Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants
Jazyk angličtina Země Dánsko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
EPPN-Sk 313011T813
"Optimization of phenotyping methods: Building a national phenotyping platform"
PubMed
33219524
DOI
10.1111/ppl.13285
Knihovny.cz E-zdroje
- MeSH
- biodegradace MeSH
- látky znečišťující půdu * MeSH
- rostliny genetika MeSH
- těžké kovy * MeSH
- vakuoly MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- látky znečišťující půdu * MeSH
- těžké kovy * MeSH
Most of the heavy metals (HMs), and metals/metalloids are released into the nature either by natural phenomenon or anthropogenic activities. Being sessile organisms, plants are constantly exposed to HMs in the environment. The metal non-hyperaccumulating plants are susceptible to excess metal concentrations. They tend to sequester metals in their root vacuoles by forming complexes with metal ligands, as a detoxification strategy. In contrast, the metal-hyperaccumulating plants have adaptive intrinsic regulatory mechanisms to hyperaccumulate or sequester excess amounts of HMs into their above-ground tissues rather than accumulating them in roots. They have unique abilities to successfully carry out normal physiological functions without showing any visible stress symptoms unlike metal non-hyperaccumulators. The unique abilities of accumulating excess metals in hyperaccumulators partly owes to constitutive overexpression of metal transporters and ability to quickly translocate HMs from root to shoot. Various metal ligands also play key roles in metal hyperaccumulating plants. These metal hyperaccumulating plants can be used in metal contaminated sites to clean-up soils. Exploiting the knowledge of natural populations of metal hyperaccumulators complemented with cutting-edge biotechnological tools can be useful in the future. The present review highlights the recent developments in physiological and molecular mechanisms of metal accumulation of hyperaccumulator plants in the lights of metal ligands and transporters. The contrasting mechanisms of metal accumulation between hyperaccumulators and non-hyperaccumulators are thoroughly compared. Moreover, uses of different metal hyperaccumulators for phytoremediation purposes are also discussed in detail.
Department of Biology Jan Evangelista Purkyne University Usti nad Labem Czech Republic
Department of Botany University of Kalyani Kalyani Nadia 741235 India
Department of Plant Physiology Slovak University of Agriculture Nitra Slovakia
Zobrazit více v PubMed
Abedin, M.J., Feldmann, J. & Meharg, A.A. (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiology, 128, 1120-1128.
Alfenito, M.R., Souer, E., Goodman, C.D., Buell, R., Mol, J., Koes, R., et al. (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell, 10, 1135-1149.
Ali, H., Khan, E. & Ilahi, I. (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 4, 1-14.
Alvarez-Fernández, A., Díaz-Benito, P., Abadía, A., López-Millán, A.F. & Abadía, J. (2014) Metal species involved in long distance metal transport in plants. Frontiers in Plant Science, 5, 105.
Amin, H., Arain, B.A., Amin, F. & Surhio, M.A. (2014) Analysis of growth response and tolerance index of Glycine max (L.) Merr. under hexavalent chromium stress. Advancements in Life Sciences, 1, 231-241.
Aransiola, S.A., Ijah, U.J.J. & Abioye, O.P. (2013) Phytoremediation of lead polluted soil by Glycine max L. Applied and Environmental Soil Science, 2013, 1-7.
Ariyakanon, N. & Winaipanich, B. (2006) Phytoremediation of copper contaminated soil by Brassica juncea (L.) Czern and Bidens alba (L.) DC. var. radiata. Journal of Scientific Research, Chulalongkorn University, 31, 49-56.
Asemaneh, T., Ghaderian, S.M., Crawford, S.A., Marshall, A.T. & Baker, A.J.M. (2006) Cellular and subcellular compartmentation of Ni in the Eurasian serpentine plants Alyssum bracteatum, Alyssum murale (Brassicaceae) and Cleome heratensis (Capparaceae). Planta, 225, 193-290.
Assunção, A., Martins, P.D.C., De Folter, S., Vooijs, R., Schat, H. & Aarts, M. (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell & Environment, 24, 217-226.
Assuncão, A.G.L., Herrero, E., Lin, Y.-F., Huettel, B., Talukdar, S., Smaczniak, C., et al. (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America, 107, 10296-10301.
Axelsen, K.B. & Palmgren, M.G. (1998) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiology, 126, 696-706.
Baker, A.J.M. (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643-654.
Baker, A.J.M., McGrath, S.P., Sidoli, C.M.D. & Reeves, R.D. (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling, 11, 41-49.
Barberon, M., Berthomieu, P., Clairotte, M., Shibagaki, N., Davidian, J.C. & Gosti, F. (2008) Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1;1 and SULTR1;2. The New Phytologist, 180, 608-619.
Becher, M., Talke, I.N., Krall, L. & Krämer, U. (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. The Plant Journal, 37, 251-268.
Bhatia, N.P., Walsh, K.B. & Baker, A.J. (2005) Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii bailey. Journal of Experimental Botany, 56, 1343-1349.
Bhattacharya, S., Gupta, K., Debnath, S., Ghosh, U.C., Chattopadhyay, D.J. & Mukhopadhyay, A. (2012) Arsenic bioaccumulation in rice and edible plants and subsequent transmission through food chain in Bengal basin: a review of the perspectives for environmental health. Toxicological & Environmental Chemistry, 94, 429-441.
Bidwell, S.D. (2001) Hyperaccumulation of metals in Australian native plants. PhD thesis, The University of Melbourne, Australia.
Bidwell, S.D., Crawford, S.A., Woodrow, I.E., Sommer-Knudsen, J. & Marshall, A.T. (2004) Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell. Plant, Cell & Environment, 27, 705-716.
Bienert, G.P., Thorsen, M., Schüssler, M.D., Nilsson, H.R., Wagner, A., Tamás, M.J., et al. (2008) A subgroup of plant aquaporins facilitate the bidirectional diffusion of as(OH)3 and Sb(OH)3 across membranes. BMC Biology, 6, 26.
Brooks, R.R. (1998) Plants those hyperaccumulate heavy metals. Wallingford: CAB International, p. 380.
Buchweitz, M., Guidi, G., Carle, R., Kammerer, D.R. & Schulz, H. (2012) Systematic investigations of anthocyanin-metal interactions by Raman spectroscopy. Journal of Raman Specroscopy, 43, 2001-2007.
Cabannes, E., Buchner, P., Broadley, M.R. & Hawkesford, M.J. (2011) A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus species. Plant Physiology, 157, 2227-2239.
Callahan, D.L., Baker, A.J.M., Kolev, S.D. & Wedd, A.G. (2006) Metal ion ligands in hyperaccumulating plants. Journal of Biological Inorganic Chemistry, 11, 2-12.
