The Role of Salicylic Acid in Plants Exposed to Heavy Metals
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31991931
PubMed Central
PMC7037467
DOI
10.3390/molecules25030540
PII: molecules25030540
Knihovny.cz E-zdroje
- Klíčová slova
- metal pollution, metal toxicity, ortho-hydroxybenzoic acid, plant hormone, polyphenols, signaling compound,
- MeSH
- antioxidancia metabolismus MeSH
- fyziologický stres MeSH
- kyselina salicylová chemie metabolismus MeSH
- metabolické sítě a dráhy MeSH
- molekulární struktura MeSH
- oxidační stres MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostliny účinky léků metabolismus MeSH
- těžké kovy škodlivé účinky chemie metabolismus MeSH
- vystavení vlivu životního prostředí * škodlivé účinky MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- kyselina salicylová MeSH
- reaktivní formy kyslíku MeSH
- těžké kovy MeSH
Salicylic acid (SA) is a very simple phenolic compound (a C7H6O3 compound composed of an aromatic ring, one carboxylic and a hydroxyl group) and this simplicity contrasts with its high versatility and the involvement of SA in several plant processes either in optimal conditions or in plants facing environmental cues, including heavy metal (HM) stress. Nowadays, a huge body of evidence has unveiled that SA plays a pivotal role as plant growth regulator and influences intra- and inter-plant communication attributable to its methyl ester form, methyl salicylate, which is highly volatile. Under stress, including HM stress, SA interacts with other plant hormones (e.g., auxins, abscisic acid, gibberellin) and promotes the stimulation of antioxidant compounds and enzymes thereby alerting HM-treated plants and helping in counteracting HM stress. The present literature survey reviews recent literature concerning the roles of SA in plants suffering from HM stress with the aim of providing a comprehensive picture about SA and HM, in order to orientate the direction of future research on this topic.
Amity Institute of Organic Agriculture Amity University Uttar Pradesh Noida 201313 India
CIRSEC Centre for Climatic Change Impact University of Pisa Via del Borghetto 80 1 56124 Pisa Italy
Department of Agriculture Food and Environment University of Pisa Pisa Italy
Mehr Chand Mahajan D A 5 College for Women Chandigarh 160036 India
School of Land and Food University of Tasmania Hobart Tasmania 7005 Australia
State Key Laboratory of Subtropical Silviculture Zhejiang A and F University Hangzhou 311300 China
Zobrazit více v PubMed
Chen Z., Zheng Z., Huang J., Lai Z., Fan B. Biosynthesis of salicylic acid in plants. Plant Sign. Behav. 2009;4:493–496. doi: 10.4161/psb.4.6.8392. PubMed DOI PMC
Wani A.B., Chadar H., Wani A.H., Singh S., Upadhyay N. Salicylic acid to decrease plant stress. Environ. Chem. Lett. 2017;15:101–123. doi: 10.1007/s10311-016-0584-0. DOI
Lovelock D.A., Šola I., Marschollek S., Donald C.E., Rusak G., van Pée K.H., Ludwig-Müller J., Cahill D.M. Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease. Molecul. Plant Pathol. 2016;17:1237–1251. doi: 10.1111/mpp.12361. PubMed DOI PMC
Maruri-López I., Aviles-Baltazar N.Y., Buchala A., Serrano M. Intra and extracellular journey of the phytohormone salicylic acid. Front. Plant Sci. 2019;10:423. doi: 10.3389/fpls.2019.00423. PubMed DOI PMC
Raskin I. Role of salicylic acid in plants. Annu. Rev. Plant Biol. 1992;43:439–463. doi: 10.1146/annurev.pp.43.060192.002255. DOI
Muthulakshmi S., Lingakumar K. Role of salicylic acid (SA) in plants—A review. Int. J. Appl. Res. 2017;3:33–37.
Foster S. Tyler’s Honest Herbal: A Sensible Guide to the Use of Herbs and Related Remedies. Routledge; New York, NY, USA: 1999.
Petrek J., Havel L., Petrlova J., Adam V., Potesil D., Babula P., Kizek R. Analysis of salicylic acid in willow barks and branches by an electrochemical method. Russ. J. Plant Physiol. 2007;54:553–558. doi: 10.1134/S1021443707040188. DOI
Arif H., Aggarwal S. Salicylic Acid (Aspirin) StatPearls Publishing LLC.; Tampa, FL, USA: St. Petersburg, Russia: 2019. PubMed
Shine M., Yang J.W., El-Habbak M., Nagyabhyru P., Fu D.Q., Navarre D., Ghabrial S., Kachroo P., Kachroo A. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytol. 2016;212:627–636. doi: 10.1111/nph.14078. PubMed DOI
Zhang Y., Fu X., Hao X., Zhang L., Wang L., Qian H., Zhao J. Molecular cloning and promoter analysis of the specific salicylic acid biosynthetic pathway gene phenylalanine ammonia-lyase (AaPAL1) from Artemisia annua. Biotech. Appl. Biochem. 2016;63:514–524. doi: 10.1002/bab.1403. PubMed DOI
Chong J., Pierrel M.-A., Atanassova R., Werck-Reichhart D., Fritig B., Saindrenan P. Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant Physiol. 2001;125:318–328. doi: 10.1104/pp.125.1.318. PubMed DOI PMC
Hayat S., Ali B., Ahmad A. Salicylic Acid: A Plant Hormone. Springer; Dordrecht, The Netherlands: 2007. Salicylic acid: Biosynthesis, metabolism and physiological role in plants; pp. 1–14.
