelt O, Erickson S, Grander D. Mechanisms of interferon-induced cell cycle arrest. Front Biosci. 2000;5:D479–D487. doi: 10.2741/Sangfelt. PubMed DOI
Kulkarni A, Scully TJ, O'Donnell LA. The antiviral cytokine interferon-gamma restricts neural stem/progenitor cell proliferation through activation of STAT1 and modulation of retinoblastoma protein phosphorylation. J Neurosci Res. 2017;95:1582–1601. doi: 10.1002/jnr.23987. PubMed DOI PMC
Xaus J, Cardo M, Valledor AF, Soler C, Lloberas J, Celada A. Interferon gamma induces the expression of p21waf-1 and arrests macrophage cell cycle, preventing induction of apoptosis. Immunity. 1999;11:103–113. doi: 10.1016/S1074-7613(00)80085-0. PubMed DOI
Bossennec M, Di Roio A, Caux C, Menetrier-Caux C. MDR1 in immunity: Friend or foe? Oncoimmunology. 2018;7:e1499388. doi: 10.1080/2162402X.2018.1499388. PubMed DOI PMC
Cao ZH, Zheng QY, Li GQ, Hu XB, Feng SL, Xu GL, Zhang KQ. STAT1-mediated down-regulation of Bcl-2 expression is involved in IFN-γ/TNF-α-induced apoptosis in NIT-1 cells. PLoS One. 2015;10:e0120921. doi: 10.1371/journal.pone.0120921. PubMed DOI PMC
Cheon H, Stark GR. Unphosphorylated STAT1 prolongs the expression of Interferon-induced immune regulatory genes. Proc Natl Acad Sci USA. 2009;106:9373–9378. doi: 10.1073/pnas.0903487106. PubMed DOI PMC
Morrow AN, Schmeisser H, Tsuno T, Zoon KC. A novel role for IFN-stimulated gene factor 3II in IFN-γ signaling and induction of antiviral activity in human cells. J Immunol. 2011;186:1685–1693. doi: 10.4049/jimmunol.1001359. PubMed DOI PMC
Clark DN, O'Neil SM, Xu L, Steppe JT, Savage JT, Raghunathan K, Filiano AJ. Prolonged STAT1 activation in neurons drives a pathological transcriptional response. J Neuroimmunol. 2023;382:578168. doi: 10.1016/j.jneuroim.2023.578168. PubMed DOI PMC
Yuasa K, Masubuchi A, Okada T, Shinya M, Inomata Y, Kida H, Shyouji S, Ichikawa H, Takahashi T, Muroi M, Hijikata T. Interferon-dependent expression of the human STAT1 gene requires a distal regulatory region located approximately 6 kb upstream for its autoregulatory system. Genes Cells. 2025;30:e13188. doi: 10.1111/gtc.13188. PubMed DOI
Lastovicka J, Rataj M, Bartunkova J. Assessment of lymphocyte proliferation for diagnostic purpose: Comparison of CFSE staining, Ki-67 expression and 3H-thymidine incorporation. Hum Immunol. 2016;77:1215–1222. doi: 10.1016/j.humimm.2016.08.012. PubMed DOI
Zhou F. Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol. 2009;28:239–260. doi: 10.1080/08830180903013034. PubMed DOI
Steimle V, Siegrist CA, Mottet A, Lisowska-Grospierre B, Mach B. Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science. 1994;265:106–109. doi: 10.1126/science.8016643. PubMed DOI
Benesova I, Kalkusova K, Kwon YS, Taborska P, Stakheev D, Krausova K, Smetanova J, Ozaniak A, Bartunkova J, Smrž D, Strizova ZO. Cancer-associated fibroblasts in human malignancies, with a particular emphasis on sarcomas (review) Int J Oncol. 2025;67:79. doi: 10.3892/ijo.2025.5785. PubMed DOI PMC
Hennequin C, Giocanti N, Favaudon V. S-phase specificity of cell killing by docetaxel (Taxotere) in synchronised HeLa cells. Br J Cancer. 1995;71:1194–1198. doi: 10.1038/bjc.1995.232. PubMed DOI PMC