Callahan, D.L., Kolev, S.D., O'Hair, R.A., Salt, D.E. & Baker, A.J. (2007) Relationships of nicotianamine and other amino acids with nickel, zinc and iron in Thlaspi hyperaccumulators. The New Phytologist, 176, 836-848.
Callahan, D.L., Roessner, U., Dumontet, V., Perrier, N., Wedd, A.G., O'Hair, R.A., et al. (2008) LC-MS and GC-MS metabolite profiling of nickel (II) complexes in the latex of the nickel hyperaccumulating tree Sebertia acuminata and identification of methylated aldaric acid as a new nickel (II) ligand. Phytochemistry, 69, 240-251.
Caporale, A.G. & Violante, A. (2016) Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Current Pollution Reports, 2, 15-27.
Catarecha, P., Segura, M.D., Franco-Zorrilla, J.M., García-Ponce, B., Lanza, M., Solano, R., et al. (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell, 19, 1123-1133.
Chen, Y., Fu, J.W., Han, Y.H., Rathinasabapathi, B. & Ma, L.Q. (2016) High as exposure induced substantial arsenite efflux in as-hyperaccumulator Pteris vittata. Chemosphere, 144, 2189-2194.
Chen, Y., Xu, W., Shen, H., Yan, H., Xu, W., He, Z., et al. (2013) Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environmental Science & Technology, 47, 9355-9362.
Chirakkara, R.A. & Reddy, K.R. (2015) Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils. Ecological Engineering, 85, 265-274. https://doi.org/10.1016/j.ecoleng.2015.09.029.
Clemens, S. (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88, 1707-1719.
Clemens, S. (2017) How metal hyperaccumulating plants can advance Zn biofortification. Plant and Soil, 411, 111-120.
Courbot, M., Willems, G., Motte, P., Arvidsson, S., Roosens, N., Saumitou-Laprade, P., et al. (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiology, 144, 1052-1065.
Cracium, A.R., Courbot, M., Bourgis, F., Salis, P., Saumitou-Laprade, P. & Verbruggen, N. (2006) Comparative cDNA-AFLP analysis of cd-tolerant and sensitive genotypes derived from crosses between the cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata spp. petraea. Journal of Experimental Botany, 57, 2967-2983.
DalCorso, G., Fasani, E., Manara, A., Visioli, G. & Furini, A. (2019) Heavy metal pollutions: state of the art and innovation in phytoremediation. International Journal of Molecular Sciences, 20, 3412.
Danh, L.T., Truong, P., Mammucari, R. & Foster, N. (2014) A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata. International Journal of Phytoremediation, 16, 429-453.
De Andrade, M.G., Melo, V.D., Gabardo, J., Souza, L.C.D. & Reissmann, C.B. (2009) Heavy metals in soils of a lead mining and metallurgy area. I - Phytoextraction. Revista Brasileira de Ciencia do Solo, 33, 1879-1888.
De la Torre, V.S.G., Majorel-Loulergue, C., Gonzalez, D.A., Soubigou-Taconnat, L., Rigaill, G.J., Pillon, Y., et al. (2018) Wide cross-species RNA-Seq comparison reveals a highly conserved role for Ferroportins in nickel hyperaccumulation in plants. bioRxiv, 2018, 420729.
de Souza, L.A., de Andrade, S.A.L., de Souza, S.C.R. & Schiavinato, M.A. (2011) Tolerance and phytoremediation potential of Stizolobium aterrimum associated to the arbuscular mycorrhizal fungi Glomus etunicatum in lead-contaminated soil. Revista Brasileira de Ciência do Solo, 35, 1441-1451.
Deinlein, U., Weber, M., Schmidt, H., Rensch, S., Trampczynska, A., Hansen, T.H., et al. (2012) Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. Plant Cell, 24, 708-723.
Dhankher, O.P., Li, Y., Rosen, B., Shi, J., Salt, D., Senecoff, J.F., et al. (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nature Biotechnology, 20, 1140-1145.
Dhankher, O.P., Rosen, B.P., McKinney, E.C. & Meagher, R.B. (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proceedings of the National Academy of Sciences of the United States of America, 103, 5413-5418.
Dhiman, S.S., Zhao, X., Li, J., Kim, D., Kalia, V.C., Kim, I.W., et al. (2017) Metal accumulation by sunflower (Helianthus annuus L.) and the efficacy of its biomass in enzymatic saccharification. PLoS One, 12, e0175845.
Dräger, B.D., Desbrosses-Fonrouge, A.G., Krach, C., Chardonnens, A.N., Meyer, R.C., Saumitou-Laprade, P., et al. (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. The Plant Journal, 39, 425-439.
Duan, G.L., Zhu, Y.G., Tong, Y.P., Cai, C. & Kneer, R. (2005) Characterization of arsenate reductase in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator. Plant Physiology, 138, 461-469.
Durrett, T.P., Gassmann, W. & Rogers, E.E. (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiology, 144, 197-205.
Ebbs, S., Lau, I., Ahner, B. & Kochian, L.V. (2002) Phytochelatin synthesis is not responsible for cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J.& C. Presl). Planta, 214, 635-640.
El Mehdawi, A.F., Jiang, Y., Guignardi, Z.S., Esmat, A., Pilon, M., Pilon-Smits, E.A.H., et al. (2018) Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae. The New Phytologist, 217, 194-205.
Elbaz, B., Shoshani-Knaani, N., David-Assael, O., Mizrachy-Dagri, T., Mizrahi, K., Saul, H., et al. (2006) High expression in leaves of the zinc hyperaccumulator Arabidopsis halleri of AhMHX, a homolog of an Arabidopsis thaliana vacuolar metal/proton exchanger. Plant, Cell & Environment, 29, 1179-1190.
Elhabiri, M., Figueiredo, P., Toki, K., Saito, N. & Brouillard, R. (1997) Anthocyanin-aluminium and -gallium complexes in aqueous solution. Journal of the Chemical Society, Perkin Transactions, 2, 355-362.
Ellis, D.R., Gumaelius, L., Indriolo, E., Pickering, I.J., Banks, J.A. & Salt, D.E. (2006) A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiology, 141, 1544-1554.
Farooq, M.A., Islama, F., Ali, B., Najeeb, U., Maod, B., Gill, R.A., et al. (2016) Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism. Environmental and Experimental Botany, 132, 42-52.
Fasani, E., Manara, A., Martini, F., Furini, A. & DalCorso, G. (2018) The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant, Cell & Environment, 41, 1201-1232.
Fedenko, V.S., Shemet, S.A. & Landi, M. (2017) UV-vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: an overview of in vitro and in vivo techniques. Journal of Plant Physiology, 212, 13-28.
Filatov, V., Dowdle, J., Smirnoff, N., Ford-Lloyd, B., Newbury, H.J. & Macnair, M.M. (2006) Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation. Molecular Ecology, 15, 3045-3059.
