Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids and selected microelements in two Noccaea species
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28542385
PubMed Central
PMC5438182
DOI
10.1371/journal.pone.0177963
PII: PONE-D-16-24345
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny metabolismus MeSH
- Brassicaceae klasifikace účinky léků růst a vývoj metabolismus MeSH
- fyziologický stres účinky léků MeSH
- kadmium toxicita MeSH
- listy rostlin účinky léků růst a vývoj metabolismus MeSH
- metabolické sítě a dráhy účinky léků MeSH
- sarkosin metabolismus MeSH
- stopové prvky metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- kadmium MeSH
- sarkosin MeSH
- stopové prvky MeSH
Cadmium (Cd) toxicity affects numerous metabolic processes in plants. In the presence of Cd, plants accumulate specific amino acids which may be beneficial to developing Cd tolerance. Our study aimed to characterize the changes in the metabolism of selected free amino acids that are associated with Cd tolerance, and investigate the levels of selected microelements in order to relate these changes to the adaptation strategies of two metallophytes-Noccaea caerulescens (Redlschlag, Austria) and Noccaea praecox (Mežica, Slovenia). The plants were exposed to Cd contamination (90 mg Cd/kg soil) for 120 days in a pot experiment. Our results showed higher Cd accumulation in N. praecox compared to N. caerulescens. Cadmium contamination reduced the zinc and nickel levels in both species and a mixed effect was determined for copper and manganese content. Differences in free amino acid metabolism were observed between the two metallophytes growing under Cd-free and Cd-loaded conditions. Under Cd-free conditions, aromatic amino acids (phenylalanine, tryptophan and tyrosine) and branched-chain amino acids (leucine, isoleucine and valine) were accumulated more in the leaves of N. praecox than in N. caerulescens. Cd stress increased the content of these amino acids in both species but this increase was significant only in N. caerulescens leaves. Marked differences in the responses of the two species to Cd stress were shown for alanine, phenylalanine, threonine and sarcosine. Cadmium contamination also induced an increase of threonine as alanine and sarcosine decrease, which was larger in N. caerulescens than in N. praecox. All these factors contribute to the higher adaptation of N. praecox to Cd stress.
Zobrazit více v PubMed
Tamás L, Mistrík I, Alemayehu A, Zelinová V, Bočová B, Huttová J. Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips. J Plant Physiol. 2015; 173: 1–8. doi: 10.1016/j.jplph.2014.08.018 PubMed DOI
Xie Y, Hu L, Du Z, Sun X, Amombo E, Fan JB, et al. Effects of cadmium exposure on growth and metabolic profile of Bermudagrass [Cynodon dactylon (L.) Pers.]. PLOS ONE. 2014; 9(12): e115279 doi: 10.1371/journal.pone.0115279 PubMed DOI PMC
Verbruggen N, Hermans C, Schat H. Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol. 2009; 12(3): 364–372. doi: 10.1016/j.pbi.2009.05.001 PubMed DOI
Sanità di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environ Exp Bot. 1999; 41(2): 105–130.
DalCorso G, Farinati S, Maistri S, Furini A. How plants cope with cadmium: Straking all on metabolism and gene expression. J Integr Plant Biol. 2008; 50(10): 1268–1280. doi: 10.1111/j.1744-7909.2008.00737.x PubMed DOI
Zoghlami LB, Djebali W, Abbes Z, Hediji H, Maucourt M, Moing A, et al. Metabolite modifications in Solanum lycopersicum roots and leaves under cadmium stress. Afr J Biotechnol. 2011; 10(4): 567–579.
Martin SR, Llugany M, Barceló J, Poschenrieder C. Cadmium exclusion a key factor in differential Cd-resistance in Thlaspi arvense ecotypes. Biol Plantarum. 2012; 56(4): 729–734.
Whittaker JW. Molecular relaxation and metalloenzyme active site Modeling. Int J Quantum Chem. 2002; 90(4–5): 1529–1535.
Field LS, Luk E, Culotta VC. Copper chaperones: Personal escorts for metal ions. J Bioenerg Biomembr. 2002; 34(5): 373–379. PubMed
Türkel N. Stability constants of mixed ligand complexes of nickel(II) with adenine and some amino acids. Bioinorg Chem Appl. 2015; article ID: 374782. PubMed PMC
Cakmak I. Tansley review No. 111—Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000; 146(2): 185–205. PubMed
Mustafiz A, Ghosh A, Tripathi AK, Kaur C, Ganguly AK, Bhavesh NS, et al. A unique Ni2+-dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. Plant J. 2014; 78(6): 951–963. doi: 10.1111/tpj.12521 PubMed DOI
Hernández LE, Cooke DT. Modification of the root plasma membrane lipid composition of cadmium-treated Pisum sativum. J Exp Bot. 1997; 48(312): 1375–1381.
