Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation

. 2018 Jul ; 248 (1) : 19-35. [epub] 20180507

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29736625

Grantová podpora
LO 1417 Ministry of Education, Youth and Sports of the Czech Republic

Odkazy

PubMed 29736625
DOI 10.1007/s00425-018-2906-x
PII: 10.1007/s00425-018-2906-x
Knihovny.cz E-zdroje

This review provides insights into As toxicity in plants with focus on photosynthesis and sugar metabolism as important arsenic targets and simultaneously defence tools against accompanying oxidative stress. Heavy metal contamination is a great problem all over the world. Arsenic, a metalloid occurring naturally in the Earth's crust, also massively spreads out in the environment by human activities. Its accumulation in crops poses a severe health risk to humans and animals. Besides the restriction of human-caused contamination, there are two basic ways how to cope with the problem: first, to limit arsenic accumulation in harvestable parts of the crops; second, to make use of some arsenic hyperaccumulating plants for phytoremediation of contaminated soils and waters. Progress in the use of both strategies depends strongly on the level of our knowledge on the physiological and morphological processes resulting from arsenic exposure. Arsenic uptake is mediated preferentially by P and Si transporters and its accumulation substantially impairs plant metabolism at numerous levels including damages through oxidative stress. Rice is a predominantly studied crop where substantial progress has been made in understanding of the mechanisms of arsenic uptake, distribution, and detoxification, though many questions still remain. Full exploitation of plant potential for soil and water phytoremediations also requires deep understanding of the plant response to this toxic metalloid. The aim of this review is to summarize data regarding the effect of arsenic on plant physiology with a focus on mechanisms providing increased arsenic tolerance and/or hyperaccumulation. The emphasis is placed on the topic unjustifiably neglected in the previous reviews - i.e., carbohydrate metabolism, tightly connected to photosynthesis, and beside others involved in plant ability to cope with arsenic-induced oxidative and nitrosative stresses.