Fordyce, F.M. (2012) Selenium deficiency and toxicity in the environment. In: Selinus, O. (Ed.) Essentials of medical geology, 3rd edition. Dordrecht: Springer, pp. 375-416.
Francesconi, K., Visoottiviseth, P., Sridokchan, W. & Goessler, W. (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Science of the Total Environment, 284, 27-35.
Freeman, J.L., Persans, M.W., Nieman, K., Albrecht, C., Peer, W., Pickering, I.J., et al. (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell, 16, 2176-2191.
Freeman, J.L. & Salt, D.E. (2007) The metal tolerance profile of Thlaspi goesingense is mimicked in Arabidopsis thaliana heterologously expressing serine acetyltransferase. BMC Plant Biology, 7, 63.
Freeman, J.L., Zhang, L.H., Marcus, M.A., Fakra, S., McGrath, S.P. & Pilon-Smits, E.A. (2006) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiology, 142, 124-134.
Frérot, H., Faucon, M.P., Willems, G., Godé, C., Courseaux, A., Darracq, A., et al. (2010) Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTLx environment interactions. The New Phytologist, 187, 355-367.
Friedlová, M. (2010) The influence of heavy metals on soil biological and chemical properties. Soil & Water Research, 5, 21-27.
Gayatri, N., Ram Sailesh, A. & Srinivas, N. (2019) Phytoremediation potential of Brassica juncea for removal of selected heavy metals in urban soil amended with cow dung. Journal of Materials and Environmental Science, 10, 463-469.
Gendre, D., Czernic, P., Conéjéro, G., Pianelli, K., Briat, J.F., Lebrun, M., et al. (2006) TcYSL3, a member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. The Plant Journal, 49, 1-15.
Gigolashvili, T. & Kopriva, S. (2014) Transporters in plant sulfur metabolism. Frontiers in Plant Science, 5, 442.
Goswami, S. & Das, S. (2015) A study on cadmium phytoremediation potential of Indian mustard, Brassica juncea. International Journal of Phytoremediation, 17, 583-588.
Guo, W.J., Meetam, M. & Goldsbrough, P.B. (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiology, 146, 1697-1706.
Gupta, D.K., Srivastava, S., Huang, H.G., Romero-Puertas, M.C. & Sandalio, L.M. (2011) In: Sherameti, I. & Varma, A. (Eds.) “Arsenic tolerance and detoxification mechanisms in plants” detoxification of heavy metals, soil biology, Vol. 30. Berlin; Heidelberg: Springer-Verlag, pp. 169-179.
Gustin, J.L., Loureiro, M.E., Kim, D., Na, G., Tikhonova, M. & Salt, D.E. (2009) MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn hyperaccumulating plants. The Plant Journal, 57, 1116-1127.
Hale, K.L., McGrath, S.P., Lombi, E., Stack, S.M., Terry, N., Pickering, I.J., et al. (2001) Molybdenum sequestration in Brassica: a role for anthocyanins? Plant Physiology, 126, 1391-1402.
Hale, K.L., Tufan, H.A., Pickering, I.J., George, G.N., Terry, N., Pilon, M., et al. (2002) Anthocyanins facilitate tungsten accumulation in Brassica. Plant Physiology, 116, 351-358.
Hammond, J.P., Bowen, H.C., White, P.J., Mills, V., Pyke, K.A., Baker, A.J., et al. (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. The New Phytologist, 170, 239-260.
Hanikenne, M., Talke, I.N., Haydon, M.J., Lanz, C., Nolte, A., Motte, P., et al. (2008) Evolution of metal hyperaccumulation required cis regulatory changes and triplication of HMA4. Nature, 453, 391-395.
Hasan, M., Uddin, N., Ara-Sharmeen, I., Alharby, H.F., Alzahrani, Y., Rehman Hakeem, K., et al. (2019) Assisting phytoremediation of heavy metals using chemical amendments. Plants (Basel), 8, 295.
Hassinen, V.H., Tervahauta, A.I., Halimaa, P., Plessl, S., Peräniemi, H., Aarts, M.G.M., et al. (2007) Isolation of Zn-responsive genes from two accessions of the hyperaccumulator plant Thlaspi caerulescens. Planta, 225, 977-989.
Hauptvogl, M., Kotrla, M., Prčík, M., Pauková, Ž., Kováčik, M. & Lošák, T. (2020) Phytoremediation potential of fast-growing energy plants: challenges and perspectives - a review. Polish Journal of Environmental Studies, 29, 505-516.
Haydon, M.J. & Cobbett, C.S. (2007) Transporters of ligands for essential metal ions in plants. The New Phytologist, 174, 499-450.
He, Z., Yan, H., Chen, Y., Shen, H., Xu, W., Zhang, H., et al. (2016) An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. The New Phytologist, 209, 746-761.
Hernandez-Allica, J., Garbisu, C., Becerril, J.M., Barrutia, O., Garcia-Plazaola, J.I., Zhao, F.J., et al. (2006) Synthesis of low molecular weight thiols in response to cd exposure in Thaspi caerulescens. Plant, Cell & Environment, 29, 1422-1429.
Herren, T. & Feller, U. (1994) Transfer of zinc from xylem to phloem in the peduncle of wheat. Journal of Plant Nutrition, 17, 1587-1598.
Hörger, A.C., Fones, H.N. & Preston, G.M. (2013) The current status of the elemental defense hypothesis in relation to pathogens. Frontiers in Plant Science, 4, 395.
Huang, J.W., Poynton, C.Y., Kochian, L.V. & Elless, M.P. (2004) Phytofiltration of arsenic from drinking water using arsenic-hyperaccumulating ferns. Environmental Science & Technology, 38, 3412-3417.
Huang, Z.C., Chen, T.B., Lei, M., Liu, Y.R. & Hu, T.D. (2008) Difference of toxicity and accumulation of methylated and inorganic arsenic in arsenic-hyperaccumulating and -hypertolerant plants. Environmental Science & Technology, 42, 5106-5111.
Hunter, F. (2015) Essentially deadly: living with toxic elements. EMBO Reports, 16, 1605-1608.
Hussain, D., Haydon, M.J., Wang, Y., Wong, E., Sherson, S.M., Young, J., et al. (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell, 16, 1327-1339.
Indriolo, E., Na, G., Ellis, D., Salt, D.E. & Banks, J.A. (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell, 22, 2045-2205.
Ingle, R.A., Mugford, S.T., Rees, J.D., Campbell, M.M. & Smith, J.A.C. (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell, 17, 2089-2106.
Jack, E., Hakvoort, H.W.J., Reumer, A., Verkleij, J.A.C., Schat, H. & Ernst, W.H.O. (2007) Real-time PCR analysis of metallothionein-2b expression in metallicolous and nonmetallicolous populations of Silene vulgaris (Moench) Garcke. Environmental and Experimental Botany, 59, 84-91.
