Cell death induced by novel fluorinated taxanes in drug-sensitive and drug-resistant cancer cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 CA103314-18A1
NCI NIH HHS - United States
R01 CA103314-16
NCI NIH HHS - United States
R01 CA103314-15
NCI NIH HHS - United States
R01 CA103314-19
NCI NIH HHS - United States
CA103314
NCI NIH HHS - United States
R01 CA103314
NCI NIH HHS - United States
R01 CA103314-17
NCI NIH HHS - United States
PubMed
20013348
PubMed Central
PMC2943971
DOI
10.1007/s10637-009-9368-8
Knihovny.cz E-zdroje
- MeSH
- buněčná smrt účinky léků MeSH
- buněčný cyklus účinky léků MeSH
- chemorezistence účinky léků MeSH
- cytochromy c metabolismus MeSH
- DNA nádorová metabolismus MeSH
- kaspasy metabolismus MeSH
- léky antitumorózní - screeningové testy MeSH
- lidé MeSH
- mitochondrie účinky léků metabolismus MeSH
- nádorové buněčné linie MeSH
- paclitaxel chemie farmakologie MeSH
- proliferace buněk účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- sloučeniny fluoru chemie farmakologie MeSH
- taxoidy chemie farmakologie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- cytochromy c MeSH
- DNA nádorová MeSH
- kaspasy MeSH
- paclitaxel MeSH
- reaktivní formy kyslíku MeSH
- sloučeniny fluoru MeSH
- taxoidy MeSH
The aim of this study is to compare the effects of new fluorinated taxanes SB-T-12851, SB-T-12852, SB-T-12853, and SB-T-12854 with those of the classical taxane paclitaxel and novel non-fluorinated taxane SB-T-1216 on cancer cells. Paclitaxel-sensitive MDA-MB-435 and paclitaxel-resistant NCI/ADR-RES human cancer cell lines were used. Cell growth and survival evaluation, colorimetric assessment of caspases activities, flow cytometric analyses of the cell cycle and the assessment of mitochondrial membrane potential, reactive oxygen species (ROS) and the release of cytochrome c from mitochondria were employed. Fluorinated taxanes have similar effects on cell growth and survival. For MDA-MB-435 cells, the C(50) of SB-T-12851, SB-T-12852, SB-T-12853 and SB-T-12854 was 3 nM, 4 nM, 3 nM and 5 nM, respectively. For NCI/ADR-RES cells, the C(50) of SB-T-12851, SB-T-12852, SB-T-12853, and SB-T-12854 was 20 nM, 20 nM, 10 nM and 10 nM, respectively. Selected fluorinated taxanes, SB-T-12853 and SB-T-12854, at the death-inducing concentrations (30 nM for MDA-MB-435 and 300 nM for NCI/ADR-RES) were shown to activate significantly caspase-3, caspase-9, caspase-2 and also slightly caspase-8. Cell death was associated with significant accumulation of cells in the G(2)/M phase. Cytochrome c was not released from mitochondria and other mitochondrial functions were not significantly impaired. The new fluorinated taxanes appear to use the same or similar mechanisms of cell death induction as compared with SB-T-1216 and paclitaxel. New fluorinated and non-fluorinated taxanes are more effective against drug-resistant cancer cells than paclitaxel. Therefore, new generation of taxanes, either non-fluorinated or fluorinated, are excellent candidates for further and detailed studies.