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat. 2021;54:100742. doi: 10.1016/j.drup.2020.100742. PubMed DOI
Tomasz M. Mitomycin C: Small, fast and deadly (but very selective) Chem Biol. 1995;2:575–579. doi: 10.1016/1074-5521(95)90120-5. PubMed DOI
Paz MM, Zhang X, Lu J, Holmgren A. A new mechanism of action for the anticancer drug mitomycin C: Mechanism-based inhibition of thioredoxin reductase. Chem Res Toxicol. 2012;25:1502–1511. doi: 10.1021/tx3002065. PubMed DOI
Sritharan S, Sivalingam N. A comprehensive review on Time-tested anticancer drug doxorubicin. Life Sci. 2021;278:119527. doi: 10.1016/j.lfs.2021.119527. PubMed DOI
Yosri M, Dokhan M, Aboagye E, Al Moussawy M, Abdelsamed HA. Mechanisms governing bystander activation of T cells. Front Immunol. 2024;15:1465889. doi: 10.3389/fimmu.2024.1465889. PubMed DOI PMC
Wilczynski B, Dabrowska A, Kulbacka J, Baczynska D. Chemoresistance and the tumor microenvironment: The critical role of cell-cell communication. Cell Commun Signal. 2024;22:486. doi: 10.1186/s12964-024-01857-7. PubMed DOI PMC
Alsaafeen BH, Ali BR, Elkord E. Resistance mechanisms to immune checkpoint inhibitors: Updated insights. Mol Cancer. 2025;24:20. doi: 10.1186/s12943-024-02212-7. PubMed DOI PMC
Ito T, Smrž D, Jung MY, Bandara G, Desai A, Smržová Š, Kuehn HS, Beaven MA, Metcalfe DD, Gilfillan AM. Stem cell factor programs the mast cell activation phenotype. J Immunol. 2012;188:5428–5437. doi: 10.4049/jimmunol.1103366. PubMed DOI PMC
Jung MY, Smrž D, Desai A, Bandara G, Ito T, Iwaki S, Kang JH, Andrade MV, Hilderbrand SC, Brown JM, et al. IL-33 induces a hyporesponsive phenotype in human and mouse mast cells. J Immunol. 2013;190:531–538. doi: 10.4049/jimmunol.1201576. PubMed DOI PMC
Desai A, Jung MY, Olivera A, Gilfillan AM, Prussin C, Kirshenbaum AS, Beaven MA, Metcalfe DD. IL-6 promotes an increase in human mast cell numbers and reactivity through suppression of suppressor of cytokine signaling 3. J Allergy Clin Immunol. 2016;137:1863–1871. e1866. doi: 10.1016/j.jaci.2015.09.059. PubMed DOI PMC
Chang TH, Ho PC. Interferon-driven metabolic reprogramming and tumor microenvironment remodeling. Immune Netw. 2025;25:e8. doi: 10.4110/in.2025.25.e8. PubMed DOI PMC
Wawrzyniak P, Hartman ML. Dual role of interferon-gamma in the response of melanoma patients to immunotherapy with immune checkpoint inhibitors. Mol Cancer. 2025;24:89. doi: 10.1186/s12943-025-02294-x. PubMed DOI PMC
Nigam M, Mishra AP, Deb VK, Dimri DB, Tiwari V, Bungau SG, Bungau AF, Radu AF. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed Pharmacother. 2023;164:115015. doi: 10.1016/j.biopha.2023.115015. PubMed DOI
Zemek RM, Chin WL, Nowak AK, Millward MJ, Lake RA, Lesterhuis WJ. Sensitizing the tumor microenvironment to immune checkpoint therapy. Front Immunol. 2020;11:223. doi: 10.3389/fimmu.2020.00223. PubMed DOI PMC
Gillet JP, Efferth T, Remacle J. Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta. 2007;1775:237–262. PubMed
