Immature neutrophils in cord blood exert increased expression of genes associated with antimicrobial function

. 2024 ; 15 () : 1368624. [epub] 20240326

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, komentáře

Perzistentní odkaz   https://www.medvik.cz/link/pmid38596677

Grantová podpora
R01 HL129878 NHLBI NIH HHS - United States
R01 DK108353 NIDDK NIH HHS - United States
R01 DK135413 NIDDK NIH HHS - United States

INTRODUCTION: The immune systems of both the mother and the newborn face significant challenges during birth. Proper immune regulation after birth is essential for the survival of neonates. Numerous studies have demonstrated that the neonatal immune system is relatively immature, particularly in its adaptive arm, placing the primary responsibility for immune surveillance on innate immunity. METHODS: Given the significant role of neutrophils in protecting the neonate after birth, we conducted a study investigating the properties of neutrophils in newborn cord blood using various methodological approaches. RESULTS: Our findings demonstrate the presence of immature low-density neutrophils in the cord blood, which are likely responsible for the observed elevated expression of genes coding for proteins essential to antimicrobial response, including myeloperoxidase, neutrophils elastase, and defensins. DISCUSSION: We propose that these cells function normally and support the protection of newborns early after birth. Furthermore, our results suggest that the mode of delivery might significantly influence the programming of neutrophil function. The presented findings emphasize the importance of distinct neutrophil subpopulations in neonatal immunity and their potential impact on early postnatal health.

Komentář

PubMed

Zobrazit více v PubMed

PrabhuDas M, Adkins B, Gans H, King C, Levy O, Ramilo O, et al. . Challenges in infant immunity: implications for responses to infection and vaccines. Nat Immunol. (2011) 12:189–94. doi: 10.1038/ni0311-189 PubMed DOI

Lukacs SL, Schrag SJ. Clinical sepsis in neonates and young infants, United States, 1988-2006. J Pediatr. (2012) 160:960–5. doi: 10.1016/j.jpeds.2011.12.023 PubMed DOI

Darabi B, Rahmati S, HafeziAhmadi MR, Badfar G, Azami M. The association between caesarean section and childhood asthma: an updated systematic review and meta-analysis. Allergy Asthma Clin Immunol Off J Can Soc Allergy Clin Immunol. (2019) 15:62. doi: 10.1186/s13223-019-0367-9 PubMed DOI PMC

Bager P, Simonsen J, Nielsen NM, Frisch M. Cesarean section and offspring’s risk of inflammatory bowel disease: a national cohort study. Inflammation Bowel Dis. (2012) 18:857–62. doi: 10.1002/ibd.21805 PubMed DOI

Andersen V, Möller S, Jensen PB, Møller FT, Green A. Caesarean delivery and risk of chronic inflammatory diseases (Inflammatory bowel disease, rheumatoid arthritis, coeliac disease, and diabetes mellitus): A population based registry study of 2,699,479 births in Denmark during 1973-2016. Clin Epidemiol. (2020) 12:287–93. doi: 10.2147/CLEP PubMed DOI PMC

Sundqvist M, Osla V, Jacobsson B, Rudin A, Sävman K, Karlsson A. Cord blood neutrophils display a galectin-3 responsive phenotype accentuated by vaginal delivery. BMC Pediatr. (2013) 13:128. doi: 10.1186/1471-2431-13-128 PubMed DOI PMC

Birle A, Nebe CT, Hill S, Hartmann K, Poeschl J, Koch L. Neutrophil chemotaxis in cord blood of term and preterm neonates is reduced in preterm neonates and influenced by the mode of delivery and anaesthesia. PloS One. (2015) 10:e0120341. doi: 10.1371/journal.pone.0120341 PubMed DOI PMC

Pillay J, den Braber I, Vrisekoop N, Kwast LM, de Boer RJ, Borghans JAM, et al. . In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood. (2010) 116:625–7. doi: 10.1182/blood-2010-01-259028 PubMed DOI

Tofts PS, Chevassut T, Cutajar M, Dowell NG, Peters AM. Doubts concerning the recently reported human neutrophil lifespan of 5.4 days. Blood. (2011) 117:6050–2; author reply 6053-6054. doi: 10.1182/blood-2010-10-310532 PubMed DOI