Zobrazit více v PubMed
Alexandre J, Hu Y, Lu W, Pelicano H, Huang P. Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Res. 2007;67:3512–3517. PubMed
Aoudjit F, Vuori K. Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene. 2001;20:4995–5004. PubMed
Bhalla KN. Microtubule-targeted anticancer agents and apoptosis. Oncogene. 2003;22:9075–9085. PubMed
Castedo M, Ferri K, Roumier T, Metivier D, Zamzami N, Kroemer G. Quantitation of mitochondrial alterations associated with apoptosis. J. Immunol. Methods. 2002;265:39–47. PubMed
Chien AJ, Moasser MM. Cellular resistance to antracyclines and taxanes in cancer: intrinsic and acquired. Semin. Oncol. 2008;35:S1–S14. PubMed
Choy H. Taxanes in combined modality therapy for solid tumors. Crit. Rev. Oncol. Hematol. 2001;37:237–247. PubMed
Ehrlichová M, Koc M, Truksa J, Naďová Z, Václavíková R, Kovář J. Cell death induced by taxanes in breast cancer cells: cytochrome c is released in resistant but not in sensitive cells. Anticancer Res. 2005a;25:4215–4224. PubMed
Ehrlichová M, Václavíková R, Ojima I, Pepe A, Kuznetsova LV, Chen J, Truksa J, Kovář J, Gut I. Transport and cytotoxicity of paclitaxel, docetaxel, and novel taxanes in human breast cancer cells. N-S Arch. Pharmacol. 2005b;372:95–105. PubMed
Ellison G, Klinowska T, Westwood RFR, Docter R, French T, Fox JC. Further evidence to support the melanocytic origin of MDA-MB-435. J. Clin. Pathol.: Mol. Pathol. 2002;55:294–299. PubMed PMC
Fan W. Possible mechanisms of paclitaxel-induced apoptosis. Biochem. Pharmacol. 1999;57:1215–1221. PubMed
Ferlini C, Ojima I, Distefano M, Gallo D, Riva A, Morazzoni P, Bombardelli E, Mancuso S, Scambia G. Second generation taxanes: from the natural framework to the challenge of drug resistance. Curr. Med. Chem. – Anti-Cancer Agents. 2003;3:133–138. PubMed
Fowler CA, Perks CM, Newcomb PV, Savage PB, Farndon JR, Holly JM. Insulin-like growth factor binding protein-3 (IGFBP-3) potentiates paclitaxel-induced apoptosis in human breast cancer cells. Int. J. Cancer. 2000;88:448–453. PubMed
Friedrich K, Wieder T, Von Haefen C, Radetzki S, Janicke R, Schulze-Osthoff K, Dorken B, Daniel PT. Overexpression of caspase-3 restores sensitivity for drug-induced apoptosis in breast cancer cell lines with acquired drug resistance. Oncogene. 2001;20:2749–2760. PubMed
Galleti E, Magnani M, Renzulli ML, Botta M. Paclitaxel and docetaxel resistance: Molecular mechanisms and development of new generation taxanes. Chem. Med. Chem. 2007;2:920–942. PubMed
Jordan MA, Ojima I, Rosas F, Distefano M, Wilson L, Scambia G, Ferlini C. Effects of novel taxanes SB-T-1213 and IDN5109 on tubulin polymerization and mitosis. Chem. Biol. 2002;9:93–101. PubMed
Koc M, Nad'ová Z, Truksa J, Ehrlichová M, Kovář J. Iron deprivation induces apoptosis via mitochondrial changes related to Bax translocation. Apoptosis. 2005;10:381–393. PubMed
Kottke TJ, Blajevski AL, Martins LM, Mesner PW, Jr, Davidson NE, Earnshaw WC, Armstrong DK, Kaufmann SH. Comparison of paclitaxel-, 5-fluoro-2´-deoxyuridine-, and epidermal growth factor (EGF)-induced apoptosis. Evidence for EGF-induced anokis. J. Biol. Chem. 1999;274:15927–15936. PubMed
Kovář J, Ehrlichová M, Šmejkalová B, Zanardi I, Ojima I. Comparison of cell death-inducing effect of novel taxane SB-T-1216 and paclitaxel in breast cancer cells. Anticancer Res. 2009 in press. PubMed PMC
Kovář J, Valenta T, Štýbrová H. Differing sensitivity of tumor cells to apoptosis induced by iron deprivation in vitro. In Vitro Cell Dev. Biol. Anim. 2001;37:450–458. PubMed
Lassus P, Optiz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science. 2002;297:1352–1354. PubMed