Wang X, Long M, Dong K, Lin F, Weng Y, Ouyang Y, Liu L, Wei J, Chen X, He T, Zhang HZ. Chemotherapy agents-induced immunoresistance in lung cancer cells could be reversed by trop-2 inhibition in vitro and in vivo by interaction with MAPK signaling pathway. Cancer Biol Ther. 2013;14:1123–1132. doi: 10.4161/cbt.26341. PubMed DOI PMC
Alizadeh D, Wong RA, Gholamin S, Maker M, Aftabizadeh M, Yang X, Pecoraro JR, Jeppson JD, Wang D, Aguilar B, et al. IFNγ is critical for CAR T Cell-mediated myeloid activation and induction of endogenous immunity. Cancer Discov. 2021;11:2248–2265. doi: 10.1158/2159-8290.CD-20-1661. PubMed DOI PMC
Xu H, Niu M, Yuan X, Wu K, Liu A. CD44 as a tumor biomarker and therapeutic target. Exp Hematol Oncol. 2020;9:36. doi: 10.1186/s40164-020-00192-0. PubMed DOI PMC
Qu S, Jiao Z, Lu G, Xu J, Yao B, Wang T, Wang J, Yao Y, Yan X, Wang T, et al. Human lung adenocarcinoma CD47 is upregulated by interferon-γ and promotes tumor metastasis. Mol Ther Oncol. 2022;25:276–287. doi: 10.1016/j.omto.2022.04.011. PubMed DOI PMC
Zhao Y, Shi F, Zhou Q, Li Y, Wu J, Wang R, Song Q. Prognostic significance of PD-L1 in advanced non-small cell lung carcinoma. Medicine (Baltimore) 2020;99:e23172. doi: 10.1097/MD.0000000000023172. PubMed DOI PMC
Lin YM, Sung WW, Hsieh MJ, Tsai SC, Lai HW, Yang SM, Shen KH, Chen MK, Lee H, Yeh KT, Chen CJ. High PD-L1 expression correlates with metastasis and poor prognosis in oral squamous cell carcinoma. PLoS One. 2015;10:e0142656. doi: 10.1371/journal.pone.0142656. PubMed DOI PMC
Klement JD, Redd PS, Lu C, Merting AD, Poschel DB, Yang D, Savage NM, Zhou G, Munn DH, Fallon PG, Liu K. Tumor PD-L1 engages myeloid PD-1 to suppress type I interferon to impair cytotoxic T lymphocyte recruitment. Cancer Cell. 2023;41:620–636.e9. doi: 10.1016/j.ccell.2023.02.005. PubMed DOI PMC
Qadir AS, Ceppi P, Brockway S, Law C, Mu L, Khodarev NN, Kim J, Zhao JC, Putzbach W, Murmann AE, et al. CD95/Fas increases stemness in cancer cells by inducing a STAT1-dependent type I interferon response. Cell Rep. 2017;18:2373–2386. doi: 10.1016/j.celrep.2017.02.037. PubMed DOI PMC
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis. 2022;13:248. doi: 10.1038/s41419-022-04688-x. PubMed DOI PMC
Dart A. Presenting fibroblasts. Nat Rev Cancer. 2022;22:193. doi: 10.1038/s41568-022-00457-2. PubMed DOI
Mortara L, Castellani P, Meazza R, Tosi G, De Lerma Barbaro A, Procopio FA, Comes A, Zardi L, Ferrini S, Accolla RS. CIITA-induced MHC class II expression in mammary adenocarcinoma leads to a Th1 polarization of the tumor microenvironment, tumor rejection, and specific antitumor memory. Clin Cancer Res. 2006;12:3435–3443. doi: 10.1158/1078-0432.CCR-06-0165. PubMed DOI
Panelli MC, Wang E, Shen S, Schluter SF, Bernstein RM, Hersh EM, Stopeck A, Gangavalli R, Barber J, Jolly D, Akporiaye ET. Interferon gamma (IFNgamma) gene transfer of an EMT6 tumor that is poorly responsive to IFNgamma stimulation: Increase in tumor immunogenicity is accompanied by induction of a mouse class II transactivator and class II MHC. Cancer Immunol Immunother. 1996;42:99–107. doi: 10.1007/s002620050258. PubMed DOI PMC