Jaffré, T., Reeves, R.D., Baker, A.J., Schat, H. & van der Ent, A. (2018) The discovery of nickel hyperaccumulation in the new Caledonian tree Pycnandra acuminata 40 years on: an introduction to a virtual issue. The New Phytologist, 218, 397-400.
Kar, S., Das, S., Jean, J.S., Chakraborty, S. & Liu, C.C. (2013) Arsenic in the water-soil-plant system and the potential health risks in the coastal part of Chianan plain, southwestern Taiwan. Journal of Asian Earth Sciences, 77, 295-302.
Karimi, N. (2013) Comparative phytoremediation of chromium-contaminated soils by alfalfa (Medicago sativa) and Sorghum bicolor (L) Moench. International Journal of Scientific Research in Environmental Science, 1, 44-49.
Karimi, N., Ghaderian, S.M., Raab, A., Feldmann, J. & Meharg, A.A. (2009) An arsenic-accumulating, hypertolerant brassica, Isatis cappadocica. The New Phytologist, 184, 41-47.
Karimi, N., Siyahat Shayesteh, L., Ghasmpour, H. & Alavi, M. (2013) Effects of arsenic on growth, photosynthetic activity and accumulation in two new hyperaccumulating populations of Isatis cappadocica Desv. Journal of Plant Growth Regulation, 32, 823-830.
Karimi, N. & Souri, Z. (2015) Effect of phosphorus on arsenic accumulation and detoxification in arsenic hyperaccumulator, Isatis cappadocica. J. Plant Growth Regulation, 34, 88-95.
Kassis, E.E., Cathala, N., Rouached, H., Fourcroy, P., Berthomieu, P., Terry, N., et al. (2007) Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiology, 143, 1231-1241.
Kataoka, T., Hayashi, N., Yamaya, T. & Takahashi, H. (2004) Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low affinity sulfate transport system in the root vasculature. Plant Physiology, 4, 4198-4204.
Katsuhara, M., Sasano, S., Horie, T., Matsumoto, T., Rhee, J. & Shibasaka, M. (2014) Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnology, 31, 213-219.
Kerkeb, L. & Krämer, U. (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiology, 131, 716-724.
Kim, D., Gustin, J.L., Lahner, B., Persans, M.W., Baek, D., Yun, D.J., et al. (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. The Plant Journal, 39, 237-251.
Korshunova, Y.O., Eide, D., Clark, W.G., Guerinot, M.L. & Pakrasi, H.B. (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Molecular Biology, 40, 37-44.
Krämer, U. (2010) Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61, 517-534.
Krämer, U., Cotter-Howells, J.D., Charnock, J.M., Baker, A.J. & Smith, J.A.C. (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature, 379, 635-638.
Krämer, U., Pickering, I.J., Prince, R.C., Raskin, I. & Salt, D.E. (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-hyperaccumulator Thlaspi species. Plant Physiology, 122, 1343-1354.
Krämer, U., Smith, R.D., Wenzel, W.W., Raskin, I. & Salt, D.E. (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Hálácsy. Plant Physiology, 115, 1641-1650.
Krämer, U., Talke, I.N. & Hannikenne, M. (2007) Transition metal transport. FEBS Letters, 581, 2263-2272.
Kumar, P.B.A.N., Dushenkov, V., Motto, H. & Raskin, I. (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environmental Science & Technology, 29, 1232-1238.
Küpper, H., Lombi, E., Zhao, F.G. & McGrath, S.P. (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 212, 75-84.
Küpper, H., Lombi, E., Zhao, F.J., Wieshammer, G. & McGrath, S.P. (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. Journal of Experimental Botany, 52, 2291-2300.
Küpper, H., Mijovilovich, A., Götz, B., Küpper, F.C. & Meyer-Klaucke, W. (2009) Complexation and toxicity of copper in higher plants (I): characterisation of copper accumulation, speciation and toxicity in Crassula helmsii as a new copper hyperaccumulator. Plant Physiology, 151, 702-714.
Küpper, H., Mijovilovich, A., MeyerKlaucke, W. & Kroneck, P.M.H. (2004) Tissue- and age dependent differences in the complexation of cadmium and zinc in the cd/Zn hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiology, 134, 748-757.
Landi, M., Tattini, M. & Gould, K.S. (2015) Multiple functional roles of anthocyanins in plant environment interactions. Environmental and Experimental Botany, 119, 4-17.
Lane, T.W. & Morel, F.M.M. (2000) A biological function for cadmium in marine diatoms. Proceedings of the National Academy of Sciences of the United States of America, 97, 4627-4631.
Lane, T.W., Saito, M., George, G., Pickering, I.J., Prince, R.C. & Morel, F.M.M. (2005) A cadmium enzyme for a marine diatom. Nature, 435, 42.
Lasat, M.M., Pence, N.S., Garvin, D.F., Abbs, S.D. & Kochian, L.V. (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 51, 71-79.
Lee, J., Reeves, R.D., Brooks, R.R. & Jaffré, T. (1977) Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants. Phytochemistry, 16, 1503-1505.
Lee, J., Reeves, R.D., Brooks, R.R. & Jaffré, T. (1978) The relation between nickel and citric acid in some nickel-accumulating plants. Phytochemistry, 17, 1033-1035.
Leitenmaier, B. & Küpper, H. (2013) Compartmentation and complexation of metals in hyperaccumulator plants. Frontiers in Plant Science, 4, 374.
Li, T., Xu, Z., Han, X., Yang, X. & Sparks, D.L. (2012) Characterization of dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii and its effect on the mobility of zinc. Chemosphere, 88, 570-576.
Liao, C., Xu, W., Lu, G., Liang, X., Guo, C., Yang, C., et al. (2015) Accumulation of hydrocarbons by maize (Zea mays L.) in remediation of soils contaminated with crude oil. International Journal of Phytoremediation, 17, 583-588.
Liao, M.T., Hedley, M.J., Woolley, D.J., Brooks, R.R. & Nichols, M.A. (2000) Copper uptake and translocation in chicory (Cichorium intybus L. cv grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv Rondy) plants grown in NFT system. II. The role of nicotianamine and histidine in xylem sap copper transport. Plant and Soil, 223, 243-252.
Lima, L.W., Pilon-Smits, E.A. & Schiavon, M. (2018) Mechanisms of selenium hyperaccumulation in plants: a survey of molecular, biochemical and ecological cues. Biochimica et Biophysica Acta (BBA) - General Subjects, 1862(11), 2343-2353.
Liu, M.Q. (2008) Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens? Chemosphere, 71, 1276-1283.