Liao PC, Tan SK, Lieu CH, Jung HK. Involvement of endoplasmic reticulum in paclitaxel-induced apoptosis. J. Cell. Biochem. 2008;104:1509–1523. PubMed
Mekhail TM, Markman M. Paclitaxel in cancer therapy. Expert Opin. Pharmacother. 2002;3:755–766. PubMed
Mhaidat NM, Wang Y, Kiejda KA, Zhang XD, Hersey P. Docetaxel-induced apoptosis in melanoma cells is dependent on activation of caspase-2. Mol. Cancer Ther. 2007;6:752–761. PubMed
Musílková J, Kovář J. Additive stimulatory effect of extracellular calcium and potassium on non-transferrin ferric iron uptake by HeLa and K562 cells. Biochim. Biophys. Acta. 2001;1514:117–126. PubMed
Ofir R, Seidman R, Rabinski T, Krup M, Yavelsky V, Weinstein Y, Wolfson M. Taxol-induced apoptosis in human SKOV3 ovarian and MCF7 breast carcinoma cells is caspase-3 and caspase-9 independent. Cell Death Differ. 2002;9:636–642. PubMed
Ojima I, Slater JC, Michaud E, Kuduk SD, Bounaud PY, Vrignaud P, Bissery MC, Veith JM, Pera P, Bernacki RJ. Syntheses and structure-activity relationships of the second-generation antitumor taxoids: exceptional activity against drug-resistant cancer cells. J. Med. Chem. 1996;39:3889–3896. PubMed
Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB. Mechanisms of taxol resistance related to microtubules. Oncogene. 2003;22:7280–7295. PubMed PMC
Park SJ, Wu CH, Gordon JD, Zhong X, Emami A, Safa AR. Taxol induces caspase-10-dependent apoptosis. J. Biol. Chem. 2004;279:51057–51067. PubMed
Pepe A, Kuznetsova L, Sun L, Ojima I. Fluoro-taxoid anticancer agents. In: Ojima I, editor. Fluorine in medical chemistry and chemical biology. Chichester: Wiley-Blackwell; 2009. pp. 117–139.
Razandi M, Pedram A, Levin ER. Plasma membrane estrogen receptors signal to antiapoptosis in breast cancer. Mol. Endocrinol. 2000;14:1434–1447. PubMed
Rowinsky EK. Paclitaxel pharmacology and other tumor types. Semin. Oncol. 1997;24:1–12. PubMed
Sackett D, Fojo T. Taxanes. Cancer Chemother. Biol. Response Modif. 1997;17:59–79. PubMed
Shi J, Orth JD, Mitchison T. Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Res. 2008;68:3269–3276. PubMed
Schiff PB, Horwitz SB. Taxol assembles tubulin in the absence of exogenous guanosine 5´-triphosphate or microtubule-associated proteins. Biochemistry. 1981;20:3247–3252. PubMed
Tuszynski JA, TrpiŠová B, Sept D, Brown JA. Selected physical issues in the structure and function of microtubules. J. Struct. Biol. 1997;118:94–106. PubMed
Von Haefen C, Wiedr T, Essmann F, Schulze-Osthoff K, Dörken B, Daniel PT. Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene. 2003;22:2236–2247. PubMed
Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971;93:2325–2327. PubMed
Wang H, Juany S, Shou J, Su EW, Onyia JE, Liao B, Li S. Comparative analysis and integrative classification of NCI60 cell lines and primary tumors using gene expression profiling data. BMC Genomics. 2006;7:166. PubMed PMC
Wang YF, Chen CY, Chung SF, Chiou YH, Lo HR. Involvement of oxidative stress and caspase activation in paclitaxel-induced apoptosis of primary effusion lymphoma cells. Cancer Chemother. Pharmacol. 2004;54:322–330. PubMed
Xiao H, Verdier-Pinard P, Fernandez-Fuentes N, Burd B, Angeletti R, Fiser A, Horwitz SB, Orr GA. Insights into the mechanism of microtubule stabilization by Taxol. Proc. Natl. Acad. Sci. USA. 2006;103:10166–10173. PubMed PMC
Zhivotovsky B, Orrenius S. Caspase-2 function in response to DNA damage. Biochem. Biophys. Res. Commun. 2005;331:859–867. PubMed
The Role of TRIP6, ABCC3 and CPS1 Expression in Resistance of Ovarian Cancer to Taxanes
The role of individual caspases in cell death induction by taxanes in breast cancer cells