Yalpani N., León J., Lawton M.A., Raskin I. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol. 1993;103:315–321. doi: 10.1104/pp.103.2.315. PubMed DOI PMC
Silverman P., Seskar M., Kanter D., Schweizer P., Metraux J.-P., Raskin I. Salicylic acid in rice (biosynthesis, conjugation, and possible role) Plant Physiol. 1995;108:633–639. doi: 10.1104/pp.108.2.633. PubMed DOI PMC
Métraux J.-P. Recent breakthroughs in the study of salicylic acid biosynthesis. Trends Plant Sci. 2002;7:332–334. doi: 10.1016/S1360-1385(02)02313-0. PubMed DOI
Garcion C., Lohmann A., Lamodière E., Catinot J., Buchala A., Doermann P., Métraux J.-P. Characterization and biological function of the Isochorismate Synthase2 gene of Arabidopsis. Plant Physiol. 2008;147:1279–1287. doi: 10.1104/pp.108.119420. PubMed DOI PMC
Rekhter D., Lüdke D., Ding Y., Feussner K., Zienkiewicz K., Lipka V., Wiermer M., Zhang Y., Feussner I. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science. 2019;365:498–502. doi: 10.1126/science.aaw1720. PubMed DOI
Wei Y., Liu G., Chang Y., He C., Shi H. Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signalling in cassava. Mol. Plant Pathol. 2018;19:2209–2220. doi: 10.1111/mpp.12691. PubMed DOI PMC
Hartmann M., Zeier J. N-Hydroxypipecolic acid and salicylic acid: A metabolic duo for systemic acquired resistance. Curr. Opin. Plant Biol. 2019;50:44–57. doi: 10.1016/j.pbi.2019.02.006. PubMed DOI
El-Shazoly R.M., Metwally A.A., Hamada A.M. Salicylic acid or thiamin increases tolerance to boron toxicity stress in wheat. J. Plant Nutr. 2019;42:702–722. doi: 10.1080/01904167.2018.1549670. DOI
Luo J., Xia W., Cao P., Xiao Z.A., Zhang Y., Liu M., Zhan C., Wang N. Integrated transcriptome analysis reveals plant hormones jasmonic acid and salicylic acid coordinate growth and defense responses upon fungal infection in poplar. Biomolecules. 2019;9:12. doi: 10.3390/biom9010012. PubMed DOI PMC
Pasternak T., Groot E.P., Kazantsev F.V., Teale W., Omelyanchuk N., Kovrizhnykh V., Palme K., Mironova V.V. Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiol. 2019;180:1725–1739. doi: 10.1104/pp.19.00130. PubMed DOI PMC
Cleland C.F., Ajami A. Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid. Plant Physiol. 1974;54:904–906. doi: 10.1104/pp.54.6.904. PubMed DOI PMC
Raskin I., Skubatz H., Tang W., Meeuse B.J. Salicylic acid levels in thermogenic and non-thermogenic plants. Ann. Bot. 1990;66:369–373. doi: 10.1093/oxfordjournals.aob.a088037. DOI
Dempsey D.M.A., Klessig D.F. How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biol. 2017;15:23. doi: 10.1186/s12915-017-0364-8. PubMed DOI PMC
Klessig D.F., Choi H.W., Dempsey D.M.A. Systemic acquired resistance and salicylic acid: Past, present, and future. Mol. Plant-Microbe Interact. 2018;31:871–888. doi: 10.1094/MPMI-03-18-0067-CR. PubMed DOI
Subban K., Subramani R., Srinivasan V.P.M., Johnpaul M., Chelliah J. Salicylic acid as an effective elicitor for improved taxol production in endophytic fungus Pestalotiopsis microspora. PLoS ONE. 2019;14:e0212736. doi: 10.1371/journal.pone.0212736. PubMed DOI PMC
Tripathi D., Raikhy G., Kumar D. Chemical elicitors of systemic acquired resistance—Salicylic acid and its functional analogs. Curr. Plant Biol. 2019;17:48–59. doi: 10.1016/j.cpb.2019.03.002. DOI
Nadeem M., Ahmad W., Zahir A., Hano C., Abbasi B.H. Salicylic acid-enhanced biosynthesis of pharmacologically important lignans and neo lignans in cell suspension culture of Linum ussitatsimum L. Eng. Life Sci. 2019;19:168–174. doi: 10.1002/elsc.201800095. PubMed DOI PMC
Li N., Han X., Feng D., Yuan D., Huang L.-J. Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: Do we understand what they are whispering? Int. J. Mol. Sci. 2019;20:671. doi: 10.3390/ijms20030671. PubMed DOI PMC
Safari F., Akramian M., Salehi-Arjmand H., Khadivi A. Physiological and molecular mechanisms underlying salicylic acid-mitigated mercury toxicity in lemon balm (Melissa officinalis L.) Ecotoxic Environ. Safety. 2019;183:109542. doi: 10.1016/j.ecoenv.2019.109542. PubMed DOI
Dalvi A.A., Bhalerao S.A. Response of plants towards heavy metal toxicity: An overview of avoidance, tolerance and uptake mechanism. Ann. Plant. Sci. 2013;2:362–368.
Shi G., Cai Q., Liu Q., Wu L. Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiol. Plant. 2009;31:969–977. doi: 10.1007/s11738-009-0312-5. DOI
Wang C., Zhang S., Wang P., Hou J., Qian J., Ao Y., Lu J., Li L. Salicylic acid involved in the regulation of nutrient elements uptake and oxidative stress in Vallisneria natans (Lour.) Hara under Pb stress. Chemosphere. 2011;84:136–142. doi: 10.1016/j.chemosphere.2011.02.026. PubMed DOI
Wei T., Lv X., Jia H., Hua L., Xu H., Zhou R., Zhao J., Ren X., Guo J. Effects of salicylic acid, Fe (II) and plant growth-promoting bacteria on Cd accumulation and toxicity alleviation of Cd tolerant and sensitive tomato genotypes. J. Environ. Manag. 2018;214:164–171. doi: 10.1016/j.jenvman.2018.02.100. PubMed DOI
Kohli S.K., Handa N., Sharma A., Gautam V., Arora S., Bhardwaj R., Alyemeni M.N., Wijaya L., Ahmad P. Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. seedlings. Protoplasma. 2018;255:11–24. doi: 10.1007/s00709-017-1124-x. PubMed DOI
Guo J., Zhou R., Ren X., Jia H., Hua L., Xu H., Lv X., Zhao J., Wei T. Effects of salicylic acid, Epi-brassinolide and calcium on stress alleviation and Cd accumulation in tomato plants. Ecotoxic. Environ. Saf. 2018;157:491–496. doi: 10.1016/j.ecoenv.2018.04.010. PubMed DOI