Shah K, Kumar RG, Verma S, Dubey RS. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 2001; 161(6): 1135–1144.
Xu J, Sun J, Du L, Liu X. Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum. New Phytol. 2012a; 196(1): 110–124. PubMed
Xu J, Zhu Y, Ge Q, Li Y, Sun J, Zhang Y, et al. Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress. New Phytol. 2012b; 196(1): 125–138. PubMed
Zemanová V, Pavlík M, Kyjaková P, Pavlíková D. Fatty acid profiles of ecotypes of hyperaccumulator Noccaea caerulescens growing under cadmium stress. J Plant Physiol. 2015; 180: 27–34. doi: 10.1016/j.jplph.2015.02.012 PubMed DOI
Pavlík M, Zemanová V, Pavliková D, Kyjaková P, Hlavsa T. Regulation of odd-numbered fatty acid content plays an important part in the metabolism of the hyperaccumulator Noccaea spp. adapted to oxidative stress. J Plant Physiol. 2017; 208: 94–101. doi: 10.1016/j.jplph.2016.09.014 PubMed DOI
Pavlíková D, Pavlík M, Procházková D, Zemanová V, Hnilička F, Wilhelmová N. Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis. J Plant Physiol. 2014a; 171(7): 559–564. PubMed
Pavlíková D, Zemanová V, Procházková D, Pavlík M, Száková J, Wilhelmová N. The long-term effect of zinc soil contamination on selected free amino acids playing an important role in plant adaptation to stress and senescence. Ecotox Environ Safe. 2014b; 100: 166–170. PubMed
Miyashita Y, Dolferus R, Ismond KP, Good AG. Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J. 2007; 49(6): 1108–1121. doi: 10.1111/j.1365-313X.2006.03023.x PubMed DOI
Seher Y, Filiz O, Melike B. Gamma-amino butyric acid, glutamate dehydrogenase and glutamate decarboxylase levels in phylogenetically divergent plants. Plant Syst Evol. 2013; 299(2): 403–412.
Pavlíková D, Pavlík M, Staszková L, Motyka V, Száková J, Tlustoš P, et al. Glutamate kinase as a potential biomarker of heavy metal stress in plants. Ecotox Environ Safe. 2008; 70(2): 223–230. PubMed
Joshi V, Joung JG, Fei Z, Jander G. Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids. 2010; 39(4): 933–947. doi: 10.1007/s00726-010-0505-7 PubMed DOI
Nikiforova VJ, Bielecka M, Gakière B, Krueger S, Rinder J, Kempa S, et al. Effect of sulfur availability on the integrity of amino acid biosynthesis in plants. Amino Acids. 2006; 30(2): 173–183. doi: 10.1007/s00726-005-0251-4 PubMed DOI
Tzin V, Galili G. The biosynthetic pathways for shikimate and aromatic amino acids in Arabidopsis thaliana. The Arabidopsis book/American Society of Plant Biologists. 2010; 8:e0132. PubMed PMC
Yoo H, Widhalm JR, Qian Y, Maeda H, Cooper BR, Jannasch AS, et al. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine: phenylpyruvate aminotransferase. Nat Commun. 2013; 4: article number 2833. PubMed
Cosgrove DJ. Enzymes and other agents that enhance cell wall extensibility. Annu Rev Plant Phys. 1999; 50: 391–417. PubMed
Oda A, Shimizu M, Kuroha T, Satoh S. Induction of xylem sap methylglycine by a drought and rewatering treatment and its inhibitory effects on the growth and development of plant organs. Physiol Plantarum. 2005; 124(4): 515–523.
Niu X, Xiong F, Liu J, Sui Y, Zeng Z, Lu BR, et al. Co-expression of ApGSMT and ApDMT promotes biosynthesis of glycine betaine in rice (Oryza sativa L.) and enhances salt and cold tolerance. Environ Exp Bot. 2014; 104: 16–25.
Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 2007; 59(2): 206–216.
Gonneau C, Genevois N, Frérot H, Sirguey C, Sterckeman T. Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens. Plant Soil. 2014; 384(1–2): 271–287.
Vogel-Mikuš K, Regvar M, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Simčič J, Pelicon P, et al. Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. New Phytol. 2008; 179(3): 712–721. doi: 10.1111/j.1469-8137.2008.02519.x PubMed DOI
Gosar M, Miler M. Anthropogenic metal loads and their sources in stream sediments of the Meža River catchment area (NE Slovenia). Appl Geochem. 2011; 26(11): 1855–1866.