Zobrazit více v PubMed

J Proteomics. 2014 Jun 13;105:46-57 PubMed

Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9931-5 PubMed

Ecotoxicol Environ Saf. 2009 Feb;72(2):626-34 PubMed

New Phytol. 2007;174(2):311-21 PubMed

Curr Opin Plant Biol. 2009 Jun;12(3):364-72 PubMed

New Phytol. 2014 Mar;201(4):1251-62 PubMed

ISME J. 2016 Jan;10 (1):197-209 PubMed

J Exp Bot. 2013 Jan;64(1):303-15 PubMed

Plant Physiol. 2000 Apr;122(4):1171-7 PubMed

J Hazard Mater. 2010 Mar 15;175(1-3):896-914 PubMed

Plant Cell. 2010 Jun;22(6):2045-57 PubMed

Plant Physiol. 1993 Aug;102(4):1163-1169 PubMed

Protoplasma. 2011 Jul;248(3):565-77 PubMed

Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:643-668 PubMed

Plant J. 2006 Mar;45(6):917-29 PubMed

Chemosphere. 2005 Oct;61(2):293-301 PubMed

PLoS One. 2017 Mar 15;12 (3):e0173681 PubMed

Protoplasma. 2011 Oct;248(4):805-15 PubMed

Annu Rev Plant Biol. 2010;61:535-59 PubMed

Chemosphere. 2009 Feb;74(5):688-702 PubMed

Plant Physiol. 2002 Nov;130(3):1552-61 PubMed

Biol Trace Elem Res. 2012 Jun;146(3):360-8 PubMed

Environ Pollut. 2009 Mar;157(3):887-94 PubMed

Talanta. 2002 Aug 16;58(1):181-8 PubMed

Physiol Plant. 2016 Jun;157(2):135-46 PubMed

Nat Plants. 2015 Dec 21;2(1):15202 PubMed

Chemosphere. 2007 Apr;67(6):1072-9 PubMed

Environ Sci Pollut Res Int. 2011 Aug;19(7):3046-53 PubMed

Plant Physiol. 2004 Oct;136(2):3198-208 PubMed

Plant Physiol Biochem. 2016 Jan;98:119-27 PubMed

J Exp Bot. 2013 Apr;64(6):1439-49 PubMed

Plant Physiol. 2011 Sep;157(1):498-508 PubMed

J Exp Bot. 2009;60(1):9-18 PubMed

Trends Plant Sci. 2012 Mar;17(3):155-62 PubMed

Plant Cell Rep. 2007 Nov;26(11):2027-38 PubMed

Environ Pollut. 2017 Apr;223:230-237 PubMed

Front Plant Sci. 2014 Nov 04;5:592 PubMed

Plant Physiol Biochem. 2013 Oct;71:307-14 PubMed

Proc Natl Acad Sci U S A. 2006 Apr 4;103(14 ):5413-8 PubMed

Environ Pollut. 2017 May;224:125-135 PubMed

J Biol Chem. 2009 Jan 23;284(4):2114-20 PubMed

Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15699-704 PubMed

Ann Bot. 2003 Jan;91 Spec No:179-94 PubMed

Front Plant Sci. 2016 Jun 14;7:817 PubMed

New Phytol. 2016 Jan;209(2):762-72 PubMed

Ecotoxicol Environ Saf. 2001 Jun;49(2):111-21 PubMed

Cell Mol Life Sci. 2009 Jul;66(14):2329-39 PubMed

Anal Chim Acta. 2010 Jan 11;657(2):83-99 PubMed

New Phytol. 2009 Mar;181(4):777-94 PubMed

Planta. 2015 May;241(5):1109-18 PubMed

Ecotoxicol Environ Saf. 2017 May;139:344-351 PubMed

J Environ Sci (China). 2007;19(6):725-32 PubMed

Protoplasma. 2012 Jul;249(3):725-36 PubMed

Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):16113-8 PubMed

Plant Cell Environ. 2017 Apr;40(4):462-472 PubMed

Plant Physiol. 2010 Jan;152(1):309-19 PubMed

Plant Physiol. 2008 Jul;147(3):1251-63 PubMed

Ecotoxicol Environ Saf. 2017 Apr;138:199-205 PubMed

Biochemistry. 2012 Jul 10;51(27):5476-85 PubMed

Plant Physiol Biochem. 2017 Mar;112:74-86 PubMed

Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2075-80 PubMed

Plant Physiol. 2009 Aug;150(4):2071-80 PubMed

New Phytol. 2016 Jan;209(2):746-61 PubMed

J Exp Bot. 2013 Feb;64(4):1025-38 PubMed

J Hazard Mater. 2013 Nov 15;262:1123-31 PubMed

J Mol Model. 2012 Sep;18(9):4249-62 PubMed

J Plant Physiol. 2004 Jul;161(7):867-72 PubMed

J Biotechnol. 2002 Nov 13;99(3):259-78 PubMed

Front Plant Sci. 2017 Apr 19;8:516 PubMed

Protoplasma. 2015 Sep;252(5):1217-29 PubMed

Plant Cell. 2007 Mar;19(3):1123-33 PubMed

Plant Cell. 2013 Aug;25(8):2944-57 PubMed

Environ Pollut. 2016 Sep;216:215-222 PubMed

Plant Physiol. 2010 Nov;154(3):1505-13 PubMed

Environ Pollut. 2017 Aug;227:569-577 PubMed

Ecotoxicol Environ Saf. 2009 May;72(4):1102-10 PubMed

J Hazard Mater. 2017 May 15;330:68-75 PubMed

Ecotoxicol Environ Saf. 2013 Apr;90:28-34 PubMed

Mol Plant. 2015 May;8(5):722-33 PubMed

Trends Biotechnol. 2007 Apr;25(4):158-65 PubMed

PLoS One. 2012;7(8):e42408 PubMed

Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279 PubMed

Sci Total Environ. 2002 Feb 4;284(1-3):27-35 PubMed

J Hazard Mater. 2017 Jun 5;331:246-256 PubMed

Sci Rep. 2014 Jul 22;4:5784 PubMed

Physiol Mol Biol Plants. 2015 Jul;21(3):453-8 PubMed

Chemosphere. 2017 May;175:192-199 PubMed

Nat Commun. 2014 Aug 07;5:4617 PubMed

BMC Biol. 2008 Jun 10;6:26 PubMed

Environ Sci Pollut Res Int. 2016 Jun;23 (12 ):11864-75 PubMed

J Hazard Mater. 2013 Nov 15;262:1230-6 PubMed

Plant J. 2015 Jun;82(5):822-39 PubMed

Plant Physiol. 2000 Jul;123(3):825-32 PubMed

Environ Sci Technol. 2011 Jul 15;45(14):6080-7 PubMed

Transgenic Res. 2012 Dec;21(6):1265-77 PubMed

J Exp Bot. 2006;57(3):449-59 PubMed

Environ Sci Technol. 2002 Mar 1;36(5):962-8 PubMed

Front Plant Sci. 2017 Mar 01;8:268 PubMed

Environ Sci Pollut Res Int. 2012 Sep;19(8):3506-15 PubMed

Chemosphere. 2011 Apr;83(5):633-46 PubMed

Plant Signal Behav. 2009 Oct;4(10):920-3 PubMed

New Phytol. 2011 Oct;192(1):87-98 PubMed

Plant Physiol. 2006 Aug;141(4):1544-54 PubMed

Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21187-92 PubMed

Ecotoxicol Environ Saf. 2017 Apr;138:47-55 PubMed

Plant J. 2004 Aug;39(4):629-42 PubMed

Plant Cell Physiol. 2009 Feb;50(2):265-79 PubMed

Plant Cell Environ. 2009 Jul;32(7):851-8 PubMed

Environ Sci Technol. 2006 Aug 15;40(16):5010-4 PubMed

PLoS Biol. 2014 Dec 02;12(12):e1002009 PubMed

Nature. 2001 Feb 1;409(6820):579 PubMed

Biosci Biotechnol Biochem. 2011;75(3):522-30 PubMed

Environ Sci Technol. 2017 Feb 7;51(3):1224-1230 PubMed

Environ Pollut. 2012 Jul;166:136-43 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...