The Feedback of Stress Phytohormones in Avena sativa (L.) on Soil Multi-Contamination

. 2025 Aug 16 ; 14 (16) : . [epub] 20250816

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40872177

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845 Ministry of Education, Youth and Sports; European Regional Development Fund Project
MZE-RO0425 Ministry of Agriculture

As chemical messengers, phytohormones can enhance the tolerance of plants to stress caused by toxic elements (TEs) such as cadmium (Cd), lead (Pb), and zinc (Zn). This study investigated the combined toxicity of Cd, Pb, and Zn, and its impact on stress phytohormones (jasmonates, salicylic acid, and abscisic acid), in oat (Avena sativa L.) using anthropogenically contaminated soil in a 4-week pot experiment. The uptake of TEs by the roots increased in the multi-contaminated soil, while Zn was the only TE to be translocated to the leaves. The toxic effect of the TEs was assessed in terms of plant growth, revealing a decline in leaf dry biomass, whereas the impact on the roots was insignificant. These findings align with the levels of stress phytohormones. An increase in bioactive forms of stress phytohormones in leaves due to TEs indicates TE toxicity and leaf sensitivity. Conversely, low levels of these phytohormones, along with crosstalk between them, suggest reduced defense against TEs in the roots. The abundance of stress phytohormones declined in the following order: salicylic acid > jasmonates > abscisic acid. These results help to understand the mechanism by which plants respond to TEs, particularly their combined toxicity.

Zobrazit více v PubMed

Hou D., Jia X., Wang L., McGrath S.P., Zhu Y.-H., Hu Q., Zhao F.-J., Bank M.S., O’Connor D., Nriagu J. Global soil pollution by toxic metals threatens agriculture and human health. Science. 2025;388:316–321. doi: 10.1126/science.adr5214. PubMed DOI

Wang H., Yu S., Sun L., Wang Y., Wu H., Wang X. Pollution assessment and health risk of metals in surface soil near a Pb–Zn mine, northeast China. Front. Environ. Sci. 2025;13:1585272. doi: 10.3389/fenvs.2025.1585272. DOI

Vaněk A., Ettler V., Grygar T., Borůvka L., Šebek O., Drábek O. Combined chemical and mineralogical evidence for heavy metal binding in mining- and smelting-affected alluvial soils. Pedosphere. 2008;18:464–478. doi: 10.1016/S1002-0160(08)60037-5. DOI

Hajam A.H., Ali M.S., Singh S.K., Bashri G. Understanding cytokinin: Biosynthesis, signal transduction, growth regulation, and phytohormonal crosstalk under heavy metal stress. Environ. Exp. Bot. 2024;228:106025. doi: 10.1016/j.envexpbot.2024.106025. DOI

Zemanová V., Lhotská M., Novák M., Hnilička F., Popov M., Pavlíková D. Multicontamination toxicity evaluation in the model plant Lactuca sativa L. Plants. 2024;13:1356. doi: 10.3390/plants13101356. PubMed DOI PMC

Pavlíková D., Zemanová V., Pavlík M., Lhotská M., Kubeš J., Novák M., Dobrev P.I., Motyka V. Phytohormone and amino acid changes in cherry radish as metabolic adaptive response to arsenic single and multi-contamination. Biomolecules. 2025;15:390. doi: 10.3390/biom15030390. PubMed DOI PMC

Liu J., He H., Vitali M., Visentin I., Charnikhova T., Haider I., Schubert A., Ruyter-Spira C., Bouwmeester H.J., Lovisolo C., et al. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: Exploring the interaction between strigolactones and ABA under abiotic stress. Planta. 2015;241:1435–1451. doi: 10.1007/s00425-015-2266-8. PubMed DOI

Ronzana M., Piacentinia D., Fattorinia L., Della Roverea F., Eicheb E., Riemannc M., Altamuraa M.M., Falasca G. Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin. Environ. Exp. Bot. 2018;151:64–75. doi: 10.1016/j.envexpbot.2018.04.008. DOI

Jamla M., Khare T., Joshi S., Patil S., Penna S., Kumar V. Omics approaches for understanding HMs responses and tolerance in plants. Curr. Plant Biol. 2021;27:100213. doi: 10.1016/j.cpb.2021.100213. DOI

Sytar O., Ghosh S., Malinska H., Zivcak M., Brestic M. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiol. Plant. 2021;173:148–166. doi: 10.1111/ppl.13285. PubMed DOI