Koenderman L, Tesselaar K, Vrisekoop N. Human neutrophil kinetics: a call to revisit old evidence. Trends Immunol. (2022) 43:868–76. doi: 10.1016/j.it.2022.09.008 PubMed DOI

van Gisbergen KPJM, Sanchez-Hernandez M, Geijtenbeek TBH, van Kooyk Y. Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J Exp Med. (2005) 201:1281–92. doi: 10.1084/jem.20041276 PubMed DOI PMC

Hufford MM, Richardson G, Zhou H, Manicassamy B, García-Sastre A, Enelow RI, et al. . Influenza-infected neutrophils within the infected lungs act as antigen presenting cells for anti-viral CD8(+) T cells. PloS One. (2012) 7:e46581. doi: 10.1371/journal.pone.0046581 PubMed DOI PMC

Meinderts SM, Baker G, van Wijk S, Beuger BM, Geissler J, Jansen MH, et al. . Neutrophils acquire antigen-presenting cell features after phagocytosis of IgG-opsonized erythrocytes. Blood Adv. (2019) 3:1761–73. doi: 10.1182/bloodadvances.2018028753 PubMed DOI PMC

Bennouna S, Bliss SK, Curiel TJ, Denkers EY. Cross-talk in the innate immune system: neutrophils instruct recruitment and activation of dendritic cells during microbial infection. J Immunol Baltim Md. (2003) 171:6052–8. doi: 10.4049/jimmunol.171.11.6052 PubMed DOI

Tecchio C, Micheletti A, Cassatella MA. Neutrophil-derived cytokines: facts beyond expression. Front Immunol. (2014) 5:508. doi: 10.3389/fimmu.2014.00508 PubMed DOI PMC

Silvestre-Roig C, Fridlender ZG, Glogauer M, Scapini P. Neutrophil diversity in health and disease. Trends Immunol. (2019) 40:565–83. doi: 10.1016/j.it.2019.04.012 PubMed DOI PMC

Montaldo E, Lusito E, Bianchessi V, Caronni N, Scala S, Basso-Ricci L, et al. . Cellular and transcriptional dynamics of human neutrophils at steady state and upon stress. Nat Immunol. (2022) 23:1470–83. doi: 10.1038/s41590-022-01311-1 PubMed DOI PMC

McLaren AS, Fetit R, Wood CS, Falconer J, Steele CW. Single cell sequencing of neutrophils demonstrates phenotypic heterogeneity and functional plasticity in health, disease, and cancer. Chin Clin Oncol. (2023) 12:18. doi: 10.21037/cco PubMed DOI

Xie X, Shi Q, Wu P, Zhang X, Kambara H, Su J, et al. . Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat Immunol. (2020) 21:1119–33. doi: 10.1038/s41590-020-0736-z PubMed DOI PMC

Hacbarth E, Kajdacsy-Balla A. Low density neutrophils in patients with systemic lupus erythematosus, rheumatoid arthritis, and acute rheumatic fever. Arthritis Rheumatol. (1986) 29:1334–42. doi: 10.1002/art.1780291105 PubMed DOI

Hsu BE, Tabariès S, Johnson RM, Andrzejewski S, Senecal J, Lehuédé C, et al. . Immature low-density neutrophils exhibit metabolic flexibility that facilitates breast cancer liver metastasis. Cell Rep. (2019) 27:3902–3915.e6. doi: 10.1016/j.celrep.2019.05.091 PubMed DOI

Yiu JYT, Hally KE, Larsen PD, Holley AS. Increased levels of low density neutrophils (LDNs) in myocardial infarction. Acta Cardiol. (2023) 78:47–54. doi: 10.1080/00015385.2021.2015145 PubMed DOI

Tay SH, Celhar T, Fairhurst AM. Low-density neutrophils in systemic lupus erythematosus. Arthritis Rheumatol Hoboken NJ. (2020) 72:1587–95. doi: 10.1002/art.41395 PubMed DOI PMC

Morrissey SM, Geller AE, Hu X, Tieri D, Ding C, Klaes CK, et al. . A specific low-density neutrophil population correlates with hypercoagulation and disease severity in hospitalized COVID-19 patients. JCI Insight. (2021) 6:e148435. doi: 10.1172/jci.insight.148435 PubMed DOI PMC

Hassani M, Hellebrekers P, Chen N, van Aalst C, Bongers S, Hietbrink F, et al. . On the origin of low-density neutrophils. J Leukoc Biol. (2020) 107:809–18. doi: 10.1002/JLB.5HR0120-459R PubMed DOI PMC

Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, et al. . Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. (2015) 10:562–73. doi: 10.1016/j.celrep.2014.12.039 PubMed DOI