Lombi, E., Zhao, F.J., McGrath, S.P., Young, S.D. & Sacchi, G.A. (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. The New Phytologist, 149, 53-60.
Lone, M.I., He, Z.L., Stoffella, P.J. & Yang, X.E. (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. Journal of Zhejiang University. Science. B, 9, 210-220.
Ma, J.F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., et al. (2006) A silicon transporter in rice. Nature, 440, 688-691.
Ma, J.F., Ueno, D., Zhao, F.J. & McGrath, S.P. (2005) Subcellular localisation of cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta, 220, 731-736.
Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y. & Kennelley, E.D. (2002) A fern that hyperaccumulate arsenic. Nature, 409, 579.
Madejón, P., Murillo, J.M., Marañón, T., Cabrera, F. & Soriano, M.A. (2002) Trace element and nutrient accumulation in sunflower plants two years after Aznalcóllar mine spill. Science of the Total Environment, 307, 239-257.
Mari, S., Gendre, D., Pianelli, K., Ouerdane, L., Lobinski, R., Briat, J.-F., et al. (2006) Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 57, 4111-4122.
Meharg, A.A. (2004) Arsenic in rice - understanding a new disaster for South-East Asia. Trends in Plant Science, 9, 415-417.
Meier, S.K., Adams, N., Wolf, M., Balkwill, K., Muasya, A.M., Gehring, C.A., et al. (2018) Comparative RNA-seq analysis of nickel hyperaccumulating and non-accumulating populations of Senecio coronatus (Asteraceae). The Plant Journal, 95, 1023-1038.
Merlot, S., Hannibal, L., Martins, S., Martinelli, L., Amir, H., Lebrun, M., et al. (2014) The metal transporter PgIREG1 from the hyperaccumulator Psychotria gabriellae is a candidate gene for nickel tolerance and accumulation. Journal of Experimental Botany, 65, 1551-1546.
Mihaly-Cozmuta, A., Mihaly-Cozmuta, L., Viman, V., Vatca, G. & Varga, C. (2005) Spectrometric methods used to determine heavy metals and total cyanides in accidental polluted soils. American Journal of Applied Sciences, 2, 358-362.
Mijovilovich, A., Leitenmaier, B., Mayer-Klaucke, W., Kroneck, P.M.H., Götz, B. & Küpper, H. (2009) Complexation and toxicity of copper in higher plants II. Different mechanisms for copper vs. cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype). Plant Physiology, 151, 715-731.
Mikkelsen, R., Page, A.L. & Bingham, F.T. (1989) Factors affecting selenium accumulation by agricultural crops. In: Jacobs, L.W. (Ed.) Selenium in agriculture and the environment, Vol. 1989, US: SSSA Special Publications, pp. 65-94.
Mills, R.F., Francini, A., da Rocha, P.S.C.F., Baccarini, P.J., Aylett, M., Krijger, G.C., et al. (2005) The plant P-1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Letters, 579, 783-791.
Mills, R.F., Krijger, G.C., Baccarini, P.J., Hall, J.L. & Williams, L.E. (2003) Functional expression of AtHMA4, a P-1B-type ATPase of the Zn/Co/Cd/Pb subclass. The Plant Journal, 35, 164-176.
Milner, M.J. & Kochian, L.V. (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Annals of Botany, 102, 3-13.
Mohseni, R., Ghaderian, S.M., Ghasemi, R. & Schat, H. (2018) Differential effects of iron starvation and iron excess on nickel uptake kinetics in two Iranian nickel hyperaccumulators, Odontarrhen abracteata and Odontarrhen ainflata. Plant and Soil, 428, 153-162.
Mohseni, R., Ghaderian, S.M. & Schat, H. (2018) Nickel uptake mechanisms in two Iranian nickel hyperaccumulators, Odontarrhena bracteata and Odontarrhena inflata. Plant and Soil, 434, 263-269.
Montargès-Pelletier, E., Chardot, V., Echevarria, G., Michot, L.J., Bauer, A. & Morel, J.L. (2008) Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study. Phytochemistry, 69, 1695-1709.
Montargès-Pelletier, E., Mesjasz-Przybylowicz, J., Barnabas, A., Echevarria, G, Briois, V., Sechogela, T.P. et al. (2011) Do hyperaccumulators develop specific chelates for nickel transport and storage? The cases of Senecio coronatus and Berkheya coddii. Proceedings of the 11th International Conference on Biogeochemistry of Trace Elements, Florence, Italy, 3-7 July 2011.
Murphy, A. & Taiz, L. (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Correlation with copper tolerance. Plant Physiology, 109, 945-954.
Nishida, S., Kato, A., Tsuzuki, C., Yoshida, J. & Mizuno, T. (2015) Induction of nickel accumulation in response to zinc deficiency in Arabidopsis thaliana. International Journal of Molecular Sciences, 16, 9420-9430.
Nishida, S., Tsuzuki, C., Kato, A., Aisu, A., Yoshida, J. & Mizuno, T. (2011) AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant & Cell Physiology, 52, 1433-1442.
Page, V. & Feller, U. (2005) Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Annals of Botany, 96, 425-434.
Page, V. & Feller, U. (2015) Heavy metals in crop plants: transport and redistribution processes on the whole plant level. Agronomy, 5, 447-463.
Page, V., Weisskopf, L. & Feller, U. (2006) Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. The New Phytologist, 171, 329-341.
Palmer, C. & Guerinot, M.L. (2009) A question of balance: facing the challenges of Cu, Fe and Zn homeostasis. Nature Chemical Biology, 5, 333-340.
Papoyan, A. & Kochian, L.V. (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiology, 136, 3814-3823.
Pelosi, P., Fiorentini, R. & Galoppini, C. (1976) On the nature of nickel compounds in Alyssum bertolonii Desv.-II. Agricultural and Biological Chemistry, 40, 1641-1642.
Peralta-Videa, J.R., de la Rosa, G., Gonzalez, J.H. & Gardea-Torresdey, J.L. (2004) Effects of the growth stage on the heavy metal tolerance of alfalfa plants. Advances in Environmental Research, 8, 679-685.
Persans, M.W., Nieman, K. & Salt, D.E. (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proceedings of the National Academy of Sciences of the United States of America, 98, 9995-10000.
Persans, M.W., Yan, X., Patnoe, J.-M.M., Krämer, U. & Salt, D.E. (1999) Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Hálácsy). Plant Physiology, 121, 1117-1126.
Pich, A., Scholz, G. & Stephan, U.W. (1994) Iron-dependent changes of heavy metals, nicotianamine, and citrate in different plant organs and in the xylem of two tomato genotypes: nicotianamine as possible copper translocator. Plant and Soil, 165, 189-196.
Pich, A. & Scholz, I. (1996) Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill.): nicotianamine stimulated copper transport in the xylem. Journal of Experimental Botany, 47, 41-47.
