Metabolic and Oxidative Changes in the Fern Adiantum raddianum upon Foliar Application of Metals
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1/0003/21
Slovak grant agency VEGA
PubMed
36499062
PubMed Central
PMC9740585
DOI
10.3390/ijms232314736
PII: ijms232314736
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant molecules, heavy metals, reactive oxygen species, soil pollution,
- MeSH
- Adiantum * metabolismus MeSH
- kadmium metabolismus MeSH
- kapradiny * metabolismus MeSH
- látky znečišťující půdu * toxicita chemie MeSH
- rostliny metabolismus MeSH
- těžké kovy * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kadmium MeSH
- látky znečišťující půdu * MeSH
- Nickel-56 MeSH Prohlížeč
- těžké kovy * MeSH
Cadmium (Cd) or nickel (Ni) were applied as a foliar spray (1 µM solution over one month) to mimic air pollution and to monitor metabolic responses and oxidative stress in the pteridophyte species. Exogenous metals did not affect the metal content of the soil and had relatively little effect on the essential elements in leaves or rhizomes. The amounts of Cd and Ni were similar in treated leaves (7.2 µg Cd or 5.3 µg Ni/g DW in mature leaves compared with 0.4 µg Cd or 1.2 µg Ni/g DW in the respective control leaves), but Ni was more abundant in rhizomes (56.6 µg Ni or 3.4 µg Cd/g DW), resulting in a higher Cd translocation and bioaccumulation factor. The theoretical calculation revealed that ca. 4% of Cd and 5.5% of Ni from the applied solution per plant/pot was absorbed. Excess Cd induced stronger ROS production followed by changes in SOD and CAT activities, whereas nitric oxide (NO) stimulation was less intense, as detected by confocal microscopy. The hadrocentric vascular bundles in the petioles also showed higher ROS and NO signals under metal excess. This may be a sign of increased ROS formation, and high correlations were observed. Proteins and amino acids were stimulated by Cd or Ni application in individual organs, whereas phenols and flavonols were almost unaffected. The data suggest that even low levels of exogenous metals induce an oxidative imbalance, although no visible damage is observed, and that the responses of ferns to metals are similar to those of seed plants or algae.
Zobrazit více v PubMed
Karmakar D., Padhy P.K. Metals uptake from particulate matter through foliar transfer and their impact on antioxidant enzymes activity of S. robusta in a tropical forest, West Bengal, India. Arch. Environ. Contam. Toxicol. 2019;76:605–616. doi: 10.1007/s00244-019-00599-9. PubMed DOI
Kováčik J., Klejdus B., Štork F., Hedbavny J. Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application. J. Hazard. Mater. 2012;239–240:175–182. doi: 10.1016/j.jhazmat.2012.08.062. PubMed DOI
Loya-González D., López-Serna D., Alfaro-Barbosa J.M., López-Reyes A., González-Rodríguez H., Cantú-Silva I. Chemical composition of bulk precipitation and its toxicity potential index in the metropolitan area of Monterrey, Northeastern Mexico. Environments. 2020;7:106. doi: 10.3390/environments7120106. DOI
Zha Y., Tang J., Pan Y. The effects of simulated acid rain and cadmium-containing atmospheric fine particulate matter on the pakchoi (Brassica campestris L.) seedlings growth and physiology. Soil Sci. Plant Nutr. 2022;68:317–328. doi: 10.1080/00380768.2021.2023826. DOI
Kováčik J., Babula P., Peterková V., Hedbavny J. Long-term impact of cadmium shows little damage in Scenedesmus acutiformis cultures. Algal Res. 2017;25:184–190. doi: 10.1016/j.algal.2017.04.029. DOI
Nabaei M., Amooaghaie R. Melatonin and nitric oxide enhance cadmium tolerance and phytoremediation efficiency in Catharanthus roseus (L.) G. Don. Environ. Sci. Pollut. Res. 2020;27:6981–6994. doi: 10.1007/s11356-019-07283-4. PubMed DOI
Balestri M., Bottega S., Spanò C. Response of Pteris vittata to different cadmium treatments. Acta Physiol. Plant. 2014;36:767–775. doi: 10.1007/s11738-013-1454-z. DOI
Kováčik J., Klejdus B., Babula P., Hedbavny J. Age affects not only metabolome but also metal toxicity in Scenedesmus quadricauda cultures. J. Hazard. Mater. 2016;306:58–66. doi: 10.1016/j.jhazmat.2015.11.056. PubMed DOI
Kováčik J., Štěrbová D., Babula P., Švec P., Hedbávný J. Toxicity of naturally contaminated manganese soil to selected crops. J. Agric. Food Chem. 2014;62:7287–7296. doi: 10.1021/jf5010176. PubMed DOI
Sobati-Nasab Z., Alirezalu A., Noruzi P. Effect of foliar application of nickel on physiological and phytochemical characteristics of pot marigold (Calendula officinalis) J. Agric. Food Res. 2021;3:100108. doi: 10.1016/j.jafr.2021.100108. DOI