Forero A, Li Y, Chen D, Grizzle WE, Updike KL, Merz ND, Downs-Kelly E, Burwell TC, Vaklavas C, Buchsbaum DJ, et al. Expression of the MHC Class II pathway in Triple-negative breast cancer tumor cells is associated with a good prognosis and infiltrating lymphocytes. Cancer Immunol Res. 2016;4:390–399. doi: 10.1158/2326-6066.CIR-15-0243. PubMed DOI PMC
Roemer MGM, Redd RA, Cader FZ, Pak CJ, Abdelrahman S, Ouyang J, Sasse S, Younes A, Fanale M, Santoro A, et al. Major histocompatibility complex class ii and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic hodgkin lymphoma. J Clin Oncol. 2018;36:942–950. doi: 10.1200/JCO.2017.77.3994. PubMed DOI PMC
Axelrod ML, Cook RS, Johnson DB, Balko JM. Biological consequences of MHC-II Expression by tumor cells in cancer. Clin Cancer Res. 2019;25:2392–2402. doi: 10.1158/1078-0432.CCR-18-3200. PubMed DOI PMC
Macy AM, Herrmann LM, Adams AC, Hastings KT. Major histocompatibility complex class II in the tumor microenvironment: Functions of nonprofessional antigen-presenting cells. Curr Opin Immunol. 2023;83:102330. doi: 10.1016/j.coi.2023.102330. PubMed DOI PMC
Johnson DB, Nixon MJ, Wang Y, Wang DY, Castellanos E, Estrada MV, Ericsson-Gonzalez PI, Cote CH, Salgado R, Sanchez V, et al. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight. 2018;3:e120360. doi: 10.1172/jci.insight.120360. PubMed DOI PMC
Lei PJ, Pereira ER, Andersson P, Amoozgar Z, Van Wijnbergen JW, O'Melia MJ, Zhou H, Chatterjee S, Ho WW, Posada JM, et al. Cancer cell plasticity and MHC-II-mediated immune tolerance promote breast cancer metastasis to lymph nodes. J Exp Med. 2023;220:e20221847. doi: 10.1084/jem.20221847. PubMed DOI PMC
Shen J, Choi YL, Lee T, Kim H, Chae YK, Dulken BW, Bogdan S, Huang M, Fisher GA, Park S, et al. Inflamed immune phenotype predicts favorable clinical outcomes of immune checkpoint inhibitor therapy across multiple cancer types. J Immunother Cancer. 2024;12:e008339. doi: 10.1136/jitc-2023-008339. PubMed DOI PMC
Chen S, Crabill GA, Pritchard TS, McMiller TL, Wei P, Pardoll DM, Pan F, Topalian SL. Mechanisms regulating PD-L1 expression on tumor and immune cells. J Immunother Cancer. 2019;7:305. doi: 10.1186/s40425-019-0770-2. PubMed DOI PMC
Mimura K, Teh JL, Okayama H, Shiraishi K, Kua LF, Koh V, Smoot DT, Ashktorab H, Oike T, Suzuki Y, et al. PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci. 2018;109:43–53. doi: 10.1111/cas.13424. PubMed DOI PMC
Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, Fatho M, Lennerz V, Wölfel T, Hölzel M, Tüting T. Melanomas resist T-cell therapy through Inflammation-induced reversible dedifferentiation. Nature. 2012;490:412–416. doi: 10.1038/nature11538. PubMed DOI
Wang B, Han Y, Zhang Y, Zhao Q, Wang H, Wei J, Meng L, Xin Y, Jiang X. Overcoming acquired resistance to cancer immune checkpoint therapy: Potential strategies based on molecular mechanisms. Cell Biosci. 2023;13:120. doi: 10.1186/s13578-023-01073-9. PubMed DOI PMC
Goddard ET, Linde MH, Srivastava S, Klug G, Shabaneh TB, Iannone S, Grzelak CA, Marsh S, Riggio AI, Shor RE, et al. Immune evasion of dormant disseminated tumor cells is due to their scarcity and can be overcome by T cell immunotherapies. Cancer Cell. 2024;42:119–134.e12. doi: 10.1016/j.ccell.2023.12.011. PubMed DOI PMC