Puschenreiter M, Schnepf A, Millán IM, Fitz WJ, Horak O, Klepp J, et al. Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense. Plant Soil. 2005; 271(1–2): 205–218.
Pavlík M, Pavlíková D, Zemanová V, Hnilička F, Urbanová V, Száková J. Trace elements present in airborne particulate matter–Stressors of plant metabolism. Ecotox Environ Safe. 2012; 79: 101–107. PubMed
ter Braak CJF, Smilauer P. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power; Ithaca, 2002.
Zemanová V, Pavlík M, Pavlíková D, Hnilička F, Vondráčková S. Responses to Cd stress in two Noccaea species (Noccaea praecox and Noccaea caerulescens) originating from two contaminated sites in Mežica, Slovenia and Redlschlag, Austria. Arch Environ Con Tox. 2016; 70(3): 464–474. PubMed
Zárubová P, Hejcman M, Vondráčková S, Mrnka L, Száková J, Tlustoš P. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements. Environ Sci Pollut R. 2015; 22(23): 18801–18813. PubMed
Visioli G, Gullì M, Marmiroli N. Noccaea caerulescens populations adapted to grow in metalliferous and non-metalliferous soils: Ni tolerance, accumulation and expression analysis of genes involved in metal homeostasis. Environ Exp Bot. 2014; 105: 10–17.
Reeves RD, Schwartz C, Morel JL, Edmondson J. Distribution and metal-accumulating behaviour of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediat. 2001; 3(2): 145–172.
Fernández-Ocaña A, Chaki M, Luque F, Gómez-Rodríguez MV, Carreras A, Valderrama R, et al. Functional analysis of superoxide dismutases (SODs) in sunflower under biotic and abiotic stress conditions. Identification of two new genes of mitochondrial Mn-SOD. J Plant Physiol. 2011; 168(11): 1303–1308. doi: 10.1016/j.jplph.2011.01.020 PubMed DOI
Polacco JC, Mazzafera P, Tezotto T. Opinion—Nickel and urease in plants: Still many knowledge gaps. Plant Sci. 2013; 199: 79–90. doi: 10.1016/j.plantsci.2012.10.010 PubMed DOI
Egleston ES, Morel FMM. Nickel limitation and zinc toxicity in a urea-grown diatom. Limnol Oceanogr. 2008; 53(6): 2462–2471.
Limami AM, Glévarec G, Ricoult C, Cliquet JB, Planchet E. Concerted modulation of alanine and glutamate metabolism in young Medicago truncatula seedlings under hypoxic stress. J Exp Bot. 2008; 59(9): 2325–2335. doi: 10.1093/jxb/ern102 PubMed DOI PMC
Rocha M, Licausi F, Araújo WL, Nunes-Nesi A, Sodek L, Fernie AR, et al. Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol. 2010a; 152(3): 1501–1513. PubMed PMC
Pavlík M, Pavlíková D, Staszková L, Neuberg M, Kaliszová R, Száková J, et al. The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotox Environ Safe. 2010; 73(6): 1309–1313. PubMed
Hjorth M, Mathiassen SK, Kudsk P, Ravn HW. Amino acids in loose silky-bent (Apera spica-venti (L.) Beauv.) responding to prosulfocarb exposure and the correlation with physiological effects. Pestic Biochem Phys. 2006; 86(3): 138–145.
Mori T, Kikuchi E, Watanabe Y, Fujii S, Ishigami-Yuasa M, Kagechika H, et al. Chemical library screening for WNK signalling inhibitors using fluorescence correlation spectroscopy. Biochem J. 2013; 455: 339–345. doi: 10.1042/BJ20130597 PubMed DOI
Komatsu S, Jan A, Koga Y. Characterization of a histidine- and alanine-rich protein showing interaction with calreticulin in rice. Amino Acids. 2009; 36(1): 137–146. doi: 10.1007/s00726-008-0043-8 PubMed DOI
Bor M, Seckin B, Ozgur R, Yilmaz O, Ozdemir F, Turkan I. Comparative effects of drought, salt, heavy metal and heat stresses on gamma-aminobutryric acid levels of sesame (Sesamum indicum L.). Acta Physiol Plant. 2009; 31(3): 655–659.
Daş ZA, Dimlioğlu G, Bor M, Özdemir F. Zinc induced activation of GABA-shunt in tobacco (Nicotiana tabaccum L.). Environ Exp Bot. 2016; 122: 78–84.