Malik Z.A., Lal E.P., Mir Z.A., Lone A.H. Effect of salicyclic acid and indole acetic acid on tomato crop under induced salinity and cadmium stressed environment: A Review. Int. J. Plant Soil Sci. 2018;26:1–6. doi: 10.9734/ijpss/2018/v26i530052. DOI
Mohamed H.E., Hassan A.M. Role of salicylic acid in alleviating cobalt toxicity in wheat (Triticum aestivum L.) seedlings. J. Agric. Sci. 2019;11 doi: 10.5539/jas.v11n10p112. DOI
Mostofa M.G., Rahman M., Ansary M., Uddin M., Fujita M., Tran L.-S.P. Interactive effects of salicylic acid and nitric oxide in enhancing rice tolerance to cadmium stress. Int. J. Mol. Sci. 2019;20:5798. doi: 10.3390/ijms20225798. PubMed DOI PMC
Wang Y.-Y., Wang Y., Li G.-Z., Hao L. Salicylic acid-altering Arabidopsis plant response to cadmium exposure: Underlying mechanisms affecting antioxidation and photosynthesis-related processes. Ecotoxicol. Environ. Safety. 2019;169:645–653. doi: 10.1016/j.ecoenv.2018.11.062. PubMed DOI
Belkadhi A., De Haro A., Obregon S., Chaïbi W., Djebali W. Positive effects of salicylic acid pretreatment on the composition of flax plastidial membrane lipids under cadmium stress. Environ. Sci. Poll. Res. 2015;22:1457–1467. doi: 10.1007/s11356-014-3475-6. PubMed DOI
Tamás L., Mistrík I., Alemayehu A., Zelinová V., Bočová B., Huttová J. Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips. J. Plant Physiol. 2015;173:1–8. doi: 10.1016/j.jplph.2014.08.018. PubMed DOI
Cui W., Li L., Gao Z., Wu H., Xie Y., Shen W. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa. J. Exp. Bot. 2012;63:5521–5534. doi: 10.1093/jxb/ers201. PubMed DOI PMC
Tahjib-Ul-Arif M., Siddiqui M.N., Sohag A.A.M., Sakil M.A., Rahman M.M., Polash M.A.S., Mostofa M.G., Tran L.-S.P. Salicylic acid-mediated enhancement of photosynthesis attributes and antioxidant capacity contributes to yield improvement of maize plants under salt stress. J. Plant Grow. Regul. 2018;37:1318–1330. doi: 10.1007/s00344-018-9867-y. DOI
Yin Q.-S., Yuan X., Jiang Y.-G., Huang L.-L., Li G.-Z., Hao L. Salicylic acid-mediated alleviation in NO2 phytotoxicity correlated to increased expression levels of the genes related to photosynthesis and carbon metabolism in Arabidopsis. Environ. Exp. Bot. 2018;156:141–150. doi: 10.1016/j.envexpbot.2018.09.010. DOI
Adrees M., Ali S., Rizwan M., Ibrahim M., Abbas F., Farid M., Zia-ur-Rehman M., Irshad M.K., Bharwana S.A. The effect of excess copper on growth and physiology of important food crops: A review. Environ. Sci. Poll. Res. 2015;22:8148–8162. doi: 10.1007/s11356-015-4496-5. PubMed DOI
Pinto A., De Varennes A., Fonseca R., Teixeira D.M. Phytoremediation. Springer; Dordrecht, The Netherlands: 2015. Phytoremediation of soils contaminated with heavy metals: Techniques and strategies; pp. 133–155.
Kumar A., Usmani Z., Ahirwal J., Rani P. Phytomanagement of Polluted Sites. Elsevier; Amsterdam, The Neitherland: 2019. Phytomanagement of chromium contaminated brown fields; pp. 447–469.
Park J.H., Lamb D., Paneerselvam P., Choppala G., Bolan N., Chung J.-W. Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. J. Haz. Mat. 2011;185:549–574. doi: 10.1016/j.jhazmat.2010.09.082. PubMed DOI
Kumar V., Sharma A., Kaur P., Sidhu G.P.S., Bali A.S., Bhardwaj R., Thukral A.K., Cerda A. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere. 2019;216:449–462. doi: 10.1016/j.chemosphere.2018.10.066. PubMed DOI
Sidhu G.P.S., Singh H.P., Batish D.R., Kohli R.K. Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus. Plant Physiol. Biochem. 2016;105:290–296. doi: 10.1016/j.plaphy.2016.05.019. PubMed DOI
Sidhu G.P.S., Singh H.P., Batish D.R., Kohli R.K. Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm.(Brassicaceae) Ecotox. Environ. Safety. 2017;135:209–215. doi: 10.1016/j.ecoenv.2016.10.001. PubMed DOI
Sidhu G.P.S., Singh H.P., Batish D.R., Kohli R.K. Appraising the role of environment friendly chelants in alleviating lead by Coronopus didymus from Pb-contaminated soils. Chemosphere. 2017;182:129–136. doi: 10.1016/j.chemosphere.2017.05.026. PubMed DOI
Keesstra S., Mol G., de Leeuw J., Okx J., de Cleen M., Visser S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land. 2018;7:133. doi: 10.3390/land7040133. DOI
Ramzani P.M.A., Iqbal M., Kausar S., Ali S., Rizwan M., Virk Z.A. Effect of different amendments on rice (Oryza sativa L.) growth, yield, nutrient uptake and grain quality in Ni-contaminated soil. Environ. Sci. Poll. Res. 2016;23:18585–18595. doi: 10.1007/s11356-016-7038-x. PubMed DOI
Ihedioha J., Ukoha P., Ekere N. Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria. Environ. Geochem. Health. 2017;39:497–515. doi: 10.1007/s10653-016-9830-4. PubMed DOI
Van Nevel L., Mertens J., Staelens J., de Schrijver A., Tack F.M., de Neve S., Meers E., Verheyen K. Elevated Cd and Zn uptake by aspen limits the phytostabilization potential compared to five other tree species. Ecol. Eng. 2011;37:1072–1080. doi: 10.1016/j.ecoleng.2010.07.010. DOI
Arshad T., Maqbool N., Javed F., Wahid A., Arshad M.U. Enhancing the defensive mechanism of lead affected barley (Hordeum vulgare L.) genotypes by exogenously applied salicylic acid. J. Agric. Sci. 2017;9:139–146. doi: 10.5539/jas.v9n2p139. DOI
Foyer C.H., Noctor G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17:1866–1875. doi: 10.1105/tpc.105.033589. PubMed DOI PMC
Guerra F., Gainza F., Pérez R., Zamudio F. Handbook of Phytoremediation. Nova Science; New York, NY, USA: 2011. Phytoremediation of heavy metals using poplars (Populus spp.): A glimpse of the plant responses to copper, cadmium and zinc stress; pp. 387–413.