Urano K., Maruyama K., Jikumaru Y., Kamiya Y., Yamaguchi-Shinozaki K., Shinozaki K. Analysis of plant hormone profiles in response to moderate dehydration stress. Plant J. 2017;90:17–36. doi: 10.1111/tpj.13460. PubMed DOI

Emamverdian A., Ding Y., Mokhberdoran F. The role of salicylic acid and gibberellin signaling in plant responses to abiotic stress with an emphasis on heavy metals. Plant Signal. Behav. 2020;15:1777372. doi: 10.1080/15592324.2020.1777372. PubMed DOI PMC

Sharma A., Sidhu G.P.S., Araniti F., Bali A.S., Shahzad B., Tripathi D.K., Brestic M., Skalicky M., Landi M. The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules. 2020;25:540. doi: 10.3390/molecules25030540. PubMed DOI PMC

Ali E., Hussain S., Jalal F., Khan M.A., Imtiaz M., Said F., Ismail M., Khan S., Ali H.M., Hatamleh A.A., et al. Salicylic acid-mitigates abiotic stress tolerance via altering defense mechanisms in Brassica napus (L.) Front. Plant Sci. 2023;14:1187260. doi: 10.3389/fpls.2023.1187260. PubMed DOI PMC

Torun H., Cetin B., Stojnic S., Petrík P. Salicylic acid alleviates the effects of cadmium and drought stress by regulating water status, ions, and antioxidant defense in Pterocarya fraxinifolia. Front. Plant Sci. 2024;14:1339201. doi: 10.3389/fpls.2023.1339201. PubMed DOI PMC

Li Q., Guan C., Zhao Y., Duan X., Yang Z., Zhu J. Salicylic acid alleviates Zn-induced inhibition of growth via enhancing antioxidant system and glutathione metabolism in alfalfa. Ecotoxicol. Environ. Saf. 2023;265:115500. doi: 10.1016/j.ecoenv.2023.115500. PubMed DOI

Rahman S.U., Li Y., Hussain S., Hussain B., Khan W.-U.-D., Riaz L., Ashraf M.N., Khaliq M.A., Du Z., Cheng H. Role of phytohormones in heavy metal tolerance in plants: A review. Ecol. Indic. 2023;146:109844. doi: 10.1016/j.ecolind.2022.109844. DOI

Bilal S., Saad Jan S., Shahid M., Asaf S., Khan A.L., Lubna, Al-Rawahi A., Lee I.-J., AL-Harrasi A. Novel insights into exogenous phytohormones: Central regulators in the modulation of physiological, biochemical, and molecular responses in rice under metal(loid) stress. Metabolites. 2023;13:1036. doi: 10.3390/metabo13101036. PubMed DOI PMC

Ndecky S., Malherbe L., Villette C., Chalvon V., Meusnier I., Beltran-Valencia D., Baumberger N., Riemann M., Kroj T., Champion A., et al. Rice JASMONIC ACID OXIDASES control resting jasmonate metabolism to promote growth and repress basal immune responses. Plant Physiol. 2025;198:kiaf161. doi: 10.1093/plphys/kiaf161. PubMed DOI PMC

Per T.S., Khan M.I.R., Anjum N.A., Masood A., Hussain S.J., Khan N.A. Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters. Environ. Exp. Bot. 2018;145:104–120. doi: 10.1016/j.envexpbot.2017.11.004. DOI

Chen X., Jiang W., Tong T., Chen G., Zeng F., Jang S., Gao W., Li Z., Mak M., Deng F., et al. Molecular interaction and evolution of jasmonate signaling with transport and detoxification of heavy metals and metalloids in plants. Front. Plant Sci. 2021;12:665842. doi: 10.3389/fpls.2021.665842. PubMed DOI PMC

Hu B., Deng F., Chen G., Chen X., Gao W., Long L., Xia L., Chen Z.-H. Evolution of Abscisic Acid Signaling for Stress Responses to Toxic Metals and Metalloids. Front. Plant Sci. 2020;11:909. doi: 10.3389/fpls.2020.00909. PubMed DOI PMC

Zhao Y., Wang J., Huang W., Zhang D., Wu J., Li B., Li M., Liu L., Yan M. Abscisic-acid-regulated responses to alleviate cadmium toxicity in plants. Plants. 2023;12:1023. doi: 10.3390/plants12051023. PubMed DOI PMC

Leng Y., Li Y., Ma Y.-H., He L.-F., Li S.-W. Abscisic acid modulates differential physiological and biochemical responses of roots, stems, and leaves in mung bean seedlings to cadmium stress. Environ. Sci. Pollut. Res. 2020;28:6030–6043. doi: 10.1007/s11356-020-10843-8. PubMed DOI