Yu M, Peng Z, Qin M, Liu Y, Wang J, Zhang C, Lin J, Dong T, Wang L, Li S, et al. Interferon-gamma induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Mol Cell. 2021;81:1216–1230.e9. doi: 10.1016/j.molcel.2021.01.010. PubMed DOI
Mandai M, Hamanishi J, Abiko K, Matsumura N, Baba T, Konishi I. Dual faces of IFNγ in cancer progression: A role of PD-L1 induction in the determination of Pro- and antitumor immunity. Clin Cancer Res. 2016;22:2329–2334. doi: 10.1158/1078-0432.CCR-16-0224. PubMed DOI
Beziaud L, Young CM, Alonso AM, Norkin M, Minafra AR, Huelsken J. IFNγ-induced stem-like state of cancer cells as a driver of metastatic progression following immunotherapy. Cell Stem Cell. 2023;30:818–831.e6. doi: 10.1016/j.stem.2023.05.007. PubMed DOI
Gocher AM, Workman CJ, Vignali DAA. Interferon-gamma: Teammate or opponent in the tumour microenvironment? Nat Rev Immunol. 2022;22:158–172. doi: 10.1038/s41577-021-00566-3. PubMed DOI PMC
Korentzelos D, Wells A, Clark AM. Interferon-γ increases sensitivity to chemotherapy and provides immunotherapy targets in models of metastatic Castration-resistant prostate cancer. Sci Rep. 2022;12:6657. doi: 10.1038/s41598-022-10724-9. PubMed DOI PMC
Gupta J, Abed HS, Uthirapathy S, Kyada A, Rab SO, Shit D, Janney B, Nathiya D, Kadhim AJ, Mustafa YF. Beyond TRAIL resistance: Novel strategies for potentiating TRAIL-induced apoptosis in cancer. Exp Cell Res. 2025;450:114619. doi: 10.1016/j.yexcr.2025.114619. PubMed DOI
Merchant MS, Yang X, Melchionda F, Romero M, Klein R, Thiele CJ, Tsokos M, Kontny HU, Mackall CL. Interferon gamma enhances the effectiveness of tumor necrosis factor-related apoptosis-inducing ligand receptor agonists in a xenograft model of Ewing's sarcoma. Cancer Res. 2004;64:8349–8356. doi: 10.1158/0008-5472.CAN-04-1705. PubMed DOI
Johnsen JI, Pettersen I, Ponthan F, Sveinbjornsson B, Flaegstad T, Kogner P. Synergistic induction of apoptosis in neuroblastoma cells using a combination of cytostatic drugs with interferon-gamma and TRAIL. Int J Oncol. 2004;25:1849–1857. PubMed
Gawrylak A, Brodaczewska K, Iwanicka-Nowicka R, Koblowska M, Synowiec A, Bodnar L, Szczylik C, Lesyng B, Stec R, Kieda C. Hypoxia alters the response of ovarian cancer cells to the mitomycin C drug. Front Cell Dev Biol. 2025;13:1575134. doi: 10.3389/fcell.2025.1575134. PubMed DOI PMC
Strese S, Fryknas M, Larsson R, Gullbo J. Effects of hypoxia on human cancer cell line chemosensitivity. BMC Cancer. 2013;13:331. doi: 10.1186/1471-2407-13-331. PubMed DOI PMC
Hultman I, Haeggblom L, Rognmo I, Jansson Edqvist J, Blomberg E, Ali R, Phillips L, Sandstedt B, Kogner P, Shirazi Fard S, Ährlund-Richter L. Doxorubicin-provoked increase of mitotic activity and concomitant drain of G0-pool in therapy-resistant BE(2)-C neuroblastoma. PLoS One. 2018;13:e0190970. doi: 10.1371/journal.pone.0190970. PubMed DOI PMC
Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, Liu LF. Topoisomerase IIbeta mediated DNA double-strand breaks: Implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67:8839–8846. doi: 10.1158/0008-5472.CAN-07-1649. PubMed DOI