Rascio N., Dalla Vecchia F., La Rocca N., Barbato R., Pagliano C., Raviolo M., Gonnelli C., Gabbrielli R. Metal accumulation and damage in rice (cv. Vialone nano) seedlings exposed to cadmium. Environ. Exp. Bot. 2008;62:267–278. doi: 10.1016/j.envexpbot.2007.09.002. DOI
Baryla A., Carrier P., Franck F., Coulomb C., Sahut C., Havaux M. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: Causes and consequences for photosynthesis and growth. Planta. 2001;212:696–709. doi: 10.1007/s004250000439. PubMed DOI
Di Cagno R., Guidi L., De Gara L., Soldatini G. Combined cadmium and ozone treatments affect photosynthesis and ascorbate-dependent defences in sunflower. New Phytol. 2001;151:627–636. doi: 10.1046/j.1469-8137.2001.00217.x. PubMed DOI
Küpper H., Parameswaran A., Leitenmaier B., Trtílek M., Šetlík I. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol. 2007;175:655–674. doi: 10.1111/j.1469-8137.2007.02139.x. PubMed DOI
TRAN T.A., Popova L.P. Functions and toxicity of cadmium in plants: Recent advances and future prospects. Turkish J. Bot. 2013;37:1–13.
Wahid A., Ghani A., Javed F. Effect of cadmium on photosynthesis, nutrition and growth of mungbean. Agr. Sustain. Develop. 2008;28:273–280. doi: 10.1051/agro:2008010. DOI
Tandon P.K., Srivastava P. Growth and metabolism of sesame (Sesamum indicum L.) plants in relation to lead toxicity. Agricul. Sci. 2014;6:91–92.
Rascio N., Navari-Izzo F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011;180:169–181. doi: 10.1016/j.plantsci.2010.08.016. PubMed DOI
Kadukova J., Kavuličova J. Phytoremediation of heavy metal contaminated soils—Plant stress assessment. Handbook of Phytoremediation. Nova Science; New York, NY, USA: 2011. pp. 185–222.
Baxter A., Mittler R., Suzuki N. ROS as key players in plant stress signalling. J. Exp. Bot. 2014;65:1229–1240. doi: 10.1093/jxb/ert375. PubMed DOI
Mittler R. ROS are good. Trends Plant Sci. 2017;22:11–19. doi: 10.1016/j.tplants.2016.08.002. PubMed DOI
Cotrozzi L., Pellegrini E., Guidi L., Landi M., Lorenzini G., Massai R., Remorini D., Tonelli M., Trivellini A., Vernieri P., et al. Losing the warning signal: Drought compromises the cross-talk of signaling molecules in Quercus ilex exposed to ozone. Front. Plant Sci. 2017;8:1020. doi: 10.3389/fpls.2017.01020. PubMed DOI PMC
Landi M., Cotrozzi L., Pellegrini E., Remorini D., Tonelli M., Trivellini A., Nali C., Guidi L., Massai R., Vernieri P., et al. When “thirsty” means “less able to activate the signalling wave trigged by a pulse of ozone”: A case of study in two Mediterranean deciduous oak species with different drought sensitivity. Sci. Total Environ. 2019;657:379–390. doi: 10.1016/j.scitotenv.2018.12.012. PubMed DOI
Kaur G., Singh H.P., Batish D.R., Kohli R.K. Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots. Protoplasma. 2013;250:53–62. doi: 10.1007/s00709-011-0372-4. PubMed DOI
Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014;2:53. doi: 10.3389/fenvs.2014.00053. DOI
Miura K., Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci. 2014;5:4. doi: 10.3389/fpls.2014.00004. PubMed DOI PMC
Mohsenzadeh S., Shahrtash M., Mohabatkar H. Interactive effects of salicylic acid and silicon on some physiological responses of cadmium-stressed maize seedlings. Iranian J. Sci. Tech. (Sciences) 2011;35:57–60.
Vlot A.C., Dempsey D.M.A., Klessig D.F. Salicylic acid, a multifaceted hormone to combat disease. Ann. Rev. Phytopathol. 2009;47:177–206. doi: 10.1146/annurev.phyto.050908.135202. PubMed DOI
Khan M.I.R., Iqbal N., Masood A., Per T.S., Khan N.A. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Sign. Behav. 2013;8:e26374. doi: 10.4161/psb.26374. PubMed DOI PMC
Hussein M., Balbaa L., Gaballah M. Salicylic acid and salinity effects on growth of maize plants. Res. J. Agricul. Biol. Sci. 2007;3:321–328.
Khokon M.A.R., Okuma E., Hossain M.A., Munemasa S., Uraji M., Nakamura Y., Mori I.C., Murata Y. Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ. 2011;34:434–443. doi: 10.1111/j.1365-3040.2010.02253.x. PubMed DOI
Larque-Saavedra A. Stomatal closure in response to acetylsalicylic acid treatment. Zeitschrift für Pflanzenphysiologie. 1979;93:371–375. doi: 10.1016/S0044-328X(79)80271-8. DOI
Larque-Saavedra A. The antiranspirant effect of acetylsalcylic acid on Phaseolus vulgaris. Physiol. Plant. 1978;43:126–128. doi: 10.1111/j.1399-3054.1978.tb01579.x. DOI
Alaey M., Babalar M., Naderi R., Kafi M. Effect of pre-and postharvest salicylic acid treatment on physio-chemical attributes in relation to vase-life of rose cut flowers. Postharvest Biol. Technol. 2011;61:91–94. doi: 10.1016/j.postharvbio.2011.02.002. DOI
Divi U.K., Rahman T., Krishna P. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol. 2010;10:151. doi: 10.1186/1471-2229-10-151. PubMed DOI PMC
Wang Y., Hu J., Qin G., Cui H., Wang Q. Salicylic acid analogues with biological activity may induce chilling tolerance of maize (Zea mays) seeds. Botany. 2012;90:845–855. doi: 10.1139/b2012-055. DOI
Zengin F. Effects of exogenous salicylic acid on growth characteristics and biochemical content of wheat seeds under arsenic stress. J. Environ. Biol. 2015;36:249. PubMed
Ghani A., Khan I., Ahmed I., Mustafa I., Abd-Ur R., Muhammad N. Amelioration of lead toxicity in Pisum sativum (L.) by foliar application of salicylic acid. J. Environ. Anal. Toxicol. 2015;5:10–4172.
Gondor O.K., Pál M., Darkó É., Janda T., Szalai G. Salicylic acid and sodium salicylate alleviate cadmium toxicity to different extents in maize (Zea mays L.) PLoS ONE. 2016;11:e0160157. doi: 10.1371/journal.pone.0160157. PubMed DOI PMC
Zhou Z.S., Guo K., Elbaz A.A., Yang Z.M. Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ. Exp. Bot. 2009;65:27–34. doi: 10.1016/j.envexpbot.2008.06.001. DOI
Ahmad P., Nabi G., Ashraf M. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South Afr. J. Bot. 2011;77:36–44.