Köstlin N, Kugel H, Spring B, Leiber A, Marmé A, Henes M, et al. . Granulocytic myeloid derived suppressor cells expand in human pregnancy and modulate T-cell responses. Eur J Immunol. (2014) 44:2582–91. doi: 10.1002/eji.201344200 PubMed DOI

Nair RR, Sinha P, Khanna A, Singh K. Reduced myeloid-derived suppressor cells in the blood and endometrium is associated with early miscarriage. Am J Reprod Immunol N Y N. (2015) 73:479–86. doi: 10.1111/aji.2015.73.issue-6 PubMed DOI

Ren J, Zeng W, Tian F, Zhang S, Wu F, Qin X, et al. . Myeloid-derived suppressor cells depletion may cause pregnancy loss via upregulating the cytotoxicity of decidual natural killer cells. Am J Reprod Immunol N Y N. (2019) 81:e13099. doi: 10.1111/aji.13099 PubMed DOI

Rahman S, Sagar D, Hanna RN, Lightfoot YL, Mistry P, Smith CK, et al. . Low-density granulocytes activate T cells and demonstrate a non-suppressive role in systemic lupus erythematosus. Ann Rheum Dis. (2019) 78:957–66. doi: 10.1136/annrheumdis-2018-214620 PubMed DOI PMC

Wang X, Qiu L, Li Z, Wang XY, Yi H. Understanding the multifaceted role of neutrophils in cancer and autoimmune diseases. Front Immunol. (2018) 9:2456. doi: 10.3389/fimmu.2018.02456 PubMed DOI PMC

Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM, et al. . Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol Baltim Md. (2011) 187:538–52. doi: 10.4049/jimmunol.1100450 PubMed DOI PMC

Matthews NC, Burton CS, Alfred A. Low-density neutrophils in chronic graft versus host disease (cGVHD) are primarily immature CD10- and enhance T cell activation. Clin Exp Immunol. (2021) 205:257–73. doi: 10.1111/cei.13612 PubMed DOI PMC

Vlkova M, Chovancova Z, Nechvatalova J, Connelly AN, Davis MD, Slanina P, et al. . Neutrophil and granulocytic myeloid-derived suppressor cell-mediated T cell suppression significantly contributes to immune dysregulation in common variable immunodeficiency disorders. J Immunol Baltim Md. (2019) 202:93–104. doi: 10.4049/jimmunol.1800102 PubMed DOI

Jimenez RV, Kuznetsova V, Connelly AN, Hel Z, Szalai AJ. C-reactive protein promotes the expansion of myeloid derived cells with suppressor functions. Front Immunol. (2019) 10:2183. doi: 10.3389/fimmu.2019.02183 PubMed DOI PMC

Condamine T, Dominguez GA, Youn JI, Kossenkov AV, Mony S, Alicea-Torres K, et al. . Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol. (2016) 1:aaf8943. doi: 10.1126/sciimmunol.aaf8943 PubMed DOI PMC

Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. (2021) 21:485–98. doi: 10.1038/s41577-020-00490-y PubMed DOI PMC

Blanco-Camarillo C, Alemán OR, Rosales C. Low-density neutrophils in healthy individuals display a mature primed phenotype. Front Immunol. (2021) 12:672520. doi: 10.3389/fimmu.2021.672520 PubMed DOI PMC

McLeish KR, Shrestha R, Vashishta A, Rane MJ, Barati MT, Brier ME, et al. . Differential functional responses of neutrophil subsets in severe COVID-19 patients. Front Immunol. (2022) 13:879686. doi: 10.3389/fimmu.2022.879686 PubMed DOI PMC

Ssemaganda A, Kindinger L, Bergin P, Nielsen L, Mpendo J, Ssetaala A, et al. . Characterization of neutrophil subsets in healthy human pregnancies. PloS One. (2014) 9:e85696. doi: 10.1371/journal.pone.0085696 PubMed DOI PMC

Weinhage T, Kölsche T, Rieger-Fackeldey E, Schmitz R, Antoni AC, Ahlmann M, et al. . Cord blood low-density granulocytes correspond to an immature granulocytic subset with low expression of S100A12. J Immunol Baltim Md. (2020) 205:56–66. doi: 10.4049/jimmunol.1901308 PubMed DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif. (2001) 25:402–8. doi: 10.1006/meth.2001.1262 PubMed DOI