Pierrisnard, F. (1996) Impact de l'amendement des boues residuaires de la ville de Marseille sur des sols a vocation agricole: comportement du Cd, Cr, Cu, Ni, Pb, Zn, des hydrocarbures et des composes polaires. Dissertation Docteur Géosciences de l'Environnement. Université d'Aix-Marseille 3, Aix-en-Provence, France
Pilon-Smits, E.A.H. (2017) Mechanisms of plant selenium hyperaccumulation. In: Pilon-Smits, E., Winkel, L. & Lin, Z.Q. (Eds.) Selenium in plants, Vol. 11. Cham: Springer.
Poynton, C.Y., Huang, J.W.W., Blaylock, M.J., Kochian, L.V. & Ellass, M.P. (2004) Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation. Planta, 219, 1080-1088.
Prasad, M. & Freitas, H. (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6, 285-231.
Raab, A., Feldmann, J. & Meharg, A.A. (2004) The nature of arsenic - phytochelatins complexes in Holcus lanatus and Pteris cretica. Plant Physiology, 134, 1113-1122.
Rai, P.K., Lee, S.S., Zhang, M., Tsang, Y.F. & Kim, K.H. (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environment International, 125, 365-385.
Ranieri, E., Moustakas, K., Barbafieri, M., Ranieri, A.C., Herrera-Melián, J.A., Petrella, A., et al. (2020) Phytoextraction technologies for mercury- and chromium-contaminated soil: a review. Journal of Chemical Technology and Biotechnology, 95, 317-327.
Rascio, N. & Navari-Izzo, F. (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes themso interesting? Plant Science, 180(2), 169-181.
Raza, A., Habib, M., Kakavand, S.N., Zahid, Z., Zahra, N., Sharif, R., et al. (2020) Phytoremediation of cadmium: physiological, biochemical, and molecular mechanisms. Biology, 9, E177.
Reeves, R.D., Baker, A.J.M., Jaffré, T., Erskine, P.D., Echevarria, G. & van der Ent, A. (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. The New Phytologist, 218, 407-411.
Richau, K.H., Kozhevnikova, A.D., Seregin, I.V., Vooijs, R., Koevoets, P.L., Smith, J.A., et al. (2009) Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. The New Phytologist, 183, 106-116.
Riesen, O. & Feller, U. (2005) Redistribution of nickel, cobalt, manganese, zinc and cadmium via the phloem in young and maturing wheat. Journal of Plant Nutrition, 28, 421-430.
Rigola, D., Fiers, M., Vurro, E. & Aarts, M.G. (2006) The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis. The New Phytologist, 170, 753-765.
Robinson, B.H., Lombi, E., Zhao, F.J. & McGrath, S.P. (2003) Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. The New Phytologist, 158, 279-285.
Roosens, N.H., Bernard, C., Leplae, R. & Verbruggen, N. (2004) Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Letters, 577, 9-16.
Roosens, N.H., Leplae, R., Bernard, C. & Verbruggen, N. (2005) Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study case. Planta, 222, 716-729.
Rouached, H., Wirtz, M., Alary, R., Hell, R., Bulak Arpat, A., Davidian, J.C., et al. (2008) Differential regulation of the expression of two high affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis. Plant Physiology, 147, 897-911.
RoyChowdhury, A., Datta, R. & Sarkar, D. (2018) Chapter 3.10 - heavy metal pollution and remediation. In: Török, B. & Dransfield, T. (Eds.) Green chemistry. Amsterdam, Netherlands: Elsevier, pp. 359-373.
Sagner, S., Kneer, R., Wanner, G., Cosson, J.P., Deus-Neumann, B. & Zenk, M.H. (1998) Hyperaccumulation, complexation, and distribution of nickel in Sebertia acuminata. Phytochemistry, 47, 339-347.
Salt, D.E., Prince, R.C., Baker, A.J.M., Raskin, I. & Pickering, I.J. (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environmental Science & Technology, 33, 713-717.
Sarret, G., Saumitou-Laprade, P., Bert, V., Proux, O., Hazemann, J.L., Traverse, A., et al. (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiology, 130, 1815-1826.
Schaaf, G., Honsbein, A., Meda, A.R., Kirchner, S., Wipf, D. & von Wirén, N. (2006) AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots. The Journal of Biological Chemistry, 281, 25532-25540.
Schat, H., Llugany, M., Vooijs, R., Hartley-Whitaker, J. & Bleeker, P.M. (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and nonhyperaccumulator metallophytes. Journal of Experimental Botany, 53, 2381-2392.
Schiavon, M., Pilon, M., Malagoli, M. & Pilon-Smits, E.A.H. (2015) Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation-a comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). Frontiers in Plant Science, 23, 2.
Scholz, G., Becker, R., Pich, A. & Stephan, U.W. (1992) Nicotianamine - a common constituent of strategy-I and strategy-II of iron acquisition by plants - a review. Journal of Plant Nutrition, 15, 1647-1665.
Seaward, M.R.D. (2004) The use of lichens for environmental impact assessment. Symbiosis, 37, 293-305.
Selvaraj, K., Sevugaperuma, R. & Ramasubramanian, V. (2015) Phytoextraction: using Brassica as a hyper accumulator. Biochemistry & Physiology, 4, 3.
Shen, H., He, Z., Yan, H., Xing, Z., Chen, Y., Xu, W., et al. (2014) The fronds tonoplast quantitative proteomic analysis in arsenic hyperaccumulator Pteris vittata L. Journal of Proteomics, 105, 46-57.
Shibagaki, N., Rose, A., Mcdermott, J.P., Fujiwara, T., Hayashi, H., Yoneyama, T., et al. (2002) Selenate-resistant mutants of Arabidopsis thaliana identify sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. The Plant Journal, 29, 475-486.
Shibata, K., Shibata, Y. & Kasiwagi, I. (1919) Studies on anthocyanins: colour variation in anthocyanins. Journal of the American Chemical Society, 41, 208-220.
Shin, H., Shin, H.S., Dewbre, G.R. & Harrison, M.J. (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high phosphate environments. The Plant Journal, 39, 629-642.
Shinmachi, F., Buchner, P., Stroud, J.L., Parmar, S., Zhao, F.J., McGrath, S.P., et al. (2010) Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat. Plant Physiology, 153, 327-336.
Sinegani, A.A.S. & Khalilikhah, F. (2010) Effects of EDTA, sheep manure extract and their application time on cd uptake by Helianthus annuus from a calcareous mine soil. Soil and Sediment Contamination, 19, 378-390.
Singh, R., Singh, S., Parihar, P., Singh, V.P. & Prasad, S.M. (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and Environmental Safety, 112, 247-270.