Islam F., Yasmeen T., Arif M.S., Riaz M., Shahzad S.M., Imran Q., Ali I. Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol. Biochem. 2016;108:456–467. doi: 10.1016/j.plaphy.2016.08.014. PubMed DOI
Song W.Y., Yang H.C., Shao H.B., Zheng A.Z., Brestic M. The alleviative effects of salicylic acid on the activities of catalase and superoxide dismutase in malting barley (Hordeum uhulgare L.) seedling leaves stressed by heavy metals. CLEAN–Soil, Air, Water. 2014;42:88–97. doi: 10.1002/clen.201200310. DOI
Faraz A., Faizan M., Sami F., Siddiqui H., Hayat S. Supplementation of salicylic acid and citric acid for alleviation of cadmium toxicity to Brassica juncea. J. Plant Growth Regul. 2019:1–15. doi: 10.1007/s00344-019-10007-0. DOI
Hasanuzzaman M., Matin M.A., Fardus J., Hasanuzzaman M., Hossain M.S., Parvin K. Foliar application of salicylic acid improves growth and yield attributes by upregulating the antioxidant defense system in Brassica campestris plants grown in lead-amended soils. Acta Agrobot. 2019:72. doi: 10.5586/aa.1765. DOI
Lu Q., Zhang T., Zhang W., Su C., Yang Y., Hu D., Xu Q. Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid. Ecotox. Environ. Saf. 2018;147:500–508. doi: 10.1016/j.ecoenv.2017.09.015. PubMed DOI
Gu C.-S., Yang Y.-H., Shao Y.-F., Wu K.-W., Liu Z.-L. The effects of exogenous salicylic acid on alleviating cadmium toxicity in Nymphaea tetragona Georgi. S. Afr. J. Bot. 2018;114:267–271. doi: 10.1016/j.sajb.2017.11.012. DOI
Li Q., Wang G., Wang Y., Yang D., Guan C., Ji J. Foliar application of salicylic acid alleviate the cadmium toxicity by modulation the reactive oxygen species in potato. Ecotox. Environ. Saf. 2019;172:317–325. doi: 10.1016/j.ecoenv.2019.01.078. PubMed DOI
Tajti J., Németh E., Glatz G., Janda T., Pál M. Pattern of changes in salicylic acid-induced protein kinase (SIPK) gene expression and salicylic acid accumulation in wheat under cadmium exposure. Plant Biol. 2019;21:1176–1180. doi: 10.1111/plb.13032. PubMed DOI
Ahmad B., Jaleel H., Sadiq Y., Khan M.M.A., Shabbir A. Response of exogenous salicylic acid on cadmium induced photosynthetic damage, antioxidant metabolism and essential oil production in peppermint. Plant Growth Regul. 2018;86:273–286. doi: 10.1007/s10725-018-0427-z. DOI
Zanganeh R., Jamei R., Rahmani F. Role of salicylic acid and hydrogen sulfide in promoting lead stress tolerance and regulating free amino acid composition in Zea mays L. Acta Physiol. Plant. 2019;41:94. doi: 10.1007/s11738-019-2892-z. DOI
Alamri S.A.D., Siddiqui M.H., Al-Khaishany M.Y., Ali H.M., Al-Amri A., AlRabiah H.K. Exogenous application of salicylic acid improves tolerance of wheat plants to lead stress. Adv. Agric. Sci. 2018;6:25–35.
Zanganeh R., Jamei R., Rahmani F. Impacts of seed priming with salicylic acid and sodium hydrosulfide on possible metabolic pathway of two amino acids in maize plant under lead stress. Mol. Biol. Res. Commun. 2018;7:83. PubMed PMC
Mabrouk B., Kâab S., Rezgui M., Majdoub N., da Silva J.T., Kâab L. Salicylic acid alleviates arsenic and zinc toxicity in the process of reserve mobilization in germinating fenugreek (Trigonella foenum-graecum L.) seeds. S. Afr. J. Bot. 2019;124:235–243. doi: 10.1016/j.sajb.2019.05.020. DOI
Kumari A., Pandey N., Pandey-Rai S. Exogenous salicylic acid-mediated modulation of arsenic stress tolerance with enhanced accumulation of secondary metabolites and improved size of glandular trichomes in Artemisia annua L. Protoplasma. 2018;255:139–152. doi: 10.1007/s00709-017-1136-6. PubMed DOI
Kumari A., Pandey-Rai S. Enhanced arsenic tolerance and secondary metabolism by modulation of gene expression and proteome profile in Artemisia annua L. after application of exogenous salicylic acid. Plant Physiol. Biochem. 2018;132:590–602. doi: 10.1016/j.plaphy.2018.10.010. PubMed DOI
Saidi I., Yousfi N., Borgi M.A. Salicylic acid improves the antioxidant ability against arsenic-induced oxidative stress in sunflower (Helianthus annuus) seedling. J. Plant Nutr. 2017;40:2326–2335. doi: 10.1080/01904167.2017.1310888. DOI
Singh A.P., Dixit G., Kumar A., Mishra S., Kumar N., Dixit S., Singh P.K., Dwivedi S., Trivedi P.K., Pandey V. A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.) Plant Physiol. Biochem. 2017;115:163–173. doi: 10.1016/j.plaphy.2017.02.019. PubMed DOI
Sihag S., Brar B., Joshi U. Salicylic acid induces amelioration of chromium toxicity and affects antioxidant enzyme activity in Sorghum bicolor L. Int. J. Phytorem. 2019;21:293–304. doi: 10.1080/15226514.2018.1524827. PubMed DOI
Gill R.A., Zhang N., Ali B., Farooq M.A., Xu J., Gill M.B., Mao B., Zhou W. Role of exogenous salicylic acid in regulating physio-morphic and molecular changes under chromium toxicity in black-and yellow-seeded Brassica napus L. Environ. Sci. Poll. Res. 2016;23:20483–20496. doi: 10.1007/s11356-016-7167-2. PubMed DOI
Huda A.N., Swaraz A., Reza M.A., Haque M.A., Kabir A.H. Remediation of chromium toxicity through exogenous salicylic acid in rice (Oryza sativa L.) Water Air Soil Poll. 2016;227:278. doi: 10.1007/s11270-016-2985-x. DOI
Zaid A., Mohammad F., Wani S.H., Siddique K.M. Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotoxicol. Environ. Saf. 2019;180:575–587. doi: 10.1016/j.ecoenv.2019.05.042. PubMed DOI
Kotapati K.V., Palaka B.K., Ampasala D.R. Alleviation of nickel toxicity in finger millet (Eleusine coracana L.) germinating seedlings by exogenous application of salicylic acid and nitric oxide. Crop J. 2017;5:240–250. doi: 10.1016/j.cj.2016.09.002. DOI
