Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LO 1417
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
29736625
DOI
10.1007/s00425-018-2906-x
PII: 10.1007/s00425-018-2906-x
Knihovny.cz E-zdroje
- Klíčová slova
- Antioxidant, Arsenic, Carbohydrates, Nitrosative stress, Oxidative stress, Phytoremediation,
- MeSH
- arsen metabolismus toxicita MeSH
- biodegradace MeSH
- fotosyntéza účinky léků MeSH
- látky znečišťující půdu metabolismus toxicita MeSH
- metabolismus sacharidů účinky léků MeSH
- nitrosativní stres účinky léků MeSH
- zemědělské plodiny účinky léků metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- arsen MeSH
- látky znečišťující půdu MeSH
This review provides insights into As toxicity in plants with focus on photosynthesis and sugar metabolism as important arsenic targets and simultaneously defence tools against accompanying oxidative stress. Heavy metal contamination is a great problem all over the world. Arsenic, a metalloid occurring naturally in the Earth's crust, also massively spreads out in the environment by human activities. Its accumulation in crops poses a severe health risk to humans and animals. Besides the restriction of human-caused contamination, there are two basic ways how to cope with the problem: first, to limit arsenic accumulation in harvestable parts of the crops; second, to make use of some arsenic hyperaccumulating plants for phytoremediation of contaminated soils and waters. Progress in the use of both strategies depends strongly on the level of our knowledge on the physiological and morphological processes resulting from arsenic exposure. Arsenic uptake is mediated preferentially by P and Si transporters and its accumulation substantially impairs plant metabolism at numerous levels including damages through oxidative stress. Rice is a predominantly studied crop where substantial progress has been made in understanding of the mechanisms of arsenic uptake, distribution, and detoxification, though many questions still remain. Full exploitation of plant potential for soil and water phytoremediations also requires deep understanding of the plant response to this toxic metalloid. The aim of this review is to summarize data regarding the effect of arsenic on plant physiology with a focus on mechanisms providing increased arsenic tolerance and/or hyperaccumulation. The emphasis is placed on the topic unjustifiably neglected in the previous reviews - i.e., carbohydrate metabolism, tightly connected to photosynthesis, and beside others involved in plant ability to cope with arsenic-induced oxidative and nitrosative stresses.
Zobrazit více v PubMed
J Proteomics. 2014 Jun 13;105:46-57 PubMed
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9931-5 PubMed
Ecotoxicol Environ Saf. 2009 Feb;72(2):626-34 PubMed
New Phytol. 2007;174(2):311-21 PubMed
Curr Opin Plant Biol. 2009 Jun;12(3):364-72 PubMed
New Phytol. 2014 Mar;201(4):1251-62 PubMed
ISME J. 2016 Jan;10 (1):197-209 PubMed
J Exp Bot. 2013 Jan;64(1):303-15 PubMed
Plant Physiol. 2000 Apr;122(4):1171-7 PubMed
J Hazard Mater. 2010 Mar 15;175(1-3):896-914 PubMed
Plant Cell. 2010 Jun;22(6):2045-57 PubMed
Plant Physiol. 1993 Aug;102(4):1163-1169 PubMed
Protoplasma. 2011 Jul;248(3):565-77 PubMed
Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:643-668 PubMed
Plant J. 2006 Mar;45(6):917-29 PubMed
Chemosphere. 2005 Oct;61(2):293-301 PubMed
PLoS One. 2017 Mar 15;12 (3):e0173681 PubMed
Protoplasma. 2011 Oct;248(4):805-15 PubMed
Annu Rev Plant Biol. 2010;61:535-59 PubMed
Chemosphere. 2009 Feb;74(5):688-702 PubMed
Plant Physiol. 2002 Nov;130(3):1552-61 PubMed
Biol Trace Elem Res. 2012 Jun;146(3):360-8 PubMed
Environ Pollut. 2009 Mar;157(3):887-94 PubMed
Talanta. 2002 Aug 16;58(1):181-8 PubMed
Physiol Plant. 2016 Jun;157(2):135-46 PubMed
Nat Plants. 2015 Dec 21;2(1):15202 PubMed
Chemosphere. 2007 Apr;67(6):1072-9 PubMed
Environ Sci Pollut Res Int. 2011 Aug;19(7):3046-53 PubMed
Plant Physiol. 2004 Oct;136(2):3198-208 PubMed