Singh, R.P. & Agrawal, M. (2010) Biochemical and physiological responses of rice (Oryza sativa L.) grown on different sewage sludge amendments rates. Bulletin of Environmental Contamination and Toxicology, 84, 606-612.
Somaatmadja, D., Powers, J.J. & Hamdy, M.H. (2006) Anthocyanins. VI. Chelation studies on anthocyanins and other related compounds. Journal of Food Science, 29, 655-660.
Song, W.Y., Parka, J., Mendoza Cozatl, D., Suter-Grotemeyer, M., Shim, D., Hörtensteiner, S., et al. (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proceedings of the National Academy of Sciences of the United States of America, 107, 21187-21192.
Song, W.Y., Yamaki, T., Yamaji, N., Ko, D., Jung, K.H., Fujii-Kashino, M., et al. (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proceedings of the National Academy of Sciences of the United States of America, 111, 15699-15704.
Souri, Z., Karimi, N. & Sandalio, L.M. (2017) Arsenic hyperaccumulation strategies: an overview. Frontiers in Cell and Development Biology, 5, 67.
Srivastava, M., Ma, L.Q. & Santos, J.A.G. (2006) Three new arsenic hyperaccumulating ferns. Science of the Total Environment, 364, 24-31.
Srivastava, V., Sarkar, A., Singh, S., Singh, P., de Araujo Ademir, S.F. & Singh, R.P. (2017) Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Frontiers in Environmental Science, 5, 1-19.
Stephan, U.W. & Scholz, G. (1993) Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiologia Plantarum, 88, 522-529.
Sterckeman, T., Cazes, Y., Gonneau, C. & Sirguey, C. (2017) Phenotyping 60 populations of Noccaea caerulescens provides a broader knowledge of variation in traits of interest for phytoextraction. Plant and Soil, 418, 523-540.
Su, Y.H., McGrath, S.P., Zhu, Y.G. & Zhao, F.J. (2008) Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. The New Phytologist, 180, 434-441.
Suman, J., Uhlik, O., Viktorova, J. & Macek, T. (2018) Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Frontiers in Plant Science, 9, 1476.
Sun, Q., Ye, Z.H., Wang, X.R. & Wong, M.H. (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. Journal of Plant Physiology, 164, 1489-1498.
Sytar, O., Brestic, M., Taran, N. & Zivcak, M. (2016) Plants used for biomonitoring and phytoremediation of trace elements in soil and wateant metal interaction. Amsterdam, Netherlands: Elsevier, pp. 361-384.
Sytar, O. & Prasad, M.N.V. (2016) Chapter 1 - production of biodiesel feedstock from the trace element contaminated lands in Ukraine. In: Bioremediation and bioeconomy. Amsterdam, Netherlands: Elsevier, pp. 3-28.
Sytar, O., Zhenzhen, C., Marian, B., Prasad, M.N.V., Taran, N. & Smetanska, I. (2013) Foliar applied nickel on buckwheat (Fagopyrum esculentum) induced phenolic compounds as potential antioxidants. Clean - Soil Air Water, 41, 1129-1137.
Takahashi, H., Kopriva, S., Giordano, M., Saito, K. & Hell, R. (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annual Review of Plant Biology, 62, 157-184.
Talke, I., Hanikenne, M. & Krämer, U. (2006) Zinc dependent global transcriptional control, transcriptional de-regulation and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology, 142, 148-167.
Tangahu, B.V., Sheikh Abdullah, S.R., Hassan Basri, H., Idris, M., Anuar, N. & Muhammad Mukhlisin, M. (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011, 31.
Taylor, S.I. & Macnair, M.R. (2006) Within and between population variation for zinc and nickel accumulation in two species of Thlaspi (Brassicaceae). The New Phytologist, 169, 505-514.
Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. & Sutton, D.J. (2012) Heavy metal toxicity and the environment. Experientia Supplementum, 101, 133-164.
Thakur, S., Singh, L., Wahid, Z.A., Siddiqui, M.F., Atnaw, S.M. & Din, M.F. (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environmental Monitoring and Assessment, 188, 206.
Thijs, S., Langill, T. & Vangronsveld, J. (2017) The bacterial and fungal microbiota of hyperaccumulator plants: small organisms, large influence. Advances in Botanical Research, 83, 43-86.
Thomine, S. & Vert, G. (2013) Iron transport in plants: better be safe than sorry. Current Opinion in Plant Biology, 16, 322-327.
Tian, S., Lu, L., Labavitch, J., Yang, X., He, Z., Hu, H., et al. (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiology, 157, 1914-1925.
Trampczynska, A., Küpper, H., MeyerKlaucke, W., Schmidt, H. & Clemens, S. (2010) Nicotianamine forms complexes with Zn(II) in vivo. Metallomics, 2, 57-66.
Tu, C. & Ma, L.Q. (2002a) Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. Journal of Environmental Quality, 31, 1671-1675.
Tu, C. & Ma, L.Q. (2002b) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. Journal of Environmental Quality, 31, 641-647.
Tu, S. & Ma, T. (2004) Luongo root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata. Plant and Soil, 258, 9-19.
Turan, M. & Esringü, A. (2007) Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant, Soil and Environment, 53, 7-15.
Turgeon, R. & Wolf, S. (2009) Phloem transport: cellular pathways and molecular trafficking. Annual Review of Plant Biology, 60, 207-221.
Ucer, A., Uyanik, A. & Kutbay, H.G. (2013) Removal of heavy metals using Myriophyllum verticillatum (whorl-leaf watermilfoil) in a hydroponic system. Ekoloji, 22, 1-9.
Ueno, D., Iwashita, T., Zhao, F.J. & Ma, J.F. (2008) Characterization of Cd translocation and identification of the Cd form in xylem sap of the cd-hyperaccumulator Arabidopsis halleri. Plant & Cell Physiology, 49, 540-548.
Ueno, D., Ma, J.F., Iwashita, T., Zhao, F.J. & McGrath, S.P. (2005) Identification of the form of Cd in the leaves of a superior Cd accumulating ecotype of Thlaspi caerulescens using Cd-NMR. Planta, 221, 928-936.
Van Bel, A.J.E. (2003) The phloem, a miracle of ingenuity. Plant, Cell & Environment, 26, 125-149.
Van Bel, A.J.E. & Gamalei, Y.V. (1992) Ecophysiology of phloem loading in source leaves. Plant, Cell & Environment, 15, 265-270.
van de Mortel, J.E., Schat, H., Moerland, P.D., Ver Loren van Themaat, E., van der Ent, S., Blankestijn, H., et al. (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant, Cell & Environment, 31, 301-324.
van de Mortel, J.E., Villanueva, L.A., Schat, H., Kwekkeboom, J., Coughlan, S., Moerland, P.D., et al. (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiology, 142, 1127-1147.