Soltani Maivan E., Radjabian T., Abrishamchi P., Talei D. Physiological and biochemical responses of Melissa officinalis L. to nickel stress and the protective role of salicylic acid. Arch. Agron. Soil Sci. 2017;63:330–343. doi: 10.1080/03650340.2016.1207241. DOI
Karimi N., Ghasempour H.-R. Salicylic acid and jasmonic acid restrains nickel toxicity by ameliorating antioxidant defense system in shoots of metallicolous and non-metallicolous Alyssum inflatum Náyr. Populations. Plant Physiol. Biochem. 2019;135:450–459. PubMed
Mei L., Daud M., Ullah N., Ali S., Khan M., Malik Z., Zhu S. Pretreatment with salicylic acid and ascorbic acid significantly mitigate oxidative stress induced by copper in cotton genotypes. Environ. Sci. Poll. Res. 2015;22:9922–9931. doi: 10.1007/s11356-015-4075-9. PubMed DOI
Moravcová Š., Tůma J., Dučaiová Z.K., Waligórski P., Kula M., Saja D., Słomka A., Bąba W., Libik-Konieczny M. Influence of salicylic acid pretreatment on seeds germination and some defence mechanisms of Zea mays plants under copper stress. Plant Physiol. Biochem. 2018;122:19–30. doi: 10.1016/j.plaphy.2017.11.007. PubMed DOI
Ventrella A., Catucci L., Piletska E., Piletsky S., Agostiano A. Interactions between heavy metals and photosynthetic materials studied by optical techniques. Bioelectrochemistry. 2009;77:19–25. doi: 10.1016/j.bioelechem.2009.05.002. PubMed DOI
Babu N.G., Sarma P.A., Attitalla I.H., Murthy S. Effect of selected heavy metal ions on the photosynthetic electron transport and energy transfer in the thylakoid membrane of the cyanobacterium, Spirulina platensis. Acad. J. Plant Sci. 2010;3:46–49.
Chugh L.K., Sawhney S.K. Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol. Biochem. 1999;37:297–303. doi: 10.1016/S0981-9428(99)80028-X. DOI
Khan N., Samiullah Singh S., Nazar R. Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J. Agron. Crop Sci. 2007;193:435–444. doi: 10.1111/j.1439-037X.2007.00272.x. DOI
Yusuf M., Fariduddin Q., Varshney P., Ahmad A. Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environ. Sci. Poll. Res. 2012;19:8–18. doi: 10.1007/s11356-011-0531-3. PubMed DOI
Rivas-San Vicente M., Plasencia J. Salicylic acid beyond defence: Its role in plant growth and development. J. Exp. Bot. 2011;62:3321–3338. doi: 10.1093/jxb/err031. PubMed DOI
Moussa H., El-Gamal S.M. Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biol. Plant. 2010;54:315–320. doi: 10.1007/s10535-010-0054-7. DOI
Parashar A., Yusuf M., Fariduddin Q., Ahmad A. Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese. Int. J. Biol. Macromol. 2014;70:551–558. doi: 10.1016/j.ijbiomac.2014.07.014. PubMed DOI
Yadav S. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 2010;76:167–179. doi: 10.1016/j.sajb.2009.10.007. DOI
Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI
Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012;2012:217037. doi: 10.1155/2012/217037. DOI
Zhang Y., Xu S., Yang S., Chen Y. Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.) Protoplasma. 2015;252:911–924. doi: 10.1007/s00709-014-0732-y. PubMed DOI
Chao Y.-Y., Chen C.-Y., Huang W.-D., Kao C.H. Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant Soil. 2010;329:327–337. doi: 10.1007/s11104-009-0161-4. DOI
Liang Y., Chen Q., Liu Q., Zhang W., Ding R. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.) J. Plant Physiol. 2003;160:1157–1164. doi: 10.1078/0176-1617-01065. PubMed DOI
Verbruggen N., Hermans C. Proline accumulation in plants: A review. Amino Acids. 2008;35:753–759. doi: 10.1007/s00726-008-0061-6. PubMed DOI
Zouari M., Ahmed C.B., Elloumi N., Bellassoued K., Delmail D., Labrousse P., Abdallah F.B., Rouina B.B. Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress. Ecotoxicol. Environ. Saf. 2016;128:195–205. doi: 10.1016/j.ecoenv.2016.02.024. PubMed DOI
Zouari M., Ahmed C.B., Zorrig W., Elloumi N., Rabhi M., Delmail D., Rouina B.B., Labrousse P., Abdallah F.B. Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity, water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.) Ecotoxicol. Environ. Saf. 2016;128:100–108. doi: 10.1016/j.ecoenv.2016.02.015. PubMed DOI
Misra N., Saxena P. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci. 2009;177:181–189. doi: 10.1016/j.plantsci.2009.05.007. DOI
Zengin F.K., Munzuroglu O. Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol. Cracov. Bot. 2005;47:157–164.
Chen C., Dickman M.B. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc. Natl. Acad. Sci. USA. 2005;102:3459–3464. doi: 10.1073/pnas.0407960102. PubMed DOI PMC
Szabados L., Savoure A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010;15:89–97. doi: 10.1016/j.tplants.2009.11.009. PubMed DOI
Zanganeh R., Jamei R., Rahmani F. Modulation of growth and oxidative stress by seed priming with salicylic acid in Zea mays L. under lead stress. J. Plant Inter. 2019;14:369–375. doi: 10.1080/17429145.2019.1629032. DOI
Mostofa M.G., Fujita M., Tran L.-S.P. Nitric oxide mediates hydrogen peroxide-and salicylic acid-induced salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regul. 2015;77:265–277. doi: 10.1007/s10725-015-0061-y. DOI
Raza S., Aown M., Saleem M.F., Jamil M., Khan I.H. Impact of foliar applied glycinebetaine on growth and physiology of wheat (Triticum aestivum L.) under drought conditions. Pak. J. Agric. Sci. 2014;51:327–334.