Stronach EA, Alfraidi A, Rama N, Datler C, Studd JB, Agarwal R, Guney TG, Gourley C, Hennessy BT, Mills GB, et al. HDAC4-regulated STAT1 activation mediates platinum resistance in ovarian cancer. Cancer Res. 2011;71:4412–4422. doi: 10.1158/0008-5472.CAN-10-4111. PubMed DOI PMC
Patterson SG, Wei S, Chen X, Sallman DA, Gilvary DL, Zhong B, Pow-Sang J, Yeatman T, Djeu JY. Novel role of Stat1 in the development of docetaxel resistance in prostate tumor cells. Oncogene. 2006;25:6113–6122. doi: 10.1038/sj.onc.1209632. PubMed DOI
Zhu H, Wang Z, Xu Q, Zhang Y, Zhai Y, Bai J, Liu M, Hui Z, Xu N. Inhibition of STAT1 sensitizes renal cell carcinoma cells to radiotherapy and chemotherapy. Cancer Biol Ther. 2012;13:401–407. doi: 10.4161/cbt.19291. PubMed DOI
Suzuki K, Yokoi A, Yoshida K, Suzuki H, Kitagawa M, Asano-Inami E, Matsuo S, Yoshihara M, Tamauchi S, Yoshikawa N, et al. Overcoming platinum-resistant ovarian cancer targeting the activated JAK-STAT pathways via extracellular vesicles. Commun Biol. 2025;8:1305. doi: 10.1038/s42003-025-08771-9. PubMed DOI PMC
Damen MPF, van Rheenen J, Scheele C. Targeting dormant tumor cells to prevent cancer recurrence. FEBS J. 2021;288:6286–6303. doi: 10.1111/febs.15626. PubMed DOI
DeMichele A, Clark AS, Shea E, Bayne LJ, Sterner CJ, Rohn K, Dwyer S, Pan TC, Nivar I, Chen Y, et al. Targeting dormant tumor cells to prevent recurrent breast cancer: A randomized phase 2 trial. Nat Med. 2025;31:3464–3474. doi: 10.1038/s41591-025-03877-3. PubMed DOI
Li X, Lu F, Zhou J, Li X, Li Y, Ye W, Li J, Yang L, Tang S, Zhou Y, et al. IFNγ augments TKI efficacy by alleviating protein unfolding stress to promote GSDME-mediated pyroptosis in hepatocellular carcinoma. Cell Death Dis. 2025;16:512. doi: 10.1038/s41419-025-07839-y. PubMed DOI PMC
Cui C, Xu C, Yang W, Chi Z, Sheng X, Si L, Xie Y, Yu J, Wang S, Yu R, et al. Ratio of the interferon-γ signature to the immunosuppression signature predicts anti-PD-1 therapy response in melanoma. NPJ Genom Med. 2021;6:7. doi: 10.1038/s41525-021-00169-w. PubMed DOI PMC
Llop S, Plana M, Tous S, Ferrando-Díez A, Brenes J, Juarez M, Vidales Z, Vilajosana E, Linares I, Arribas L, et al. Salvage chemotherapy after progression on immunotherapy in recurrent/metastatic squamous cell head and neck carcinoma. Front Oncol. 2024;14:1458479. doi: 10.3389/fonc.2024.1458479. PubMed DOI PMC
Reverdy T, Varnier R, de Talhouet S, Duplomb S, Bruyas A. Analysis of the benefit of salvage chemotherapy after progression on nivolumab in patients with squamous cell carcinoma of the head and neck. Oral Oncol. 2023;145:106533. doi: 10.1016/j.oraloncology.2023.106533. PubMed DOI
Gaughan EM, Horton BJ. Outcomes from cytotoxic chemotherapy following progression on immunotherapy in metastatic melanoma: An institutional Case-series. Front Oncol. 2022;12:855782. doi: 10.3389/fonc.2022.855782. PubMed DOI PMC
Abdelhamid MS, Wadan AS, Saad HA, El-Dakroury WA, Hageen AW, Mohammed DH, Mourad S, Mohammed OA, Abdel-Reheim MA, Doghish AS. Nanoparticle innovations in targeted cancer therapy: Advancements in Antibody-drug conjugates. Naunyn Schmiedebergs Arch Pharmacol. 2025;398:6369–6389. doi: 10.1007/s00210-024-03764-7. PubMed DOI