Cobbett C., Goldsbrough P. Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 2002;53:159–182. doi: 10.1146/annurev.arplant.53.100301.135154. PubMed DOI

Kim T.-H., Böhmer M., Hu H., Nishimura N., Schroeder J.I. Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu. Rev. Plant Biol. 2010;61:561–591. doi: 10.1146/annurev-arplant-042809-112226. PubMed DOI PMC

Kumar S., Shah S.H., Vimala Y., Jatav H.S., Ahmad P., Chen Y., Siddique K.H.M. Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. Front. Plant Sci. 2022;13:972856. doi: 10.3389/fpls.2022.972856. PubMed DOI PMC

Singh A., Roychoudhury A. Abscisic acid in plants under abiotic stress: Crosstalk with major phytohormones. Plant Cell Rep. 2023;42:961–974. doi: 10.1007/s00299-023-03013-w. PubMed DOI

Wani A.B., Chadar H., Wani A.H., Singh S., Upadhyay N. Salicylic acid to decrease plant stress. Environ. Chem. Lett. 2017;15:101–123. doi: 10.1007/s10311-016-0584-0. DOI

Orroño D.I., Schindler V., Lavado R.S. Heavy metal availability in Pelargonium hortorum rhizosphere: Interactions, uptake and plant accumulation. J. Plant Nutr. 2012;35:1374–1386. doi: 10.1080/01904167.2012.684129. DOI

Fahr M., Laplaze L., Bendaou N., Hocher V., El Mzibri M., Bogusz D., Smouni A. Effect of lead on root growth. Front. Plant Sci. 2013;4:175. doi: 10.3389/fpls.2013.00175. PubMed DOI PMC

Jatav P.K., Verma R., Kothari S.L., Jain R., Kachhwaha S. Relative morpho-physiological responses of millets and oats against lead toxicity. Environ. Exp. Bot. 2021;192:104658. doi: 10.1016/j.envexpbot.2021.104658. DOI

Piršelová B., Galuščáková Ľ., Lengyelová L., Kubová V., Matúšová R., Bojnanská K., Havrlentová M. Phytoremediation potential of oat (Avena sativa L.) in soils contaminated with cadmium. Agron. Res. 2024;22:227–237.

Dogan M., Karatas M., Aasim M. Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: A laboratory study. Ecotoxicol. Environ. Saf. 2018;148:431–440. doi: 10.1016/j.ecoenv.2017.10.058. PubMed DOI

Gill S.S., Khan N.A., Tuteja N. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.) Plant Sci. 2012;182:112–120. doi: 10.1016/j.plantsci.2011.04.018. PubMed DOI

Perfus-Barbeoch L., Leonhardt N., Vavasseur A., Forestier C. Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 2002;32:539–548. doi: 10.1046/j.1365-313X.2002.01442.x. PubMed DOI

Xu Z.J., Qu J.Y., Zhao M., Zhao J., Wang W.C., Huang J.J., Peng J.S., Xiao Y.H., Han Y.L., Peng Y., et al. Nitrogen utilization in response to cadmium and abscisic acid in rice. Plant Soil. 2025 doi: 10.1007/s11104-025-07596-z. DOI

Marschner P. Marschner’s Mineral Nutrition of Higher Plants. 3rd ed. Academic Press; London, UK: 2012.

Rehman M.Z.U., Rizwan M., Ali S., Sabir M., Sohail M.I. Contrasting effects of organic and inorganic amendments on reducing lead toxicity in wheat. Bull. Environ. Contam. Toxicol. 2017;99:642–647. doi: 10.1007/s00128-017-2177-4. PubMed DOI

Howladar S.M., Al-Robai S.A., Al-Zahrani F.S., Howladar M.M., Aldhebiani A.Y. Silicon and its application method effects on modulation of cadmium stress responses in Triticum aestivum (L.) through improving the antioxidative defense system and polyamine gene expression. Ecotoxicol. Environ. Saf. 2018;159:143–152. doi: 10.1016/j.ecoenv.2018.05.004. PubMed DOI

Chaturvedi R., Favas P.J.C., Pratas J., Varun M., Paul M.S. Metal(loid) induced toxicity and defense mechanisms in Spinacia oleracea L. Ecological hazard and prospects for phytoremediation. Ecotox. Environ. Saf. 2019;183:109570. doi: 10.1016/j.ecoenv.2019.109570. PubMed DOI