Plant Physiol Biochem. 2016 Jan;98:119-27 PubMed
J Exp Bot. 2013 Apr;64(6):1439-49 PubMed
Plant Physiol. 2011 Sep;157(1):498-508 PubMed
J Exp Bot. 2009;60(1):9-18 PubMed
Trends Plant Sci. 2012 Mar;17(3):155-62 PubMed
Plant Cell Rep. 2007 Nov;26(11):2027-38 PubMed
Environ Pollut. 2017 Apr;223:230-237 PubMed
Front Plant Sci. 2014 Nov 04;5:592 PubMed
Plant Physiol Biochem. 2013 Oct;71:307-14 PubMed
Proc Natl Acad Sci U S A. 2006 Apr 4;103(14 ):5413-8 PubMed
Environ Pollut. 2017 May;224:125-135 PubMed
J Biol Chem. 2009 Jan 23;284(4):2114-20 PubMed
Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15699-704 PubMed
Ann Bot. 2003 Jan;91 Spec No:179-94 PubMed
Front Plant Sci. 2016 Jun 14;7:817 PubMed
New Phytol. 2016 Jan;209(2):762-72 PubMed
Ecotoxicol Environ Saf. 2001 Jun;49(2):111-21 PubMed
Cell Mol Life Sci. 2009 Jul;66(14):2329-39 PubMed
Anal Chim Acta. 2010 Jan 11;657(2):83-99 PubMed
New Phytol. 2009 Mar;181(4):777-94 PubMed
Planta. 2015 May;241(5):1109-18 PubMed
Ecotoxicol Environ Saf. 2017 May;139:344-351 PubMed
J Environ Sci (China). 2007;19(6):725-32 PubMed
Protoplasma. 2012 Jul;249(3):725-36 PubMed
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):16113-8 PubMed
Plant Cell Environ. 2017 Apr;40(4):462-472 PubMed
Plant Physiol. 2010 Jan;152(1):309-19 PubMed
Plant Physiol. 2008 Jul;147(3):1251-63 PubMed
Ecotoxicol Environ Saf. 2017 Apr;138:199-205 PubMed
Biochemistry. 2012 Jul 10;51(27):5476-85 PubMed
Plant Physiol Biochem. 2017 Mar;112:74-86 PubMed
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2075-80 PubMed
Plant Physiol. 2009 Aug;150(4):2071-80 PubMed
New Phytol. 2016 Jan;209(2):746-61 PubMed
J Exp Bot. 2013 Feb;64(4):1025-38 PubMed
J Hazard Mater. 2013 Nov 15;262:1123-31 PubMed
J Mol Model. 2012 Sep;18(9):4249-62 PubMed
J Plant Physiol. 2004 Jul;161(7):867-72 PubMed
J Biotechnol. 2002 Nov 13;99(3):259-78 PubMed
Front Plant Sci. 2017 Apr 19;8:516 PubMed
Protoplasma. 2015 Sep;252(5):1217-29 PubMed
Plant Cell. 2007 Mar;19(3):1123-33 PubMed
Plant Cell. 2013 Aug;25(8):2944-57 PubMed
Environ Pollut. 2016 Sep;216:215-222 PubMed
Plant Physiol. 2010 Nov;154(3):1505-13 PubMed
Environ Pollut. 2017 Aug;227:569-577 PubMed
Ecotoxicol Environ Saf. 2009 May;72(4):1102-10 PubMed
J Hazard Mater. 2017 May 15;330:68-75 PubMed
Ecotoxicol Environ Saf. 2013 Apr;90:28-34 PubMed
Mol Plant. 2015 May;8(5):722-33 PubMed
Trends Biotechnol. 2007 Apr;25(4):158-65 PubMed
PLoS One. 2012;7(8):e42408 PubMed
Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279 PubMed
Sci Total Environ. 2002 Feb 4;284(1-3):27-35 PubMed
J Hazard Mater. 2017 Jun 5;331:246-256 PubMed
Sci Rep. 2014 Jul 22;4:5784 PubMed
Physiol Mol Biol Plants. 2015 Jul;21(3):453-8 PubMed
Chemosphere. 2017 May;175:192-199 PubMed
Nat Commun. 2014 Aug 07;5:4617 PubMed
BMC Biol. 2008 Jun 10;6:26 PubMed
Environ Sci Pollut Res Int. 2016 Jun;23 (12 ):11864-75 PubMed
J Hazard Mater. 2013 Nov 15;262:1230-6 PubMed
Plant J. 2015 Jun;82(5):822-39 PubMed
Plant Physiol. 2000 Jul;123(3):825-32 PubMed
Environ Sci Technol. 2011 Jul 15;45(14):6080-7 PubMed
Transgenic Res. 2012 Dec;21(6):1265-77 PubMed
J Exp Bot. 2006;57(3):449-59 PubMed
Environ Sci Technol. 2002 Mar 1;36(5):962-8 PubMed
Front Plant Sci. 2017 Mar 01;8:268 PubMed
Environ Sci Pollut Res Int. 2012 Sep;19(8):3506-15 PubMed
Chemosphere. 2011 Apr;83(5):633-46 PubMed
Plant Signal Behav. 2009 Oct;4(10):920-3 PubMed
New Phytol. 2011 Oct;192(1):87-98 PubMed
Plant Physiol. 2006 Aug;141(4):1544-54 PubMed
Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21187-92 PubMed
Ecotoxicol Environ Saf. 2017 Apr;138:47-55 PubMed
Plant J. 2004 Aug;39(4):629-42 PubMed
Plant Cell Physiol. 2009 Feb;50(2):265-79 PubMed
Plant Cell Environ. 2009 Jul;32(7):851-8 PubMed
Environ Sci Technol. 2006 Aug 15;40(16):5010-4 PubMed
PLoS Biol. 2014 Dec 02;12(12):e1002009 PubMed
Nature. 2001 Feb 1;409(6820):579 PubMed
Biosci Biotechnol Biochem. 2011;75(3):522-30 PubMed
Environ Sci Technol. 2017 Feb 7;51(3):1224-1230 PubMed
Environ Pollut. 2012 Jul;166:136-43 PubMed