Pavlova D., Karadjova I. Toxic element profiles in selected medicinal plants growing on serpentines in Bulgaria. Biol. Trace Elem. Res. 2013;156:288–297. doi: 10.1007/s12011-013-9848-8. PubMed DOI
Kubicka K., Samecka-Cymerman A., Kolon K., Kosiba P., Kempers A.J. Chromium and nickel in Pteridium aquilinum from environments with various levels of these metals. Environ. Sci. Pollut. Res. 2015;22:527–534. doi: 10.1007/s11356-014-3379-5. PubMed DOI PMC
Yu H., Li S., Wang A., Kuang Y., Wang F., Xing F. Accumulation of heavy metals and As in the fern Blechnum orientale L. from Guangdong Province, Southern China. Water Air Soil Pollut. 2020;231:342. doi: 10.1007/s11270-020-04645-4. DOI
Zhao L., Li T., Yu H., Chen G., Zhang X., Zheng Z., Li J. Changes in chemical forms, subcellular distribution, and thiol compounds involved in Pb accumulation and detoxification in Athyrium wardii (Hook.) Environ. Sci. Pollut. Res. 2015;22:12676–12688. doi: 10.1007/s11356-015-4464-0. PubMed DOI
Zemanová V., Pavlíková D., Hnilička F., Pavlík M. Toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. Plants. 2021;10:2009. doi: 10.3390/plants10102009. PubMed DOI PMC
Török A., Gulyás Z., Szalai G., Kocsy G., Majdik C. Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization. J. Hazard. Mater. 2015;299:371–378. doi: 10.1016/j.jhazmat.2015.06.042. PubMed DOI
Fismes J., Echevarria G., Leclerc-Cessac E., Morel J.L. Uptake and transport of radioactive nickel and cadmium in three vegetables after wet aerial contamination. J. Environ. Qual. 2005;34:1497–1507. doi: 10.2134/jeq2004.0274. PubMed DOI
Li L., Zhang Y., Ippolito J.A., Xing W., Qiu K., Wang Y. Cadmium foliar application affects wheat Cd, Cu, Pb and Zn accumulation. Environ. Pollut. 2020;262:114329. doi: 10.1016/j.envpol.2020.114329. PubMed DOI
Zhou Y.M., Long S.S., Li B.Y., Huang Y.Y., Li Y.J., Yu J.Y., Du H.H., Khan S., Lei M. Enrichment of cadmium in rice (Oryza sativa L.) grown under different exogenous pollution sources. Environ. Sci. Pollut. Res. 2020;27:44249–44256. doi: 10.1007/s11356-020-10282-5. PubMed DOI
Kováčik J., Babula P. Fluorescence microscopy as a tool for visualization of metal-induced oxidative stress in plants. Acta Physiol. Plant. 2017;39:157. doi: 10.1007/s11738-017-2455-0. DOI
Gong L., Liu X.D., Zeng Y.Y., Tian X.Q., Li Y.L., Turner N.C., Fang X.W. Stomatal morphology and physiology explain varied sensitivity to abscisic acid across vascular plant lineages. Plant Physiol. 2021;186:782–797. doi: 10.1093/plphys/kiab090. PubMed DOI PMC
Drăghiceanu O.A., Popescu M., Soare L.C. Stress response to nickel in Asplenium scolopendrium L. and Dryopteris filix-mas (L.) Schott. [(accessed on 14 March 2019)];Current Trends in Natural Sciences. 2016 5:151–156. Available online: https://www.upit.ro/_document/11964/paper_22.pdf.
Liu Y., Wang H.B., Wong M.H., Ye Z.H. The role of arsenate reductase and superoxide dismutase in As accumulation in four Pteris species. Environ. Int. 2009;35:491–495. doi: 10.1016/j.envint.2008.07.012. PubMed DOI
Kováčik J., Babula P., Hedbavny J. Comparison of vascular and non-vascular aquatic plant as indicators of cadmium toxicity. Chemosphere. 2017;180:86–92. doi: 10.1016/j.chemosphere.2017.04.002. PubMed DOI
Dvorakova M., Pumprova K., Antonínová Ž., Rezek J., Haisel D., Ekrt L., Vanek T., Langhansova L. Nutritional and antioxidant potential of fiddleheads from European ferns. Foods. 2021;10:460. doi: 10.3390/foods10020460. PubMed DOI PMC
Deng G., Li M., Li H., Yin L., Li W. Exposure to cadmium causes declines in growth and photosynthesis in the endangered aquatic fern (Ceratopteris pteridoides) Aquat. Bot. 2014;112:23–32. doi: 10.1016/j.aquabot.2013.07.003. DOI
Wang Y., Gao S., He X., Li Y., Zhang Y., Chen W. Response of total phenols, flavonoids, minerals, and amino acids of four edible fern species to four shading treatments. PeerJ. 2020;8:e8354. doi: 10.7717/peerj.8354. PubMed DOI PMC
Kováčik J., Husáková L., Graziani G., Patočka J., Vydra M., Rouphael Y. Nickel uptake in hydroponics and elemental profile in relation to cultivation reveal variability in three Hypericum species. Plant Physiol. Biochem. 2022;185:357–367. doi: 10.1016/j.plaphy.2022.06.009. PubMed DOI
Döring S., Korhammer S., Oetken M., Markert B. Analysis of phytochelatins in plant matrices by pre-column derivatization, high-performance liquid chromatography and fluorescence-detection. Fresenius J. Anal. Chem. 2000;366:316–318. doi: 10.1007/s002160050062. PubMed DOI