Jabeen N., Abbas Z., Iqbal M., Rizwan M., Jabbar A., Farid M., Ali S., Ibrahim M., Abbas F. Glycinebetaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Arch. Agron. Soil Sci. 2016;62:648–662. doi: 10.1080/03650340.2015.1082032. DOI
Cao F., Liu L., Ibrahim W., Cai Y., Wu F. Alleviating effects of exogenous glutathione, glycinebetaine, brassinosteroids and salicylic acid on cadmium toxicity in rice seedlings (Oryza sativa) Agrotechnology. 2013;2:107–112. doi: 10.4172/2168-9881.1000107. DOI
Aldesuquy H.S., Abbas M.A., Abo-Hamed S.A., Elhakem A.H. Does glycine betaine and salicylic acid ameliorate the negative effect of drought on wheat by regulating osmotic adjustment through solutes accumulation? J. Stress Physol. Biochem. 2013;9:5–22.
Misra N., Misra R. Salicylic acid changes plant growth parameters and proline metabolism in Rauwolfia serpentina leaves grown under salinity stress. Am-Eurasian J. Agric. Environ. Sci. 2012;12:1601–1609.
Keunen E., Peshev D., Vangronsveld J., Van Den Ende W., Cuypers A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant Cell Environ. 2013;36:1242–1255. doi: 10.1111/pce.12061. PubMed DOI
Salerno G.L., Curatti L. Origin of sucrose metabolism in higher plants: When, how and why? Trends Plant Sci. 2003;8:63–69. doi: 10.1016/S1360-1385(02)00029-8. PubMed DOI
Muller B., Pantin F., Génard M., Turc O., Freixes S., Piques M., Gibon Y. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 2011;62:1715–1729. doi: 10.1093/jxb/erq438. PubMed DOI
Cheng Y.-J., Yang S.-H., Hsu C.-S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009;109:5868–5923. doi: 10.1021/cr900182s. PubMed DOI
Van den Ende W., Peshev D. Crop Improvement under Adverse Conditions. Springer; Dordrecht, The Netherlands: 2013. Sugars as antioxidants in plants; pp. 285–307.
Luo Y., Su Z., Bi T., Cui X., Lan Q. Salicylic acid improves chilling tolerance by affecting antioxidant enzymes and osmoregulators in sacha inchi (Plukenetia volubilis) Braz. J. Bot. 2014;37:357–363. doi: 10.1007/s40415-014-0067-0. DOI
El-Tayeb M., El-Enany A., Ahmed N. Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.) Plant Growth Regul. 2006;50:191–199. doi: 10.1007/s10725-006-9118-2. DOI
Wasti S., Mimouni H., Smiti S., Zid E., Ben Ahmed H. Enhanced salt tolerance of tomatoes by exogenous salicylic acid applied through rooting medium. OMICS. 2012;16:200–207. doi: 10.1089/omi.2011.0071. PubMed DOI
Nahar K., Hasanuzzaman M., Alam M.M., Rahman A., Suzuki T., Fujita M. Polyamine and nitric oxide crosstalk: Antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol. Environ. Saf. 2016;126:245–255. doi: 10.1016/j.ecoenv.2015.12.026. PubMed DOI
Benavides M.P., Groppa M.D., Recalde L., Verstraeten S.V. Effects of polyamines on cadmium-and copper-mediated alterations in wheat (Triticum aestivum L.) and sunflower (Helianthus annuus L.) seedling membrane fluidity. Arch. Biochem. Biophys. 2018;654:27–39. doi: 10.1016/j.abb.2018.07.008. PubMed DOI
Groppa M.D., Benavides M.P., Tomaro M.L. Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Sci. 2003;164:293–299. doi: 10.1016/S0168-9452(02)00412-0. DOI
Hasanuzzaman M., Nahar K., Fujita M. Plant Adaptation to Environmental Change: Significance of Amino Acids and Their Derivatives. MD University; Haryana, India: 2014. Regulatory role of polyamines in growth, development and abiotic stress tolerance in plants; pp. 157–193.
Liu J.-H., Wang W., Wu H., Gong X., Moriguchi T. Polyamines function in stress tolerance: From synthesis to regulation. Front. Plant Sci. 2015;6:827. doi: 10.3389/fpls.2015.00827. PubMed DOI PMC
Szepesi Á. Interaction between salicylic acid and polyamines and their possible roles in tomato hardening processes. Acta Biol. Szeged. 2011;55:165–166.
Tajti J., Janda T., Majláth I., Szalai G., Pál M. Comparative study on the effects of putrescine and spermidine pre-treatment on cadmium stress in wheat. Ecotoxicol. Environ. Saf. 2018;148:546–554. doi: 10.1016/j.ecoenv.2017.10.068. PubMed DOI
Kaur R., Yadav P., Sharma A., Thukral A.K., Kumar V., Kohli S.K., Bhardwaj R. Castasterone and citric acid treatment restores photosynthetic attributes in Brassica juncea L. under Cd (II) toxicity. Ecotoxicol. Environ. Saf. 2017;145:466–475. doi: 10.1016/j.ecoenv.2017.07.067. PubMed DOI
Kohli S.K., Handa N., Sharma A., Gautam V., Arora S., Bhardwaj R., Wijaya L., Alyemeni M.N., Ahmad P. Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environ. Sci. Poll. Res. 2018;25:15159–15173. doi: 10.1007/s11356-018-1742-7. PubMed DOI
Chen S., Wang Q., Lu H., Li J., Yang D., Liu J., Yan C. Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia obovata under Cd and Zn stress. Ecotoxicol. Environ. Saf. 2019;169:134–143. doi: 10.1016/j.ecoenv.2018.11.004. PubMed DOI
Zafari S., Sharifi M., Chashmi N.A., Mur L.A. Modulation of Pb-induced stress in Prosopis shoots through an interconnected network of signaling molecules, phenolic compounds and amino acids. Plant Physiol. Biochem. 2016;99:11–20. doi: 10.1016/j.plaphy.2015.12.004. PubMed DOI
Nakamura M., Takeuchi Y., Miyanaga K., Seki M., Furusaki S. High anthocyanin accumulation in the dark by strawberry (Fragaria ananassa) callus. Biotechnol. Lett. 1999;21:695–699. doi: 10.1023/A:1005558325058. DOI
Narayan M., Thimmaraju R., Bhagyalakshmi N. Interplay of growth regulators during solid-state and liquid-state batch cultivation of anthocyanin producing cell line of Daucus carota. Process Biochem. 2005;40:351–358. doi: 10.1016/j.procbio.2004.01.009. DOI