Van der Pas, L. & Ingle, A.R. (2019) Towards an understanding of the molecular basis of nickel hyperaccumulation in plants. Plants, 8, 1-11.
Van Hoof, N.A.L.M., Hassinen, V.H., Hakvoort, H.W.J., Ballintijn, K.F., Schat, H., Verkleij, J.A.C., et al. (2001) Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiology, 126, 1519-1526.
Verbruggen, N., Hermans, C. & Schat, H. (2009) Molecular mechanisms of metal hyperaccumulation in plants. The New Phytologist, 181, 759-776.
Verbruggen, N., Hermans, C. & Schat, H. (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 12, 364-372.
Verret, F., Gravot, A., Auroy, P., Leonhardt, N., David, P., Nussaume, L., et al. (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Letters, 576, 306-312.
Verret, F., Gravot, A., Auroy, P., Preveral, S., Forestier, C., Vavasseur, A., et al. (2005) Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His(11) stretch. FEBS Letters, 579, 1515-1522.
Viehweger, K. (2014) How plants cope with heavy metals. Botanical Studies, 55, 35.
Vijayarengan, P. (2005) Nitrogen and potassium status of greengram (Vigna radiata) cultivars under nickel stress. Nature Environment and Pollution Technology, 4, 65-69.
Visoottiviseth, P., Francesconi, K. & Sridokchan, W. (2002) The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution, 118, 453-461.
von Wiren, N., Klair, S., Bansal, S., Briat, J.F., Khodr, H., Shioiri, T., et al. (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiology, 119, 1107-1114.
Wang, J., Cappa, J.J., Harris, J.P., Edger, P.P., Zhou, W., Pires, J.C., et al. (2018) Transcriptome-wide comparison of selenium hyperaccumulator and non-hyperaccumulator Stanleya species provides new insight into key processes mediating the hyperaccumulation syndrome. Plant Biotechnology Journal, 16, 1582-1594.
Wang, J., Zhao, F.J., Meharg, A.A., Raab, A., Feldmann, J. & McGrath, S.P. (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology, 130, 1552-1561.
Wang, X., Ma, L.Q., Rathinasabapathi, B., Cai, Y., Liu, Y.G. & Zeng, G.M. (2011) Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata. Environmental Science & Technology, 45, 9719-9725.
Weber, M., Harada, E., Vess, C., von Roepenack-Lahaye, E. & Clemens, S. (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. The Plant Journal, 37, 269-281.
White, P.J. (2016) Selenium accumulation by plants. Annals of Botany, 117, 217-235.
White, P.J., Bowen, H.C., Marshall, B. & Broadley, M.R. (2007) Extraordinarily high leaf selenium to sulfur ratios define ‘Se-accumulator’ plants. Annals of Botany, 100, 111-118.
White, P.J., Bowen, H.C., Parmaguru, P., Fritz, M., Spracklen, W.P., Spiby, R.E., et al. (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. Journal of Experimental Botany, 55, 1927-1937.
Willems, G., Dräger, D.B., Courbot, M., Godé, C., Verbruggen, N. & Saumitou-Laprade, P. (2007) The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics, 176, 659-674.
Willems, G., Frérot, H., Gennen, J., Salis, P., Saumitou-Laprade, P. & Verbruggen, N. (2010) Quantitative trait loci analysis of mineral element concentrations in the Arabidopsis halleri × Arabidopsis lyrata petraea F2 progeny on cadmium-contaminated soil. The New Phytologist, 187, 368-379.
Wong, S.C., Li, X.D., Zhang, G., Qi, S.H. & Min, Y.S. (2002) Heavy metals in agricultural soils of the Pearl River Delta, South China. Environmental Pollution, 119, 33-44.
Wulff, A., Hollingsworth, P.M., Ahrends, A., Jaffre, T., Veillon, J.M., L'Huillier, L., et al. (2013) Conservation priorities in a biodiversity hotspot: analysis of narrow endemic plants species in New Caledonia. PLoS One, 8, e733.
Xing, J.P., Jiang, R.F., Ueno, D., Ma, J.F., Schat, H., McGrath, S.P., et al. (2008) Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. The New Phytologist, 178, 315-325.
Xu, W., Dai, W., Yan, H., Li, S., Shen, H., Chen, Y., et al. (2015) Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to shoot translocation under arsenite stress conditions. Molecular Plant, 8, 722-733.
Yan, A., Wang, Y., Tan, S.N., Mohd Yusof, M.L., Ghosh, S. & Chen, Z. (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359.
Yan, X., Liu, M., Zhong, J., Guo, J. & Wen, W. (2018) How human activities affect heavy metal contamination of soil and sediment in a long-term reclaimed area of the Liaohe River Delta, North China. Sustainability, 10, 1-19.
Yang, X., Li, T., Yang, J., He, Z., Lu, L. & Meng, F. (2006) Zinc compartmentation in root, transport into xylem, and adsorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta, 224, 185-195.
Yang, X.E., Jin, X.F., Feng, Y. & Islam, E. (2005) Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. Journal of Integrative Plant Biology, 47, 1025-1035.
Yao, Z.H., Li, J., Xie, H. & Yu, C. (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environmental Sciences, 16, 722-729.
Yeh, T.Y. (2015) Biostimulator and biodegradable chelator to pytoextract not very toxic Cu and Zn. Hydrology Current Research, 6, 190.
Zacchini, M., Pietrini, F., Mugnozza, G.S., Iori, V., Pietrosanti, L. & Massacci, A. (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air, and Soil Pollution, 197, 23-34.
Zhang, Z.C., Chen, B.X. & Qiu, B.S. (2010) Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants. Plant, Cell & Environment, 33, 1248-1255.
Zhao, F.-J., Hamon, R.E., Lombi, E., McLaughlin, M.J. & McGrath, S.P. (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyper-accumulator Thlaspi caerulescens. Journal of Experimental Botany, 53, 535-543.
Zhao, F.J., Dunham, S.J. & McGrath, S.P. (2002a) Arsenic hyperaccumulation by different fern species. The New Phytologist, 156, 27-31.
Zhao, F.J., Hamon, R.E., Lombi, E., McLaughlin, M.J. & McGrath, S.P. (2002b) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 53, 535-543.
Zhao, F.J., Lombi, E. & McGrath, S.P. (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil, 249, 37-43.
Zhao, F.J., Ma, J.F., Meharg, A.A. & McGrath, S.P. (2009) Arsenic uptake and metabolism in plants. The New Phytologist, 181, 777-794.
Zhuang, P., Ye, Z.H., Lan, C.Y., Xie, Z.W. & Hsu, W.S. (2005) Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species. Plant and Soil, 276, 153-162.
The Feedback of Stress Phytohormones in Avena sativa (L.) on Soil Multi-Contamination
Proteomic changes in various plant tissues associated with chromium stress in sunflower