Pillay J, Tak T, Kamp VM, Koenderman L. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci CMLS. (2013) 70:3813–27. doi: 10.1007/s00018-013-1286-4 PubMed DOI PMC

Gustafson MP, Lin Y, Maas ML, Van Keulen VP, Johnston PB, Peikert T, et al. . A method for identification and analysis of non-overlapping myeloid immunophenotypes in humans. PloS One. (2015) 10:e0121546. doi: 10.1371/journal.pone.0121546 PubMed DOI PMC

Merah-Mourah F, Cohen SO, Charron D, Mooney N, Haziot A. Identification of novel human monocyte subsets and evidence for phenotypic groups defined by interindividual variations of expression of adhesion molecules. Sci Rep. (2020) 10:4397. doi: 10.1038/s41598-020-61022-1 PubMed DOI PMC

Son GH, Choi SY, Ju YJ, Lee KY, Lee JJ, Song JE, et al. . Whole blood RNA sequencing reveals a differential transcriptomic profile associated with cervical insufficiency: a pilot study. Reprod Biol Endocrinol RBE. (2021) 19:32. doi: 10.1186/s12958-021-00715-2 PubMed DOI PMC

Lucovnik M, Kornhauser-Cerar L, Premru-Srsen T, Gmeiner-Stopar T, Derganc M. Neutrophil defensins but not interleukin-6 in vaginal fluid after preterm premature rupture of membranes predict fetal/neonatal inflammation and infant neurological impairment. Acta Obstet Gynecol Scand. (2011) 90:908–16. doi: 10.1111/j.1600-0412.2011.01177.x PubMed DOI

Kalva-Borato DC, Ribas JT, Parabocz GC, Borba LM, Maciel MAS, Santos FAD, et al. . Biomarkers in non-complicated pregnancy: insights about serum myeloperoxidase and ultrasensitive C-reactive protein. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Ger Diabetes Assoc. (2019) 127:585–9. doi: 10.1055/a-0777-2090 PubMed DOI

Li W, Mata KM, Mazzuca MQ, Khalil RA. Altered matrix metalloproteinase-2 and -9 expression/activity links placental ischemia and anti-angiogenic sFlt-1 to uteroplacental and vascular remodeling and collagen deposition in hypertensive pregnancy. Biochem Pharmacol. (2014) 89:370–85. doi: 10.1016/j.bcp.2014.03.017 PubMed DOI PMC

Tirone C, Boccacci S, Inzitari R, Tana M, Aurilia C, Fanali C, et al. . Correlation of levels of α–defensins determined by HPLC-ESI-MS in bronchoalveolar lavage fluid with the diagnosis of pneumonia in premature neonates. Pediatr Res. (2010) 68:140–4. doi: 10.1203/PDR.0b013e3181e5c242 PubMed DOI

Islam MM, Takeyama N. Role of neutrophil extracellular traps in health and disease pathophysiology: recent insights and advances. Int J Mol Sci. (2023) 24:15805. doi: 10.3390/ijms242115805 PubMed DOI PMC

Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. Lactoferrin: A natural glycoprotein involved in iron and inflammatory homeostasis. Int J Mol Sci. (2017) 18:1985. doi: 10.3390/ijms18091985 PubMed DOI PMC

Wang JF, Wang YP, Xie J, Zhao ZZ, Gupta S, Guo Y, et al. . Upregulated PD-L1 delays human neutrophil apoptosis and promotes lung injury in an experimental mouse model of sepsis. Blood. (2021) 138:806–10. doi: 10.1182/blood.2020009417 PubMed DOI

Fallon EA, Biron-Girard BM, Chung CS, Lomas-Neira J, Heffernan DS, Monaghan SF, et al. . A novel role for coinhibitory receptors/checkpoint proteins in the immunopathology of sepsis. J Leukoc Biol. (2018) 103:1151–64. doi: 10.1002/JLB.2MIR0917-377R PubMed DOI PMC

Súkeníková L, Černý V, Novotná O, Petrásková P, Boráková K, Kolářová L, et al. . Different capacity of in vitro generated myeloid dendritic cells of newborns of healthy and allergic mothers to respond to probiotic strain E. coli O83:K24:H31. Immunol Lett. (2017) 189:82–9. doi: 10.1016/j.imlet.2017.05.013 PubMed DOI

Hrdý J, Novotná O, Kocourková I, Prokešová L. Gene expression of subunits of the IL-12 family cytokines in moDCs derived in vitro from the cord blood of children of healthy and allergic mothers. Folia Biol (Praha). (2014) 60:74–82. PubMed