Rashid A., Schutte B.J., Ulery A., Deyholos M.K., Sanogo S., Lehnhoff E.A., Beck L. Heavy metal contamination in agricultural soil: Environmental pollutants affecting crop health. Agronomy. 2023;13:1521. doi: 10.3390/agronomy13061521. DOI

Novák M., Zemanová V., Černý J., Pavlíková D. Roots of Lupinus angustifolius L. and enzyme activities in soil contaminated by toxic elements. Plant Soil Environ. 2024;70:552–561. doi: 10.17221/194/2024-PSE. DOI

Zemanová V., Pavlíková D., Dobrev P.I., Motyka V., Pavlík M. Endogenous phytohormone profiles in Pteris fern species differing in arsenic accumulating ability. Environ. Exp. Bot. 2019;166:103822. doi: 10.1016/j.envexpbot.2019.103822. DOI

Zheng Y., Wang X., Cui X., Wang K., Wang Y., He Y. Phytohormones regulate the abiotic stress: An overview of physiological, biochemical, and molecular responses in horticultural crops. Front. Plant Sci. 2023;13:1095363. doi: 10.3389/fpls.2022.1095363. PubMed DOI PMC

Dar T.A., Moinuddin Khan M.M.A., Hakeem K.R., Jaleel H. Jasmonates counter plant stress: A review. Environ. Exp. Bot. 2015;115:49–57. doi: 10.1016/j.envexpbot.2015.02.010. DOI

Kim H., Seomun S., Yoon Y., Jang G. Jasmonic acid in plant abiotic stress tolerance and interaction with abscisic acid. Agronomy. 2021;11:1886. doi: 10.3390/agronomy11091886. DOI

Zhang H., Liu Z., Li X., Liu X., Fang L., Zeng R., Wang Q., Song Y., Chen D. Jasmonic acid enhances rice cadmium tolerance by suppressing cadmium uptake and translocation. Plants. 2025;14:1068. doi: 10.3390/plants14071068. PubMed DOI PMC

Yang J.B., Wang H.Y., Huang J., Shan C.J., Yan J., Zhong C.W., Hu D., Zhang Q., Shen R.F., Zhu X.F., et al. Jasmonic acid improves cadmium tolerance in rice (Oryza sativa) by reducing the production of nitric oxide. Ecotox. Environ. Saf. 2025;290:117722. doi: 10.1016/j.ecoenv.2025.117722. PubMed DOI

Lei G.J., Sun L., Sun Y., Zhu X.F., Li G.X., Zheng S.J. Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. J. Integr. Plant Biol. 2020;62:218–227. doi: 10.1111/jipb.12801. PubMed DOI

Han G.Z. Evolution of jasmonate biosynthesis and signaling mechanisms. J. Exp. Bot. 2017;68:1323–1331. doi: 10.1093/jxb/erw470. PubMed DOI

Li N., Han X., Feng D., Yuan D., Huang L.H. Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: Do we understand what they are whispering? Int. J. Mol. Sci. 2019;20:671. doi: 10.3390/ijms20030671. PubMed DOI PMC

Wasternack C., Strnad M. Jasmonate signaling in plant stress responses and development—Active and inactive compounds. N. Biotechnol. 2016;33:604–613. doi: 10.1016/j.nbt.2015.11.001. PubMed DOI

Ruan J., Zhou Y., Zhou M., Yan J., Khurshid M., Weng W., Cheng J., Zhang K. Jasmonic acid signaling pathway in plants. Int. J. Mol. Sci. 2019;20:2479. doi: 10.3390/ijms20102479. PubMed DOI PMC

Verma V., Ravindran P., Kumar P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16:86. doi: 10.1186/s12870-016-0771-y. PubMed DOI PMC

Drzewiecka K., Mleczek M. Salicylic acid accumulation as a result of Cu, Zn, Cd and Pb interactions in common reed (Phragmites australis) growing in natural ecosystems. Acta Physiol. Plant. 2017;39:182. doi: 10.1007/s11738-017-2480-z. DOI

Freeman J.L., Persans M.W., Nieman K., Albrecht C., Peer W., Pickering I.J., Salt D.E. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell. 2004;16:2176–2191. doi: 10.1105/tpc.104.023036. PubMed DOI PMC

Wang H., Feng T., Peng X., Yan M., Tang X. Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicol. Environ. Saf. 2009;72:1354–1362. doi: 10.1016/j.ecoenv.2009.03.008. PubMed DOI

Agami R.A., Mohamed G.F. Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotox. Environ. Saf. 2013;94:164–171. doi: 10.1016/j.ecoenv.2013.04.013. PubMed DOI

Khalil R., Haroun S., Bassyoini F., Nagah A., Yusuf M. Salicylic acid in combination with kinetin or calcium ameliorates HMs stress in Phaseolus vulgaris plant. J. Agric. Food Res. 2021;5:100182.