Dong J., Wan G., Liang Z. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J. Biotechnol. 2010;148:99–104. doi: 10.1016/j.jbiotec.2010.05.009. PubMed DOI
Kováčik J., Gruz J., Hedbavny J., Klejdus B.I., Strnad M. Cadmium and nickel uptake are differentially modulated by salicylic acid in Matricaria chamomilla plants. J. Agric. Food Chem. 2009;57:9848–9855. doi: 10.1021/jf902645c. PubMed DOI
Horváth E., Szalai G., Janda T. Induction of abiotic stress tolerance by salicylic acid signaling. J. Plant Growth Regul. 2007;26:290–300. doi: 10.1007/s00344-007-9017-4. DOI
Hettiarachchi G.H., Reddy M.K., Sopory S.K., Chattopadhyay S. Regulation of TOP2 by various abiotic stresses including cold and salinity in pea and transgenic tobacco plants. Plant Cell Physiol. 2005;46:1154–1160. doi: 10.1093/pcp/pci114. PubMed DOI
Singh B., Mishra R., Agarwal P.K., Goswami M., Nair S., Sopory S., Reddy M. A pea chloroplast translation elongation factor that is regulated by abiotic factors. Biochem. Byophys. Res. Commun. 2004;320:523–530. doi: 10.1016/j.bbrc.2004.05.192. PubMed DOI
Kovács V., Gondor O.K., Szalai G., Darkó É., Majláth I., Janda T., Pál M. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance. J. Hazard. Mater. 2014;280:12–19. doi: 10.1016/j.jhazmat.2014.07.048. PubMed DOI
Khan M.I.R., Fatma M., Per T.S., Anjum N.A., Khan N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant. Sci. 2015;6:462. doi: 10.3389/fpls.2015.00462. PubMed DOI PMC
Arfan M. Exogenous application of salicylic acid through rooting medium modulates ionaccumulation and antioxidant activity in spring wheat under salt stress. Int. J. Agric. Biol. 2009;11:437–442.
Song W., Zheng A., Shao H.B., Chu L., Brestic M., Zhang Z. The alleviative effect of salicylic acid on the physiological indices of the seedling leaves in six different wheat genotypes under lead stress. Plant Omics J. 2012;5:486–493.
Khan M.I.R., Asgher M., Khan N.A. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.) Plant Physiol. Biochem. 2014;80:67–74. doi: 10.1016/j.plaphy.2014.03.026. PubMed DOI
Iglesias M.J., Terrile M.C., Casalongué C.A. Auxin and salicylic acid signalings counteract the regulation of adaptive responses to stress. Plant Signal. Behav. 2011;6:452–454. doi: 10.4161/psb.6.3.14676. PubMed DOI PMC
Jiang C.-J., Shimono M., Sugano S., Kojima M., Liu X., Inoue H., Sakakibara H., Takatsuji H. Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol. Plant. Microbe. Interact. 2013;26:287–296. doi: 10.1094/MPMI-06-12-0152-R. PubMed DOI
Roghayyeh S., Saeede R., Omid A., Mohammad S. The effect of salicylic acid and gibberellin on seed reserve utilization, germination and enzyme activity of sorghum (Sorghum bicolor L.) seeds under drought stress. J. Stress Physiol. Biochem. 2014;10:5–13.
Jiang C.-J., Shimono M., Sugano S., Kojima M., Yazawa K., Yoshida R., Inoue H., Hayashi N., Sakakibara H., Takatsuji H. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice–Magnaporthe grisea interaction. Mol. Plant. Microbe. Interact. 2010;23:791–798. doi: 10.1094/MPMI-23-6-0791. PubMed DOI
Agtuca B., Rieger E., Hilger K., Song L., Robert C.A., Erb M., Karve A., Ferrieri R.A. Carbon-11 reveals opposing roles of auxin and salicylic acid in regulating leaf physiology, leaf metabolism, and resource allocation patterns that impact root growth in Zea mays. J. Plant Growth Regul. 2014;33:328–339. doi: 10.1007/s00344-013-9379-8. DOI
Thao N.P., Khan M.I.R., Thu N.B.A., Hoang X.L.T., Asgher M., Khan N.A., Tran L.-S.P. Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol. 2015;169:73–84. doi: 10.1104/pp.15.00663. PubMed DOI PMC
Shakirova F., Allagulova C.R., Maslennikova D., Klyuchnikova E., Avalbaev A., Bezrukova M. Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environ. Exp. Bot. 2016;122:19–28. doi: 10.1016/j.envexpbot.2015.08.002. DOI
Per T.S., Khan M.I.R., Anjum N.A., Masood A., Hussain S.J., Khan N.A. Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters. Environ. Exp. Bot. 2018;145:104–120. doi: 10.1016/j.envexpbot.2017.11.004. DOI
Khan M.I.R., Khan N.A. Salicylic acid and jasmonates: Approaches in abiotic stress tolerance. J. Plant Biochem. Physiol. 2013;1:e113. doi: 10.4172/2329-9029.1000e113. DOI
Petersen M., Brodersen P., Naested H., Andreasson E., Lindhart U., Johansen B., Nielsen H.B., Lacy M., Austin M.J., Parker J.E., et al. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell. 2000;103:1111–1120. doi: 10.1016/S0092-8674(00)00213-0. PubMed DOI
Engelberth J., Viswanathan S., Engelberth M.J. Low concentrations of salicylic acid stimulate insect elicitor responses in Zea mays seedlings. J. Chem. Ecol. 2011;37:263–266. doi: 10.1007/s10886-011-9926-3. PubMed DOI
Rostás M., Winter T.R., Borkowski L., Zeier J. Copper and herbivory lead to priming and synergism in phytohormones and plant volatiles in the absence of salicylate-jasmonate antagonism. Plant Signal. Behav. 2013;8:e24264. doi: 10.4161/psb.24264. PubMed DOI PMC
Kumar B., Ram H., Sarlach R.S. Enhancing seed yield and quality of Egyptian clover (Trifolium alexandrinum L.) with foliar application of bio-regulators. Field Crops Res. 2013;146:25–30. doi: 10.1016/j.fcr.2013.03.004. DOI
Canakci S. Effects of salicylic acid on growth, biochemical constituents in pepper (Capsicum annuum L.) seedlings. Pak. J. Biol. Sci. 2011;14:300. doi: 10.3923/pjbs.2011.300.304. PubMed DOI