D’Arena G, Musto P, Cascavilla N, Di Giorgio G, Fusilli S, Zendoli F, et al. . Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica. (1998) 83:197–203. PubMed

Chirumbolo S, Ortolani R, Veneri D, Raffaelli R, Peroni D, Pigozzi R, et al. . Lymphocyte phenotypic subsets in umbilical cord blood compared to peripheral blood from related mothers. Cytometry B Clin Cytom. (2011) 80:248–53. doi: 10.1002/cyto.b.20588 PubMed DOI

Romero R, Espinoza J, Gonçalves LF, Kusanovic JP, Friel LA, Nien JK. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med. (2006) 11:317–26. doi: 10.1016/j.siny.2006.05.001 PubMed DOI PMC

Gomez-Lopez N, StLouis D, Lehr MA, Sanchez-Rodriguez EN, Arenas-Hernandez M. Immune cells in term and preterm labor. Cell Mol Immunol. (2014) 11:571–81. doi: 10.1038/cmi.2014.46 PubMed DOI PMC

Shigeoka AO, Santos JI, Hill HR. Functional analysis of neutrophil granulocytes from healthy, infected, and stressed neonates. J Pediatr. (1979) 95:454–60. doi: 10.1016/S0022-3476(79)80535-1 PubMed DOI

Yost CC, Cody MJ, Harris ES, Thornton NL, McInturff AM, Martinez ML, et al. . Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood. (2009) 113:6419–27. doi: 10.1182/blood-2008-07-171629 PubMed DOI PMC

Billert H, Czerniak K, Bednarek E, Kulińska K. Effects of local anesthetics on the respiratory burst of cord blood neutrophils in vitro . Pediatr Res. (2016) 80:258–66. doi: 10.1038/pr.2016.68 PubMed DOI

Makoni M, Eckert J, Anne Pereira H, Nizet V, Lawrence SM. Alterations in neonatal neutrophil function attributable to increased immature forms. Early Hum Dev. (2016) 103:1–7. doi: 10.1016/j.earlhumdev.2016.05.016 PubMed DOI PMC

Mathias B, Mira JC, Rehfuss JP, Rincon JC, Ungaro R, Nacionales DC, et al. . LPS stimulation of cord blood reveals a newborn-specific neutrophil transcriptomic response and cytokine production. Shock Augusta Ga. (2017) 47:606–14. doi: 10.1097/SHK.0000000000000800 PubMed DOI PMC

Prabhu SB, Rathore DK, Nair D, Chaudhary A, Raza S, Kanodia P, et al. . Comparison of human neonatal and adult blood leukocyte subset composition phenotypes. PloS One. (2016) 11:e0162242. doi: 10.1371/journal.pone.0162242 PubMed DOI PMC

Lawrence SM, Corriden R, Nizet V. Age-appropriate functions and dysfunctions of the neonatal neutrophil. Front Pediatr. (2017) 5:23. doi: 10.3389/fped.2017.00023 PubMed DOI PMC

Hashem HE, Abdel Halim RM, El Masry SA, Mokhtar AM, Abdelaal NM. The utility of neutrophil CD64 and presepsin as diagnostic, prognostic, and monitoring biomarkers in neonatal sepsis. Int J Microbiol. (2020) 2020:8814892. doi: 10.1155/2020/8814892 PubMed DOI PMC

Injarabian L, Devin A, Ransac S, Marteyn BS. Neutrophil Metabolic Shift during their Lifecycle: Impact on their Survival and Activation. Int J Mol Sci. (2019) 21:287. doi: 10.3390/ijms21010287 PubMed DOI PMC

Chen J, Khalil RA. Matrix metalloproteinases in normal pregnancy and preeclampsia. Prog Mol Biol Transl Sci. (2017) 148:87–165. doi: 10.1016/bs.pmbts.2017.04.001 PubMed DOI PMC

Bowers NL, Helton ES, Huijbregts RPH, Goepfert PA, Heath SL, Hel Z. Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PloS Pathog. (2014) 10:e1003993. doi: 10.1371/journal.ppat.1003993 PubMed DOI PMC

Tamadaho RSE, Hoerauf A, Layland LE. Immunomodulatory effects of myeloid-derived suppressor cells in diseases: Role in cancer and infections. Immunobiology. (2018) 223:432–42. doi: 10.1016/j.imbio.2017.07.001 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...