Pál M., Szalai G., Horváth E., Janda T., Páldi E. Effect of salicylic acid during heavy metal stress. Acta Biol. Szeged. 2002;46:119–120.

Szalai G., Janda T. Induction of abiotic stress tolerance by salicylic acid signaling. J. Plant Growth Regul. 2007;26:290–300. doi: 10.1007/s00344-007-9017-4. DOI

Jumali S.S., Said I.M., Ismail I., Zainal Z. Genes induced by high concentration of salicylic acid in Mitragyna speciosa. Aust. J. Crop. Sci. 2011;5:296–303.

Mishra A.K., Baek K.-H. Salicylic acid biosynthesis and metabolism: A divergent pathway for plants and bacteria. Biomolecules. 2021;11:705. doi: 10.3390/biom11050705. PubMed DOI PMC

Li J., Fan H., Song Q., Jing L., Yu H., Li R., Zhang P., Liu F., Li W., Sun L., et al. Physiological and molecular bases of the boron deficiency response in tomatoes. Hortic. Res. 2023;10:uhad229. doi: 10.1093/hr/uhad229. PubMed DOI PMC

Qiu G., Han Z., Wang Q., Wang T., Sun Z., Yu Y., Han X., Yu H. Toxicity effects of nanoplastics on soybean (Glycine max L.): Mechanisms and transcriptomic analysis. Chemosphere. 2023;313:137571. doi: 10.1016/j.chemosphere.2022.137571. PubMed DOI

Saini S., Kaur N., Pati P.K. Phytohormones: Key players in the modulation of heavy metal stress tolerance in plants. Ecotoxic. Environ. Saf. 2021;223:112578. doi: 10.1016/j.ecoenv.2021.112578. PubMed DOI

Lim J., Lim C.W., Lee S.C. Core components of abscisic acid signaling and their post-translational modification. Front. Plant Sci. 2022;13:895698. doi: 10.3389/fpls.2022.895698. PubMed DOI PMC

Long H., Zheng Z., Zhang Y., Xing P., Wan X., Zheng Y., Li L. An abscisic acid (ABA) homeostasis regulated by its production, catabolism and transport in peanut leaves in response to drought stress. PLoS ONE. 2019;14:e0213963. doi: 10.1371/journal.pone.0213963. PubMed DOI PMC

Nambara E., Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 2005;56:165–185. doi: 10.1146/annurev.arplant.56.032604.144046. PubMed DOI

Vishwakarma K., Upadhyay N., Kumar N., Yadav G., Singh J., Mishra R.K., Kumar V., Verma R., Upadhyay R.G., Pandey M., et al. Abscisic acid sgnaling and abiotic stress tolerance in plants. Front. Plant Sci. 2017;8:161. doi: 10.3389/fpls.2017.00161. PubMed DOI PMC

Chen K., Li G.J., Bressan R.A., Song C.P., Zhu J.K., Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 2020;62:25–54. doi: 10.1111/jipb.12899. PubMed DOI

Liu Y., Chen S., Wei P., Guo S., Wu J. A briefly overview of the research progress for the abscisic acid analogues. Front. Chem. 2022;10:967404. doi: 10.3389/fchem.2022.967404. PubMed DOI PMC

Weng J.K., Ye M., Li B., Noel J.P. Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell. 2016;166:881–893. doi: 10.1016/j.cell.2016.06.027. PubMed DOI

Czech Ministry of the Environment . Public Notice No. 153/2016 for the Management of Soil Protection. Czech Ministry of the Environment; Prague, Czech Republic: 2016.

Šichorová K., Tlustoš P., Száková J., Kořínek K., Balík J. Horizontal and vertical variability of heavy metals in the soil of a polluted area. Plant Soil Environ. 2004;50:525–534. doi: 10.17221/4069-PSE. DOI

Pavlíková D., Zemanová V., Pavlík M. Health risk and quality assessment of vegetables cultivated on soils from a heavily polluted old mining area. Toxics. 2023;11:583. doi: 10.3390/toxics11070583. PubMed DOI PMC

Přerostová S., Dobrev P.I., Knirsch V., Jarošová J., Gaudinová A., Zupková B., Prášil I.T., Janda T., Brzobohatý B., Skalák J. Light quality and intensity modulate cold acclimation in Arabidopsis. Int. J. Mol. Sci. 2021;22:2736. doi: 10.3390/ijms22052736. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...