Signorelli S, Dans PD, Coitiño EL, Borsani O, Monza J. Connecting proline and γ-aminobutyric acid in stressed plants through non-enzymatic reactions. PLOS ONE. 2015; 10(3): e0115349 doi: 10.1371/journal.pone.0115349 PubMed DOI PMC
Kinnersley AM, Turano FJ. Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci. 2000; 19(6): 479–509.
Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio Med. 1996; 20(7): 933–956. PubMed
Sanjaya Hsiao PY, Su RC Ko SS, Tong CG Yang RY, et al. Overexpression of Arabidopsis thaliana tryptophan synthase beta 1 (AtTSB1) in Arabidopsis and tomato confers tolerance to cadmium stress. Plant Cell Environ. 2008; 31(8): 1074–1085. doi: 10.1111/j.1365-3040.2008.01819.x PubMed DOI
Popko J, Hansch R, Mendel RR, Polle A, Teichmann T. The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol. 2010; 12(2): 242–258. doi: 10.1111/j.1438-8677.2009.00305.x PubMed DOI
Witt S, Galicia L, Lisec J, Cairns J, Tiessen A, Araus JL, et al. Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol Plant. 2012; 5(2): 401–417. doi: 10.1093/mp/ssr102 PubMed DOI
Liu X, Yang C, Zhang L, Li L, Liu S, Yu J, et al. Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology. 2011; 20(6): 1422–1431. doi: 10.1007/s10646-011-0699-9 PubMed DOI
Li Y, Yang CM. A rationally designed novel receptor for probing cooperative interaction between metal ions and bivalent tryptophan side chain in solution. Chem Commun. 2003; 23: 2884–2885. PubMed
Garg R, Bhattacharjee A, Jain M. Genome-scale transcriptomic insights into molecular aspects of abiotic stress responses in chickpea. Plant Mol Biol Rep. 2015, 33(3): 388–400.
Ibrahim RK, Bruneau A, Bantignies B. Plant O-methyltransferases: molecular analysis, common signature and classification. Plant Mol Biol. 1998; 36(1): 1–10. PubMed
Roje S. S-adenosyl-L-methionine: Beyond the universal methyl group donor. Phytochemistry. 2006; 67(15): 1686–1698. doi: 10.1016/j.phytochem.2006.04.019 PubMed DOI
Zemanová V, Pavlík M, Pavlíková D, Tlustoš P. The significance of methionine, histidine and tryptophan in plant responses and adaptation to cadmium stress. Plant Soil Environ. 2014; 60(9): 426–432.
Krishnakumar RV, Rameela MP, Natarajan S. Crystal structure of sarcosine cadmium chloride. Cryst Res Technol. 1996; 31(2): 203–207.
Tewari BB. Studies on complexation in solution with a paper electrophoretic technique [The system mercury(II)/nickel(II)/lead(II)—sarcosine]. J Chil Chem Soc. 2012; 57(1): 995–998.
Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC. Free histidine as a metal chelator in plants that accumulate nickel. Nature. 1996; 379(6566): 635–638.
Moffatt BA, Weretilnyk EA. Sustaining S-adenosyl-L-methionine-dependent methyltransferase activity in plant cells. Physiol Plantarum. 2001; 113(4): 435–442.
Jin S, Daniell H. Expression of gamma-tocopherol methyltransferase in chloroplasts results in massive proliferation of the inner envelope membrane and decreases susceptibility to salt and metal-induced oxidative stresses by reducing reactive oxygen species. Plant Biotechnol. J. 2014; 12(9): 1274–1285. doi: 10.1111/pbi.12224 PubMed DOI PMC
Jiang J, Jia H, Feng G, Wang Z, Li J, Gao H, et al. Overexpression of Medicago sativa TMT elevates the alpha-tocopherol content in Arabidopsis seeds, alfalfa leaves, and delays dark-induced leaf senescence. Plant Sci. 2016; 249: 93–104. doi: 10.1016/j.plantsci.2016.05.004 PubMed DOI
Yamaguchi M, Valliyodan B, Zhang J, Lenoble ME, Yu O, Rogers EE, et al. Regulation of growth response to water stress in the soybean primary root. I. Proteomic analysis reveals region-specific regulation of phenylpropanoid metabolism and control of free iron in the elongation zone. Plant Cell Environ. 2010; 33(2): 223–243. doi: 10.1111/j.1365-3040.2009.02073.x PubMed DOI
Yang WJ, Nadolskaorczyk A, Wood KV, Hahn DT, Rich PJ, Wood AJ, et al. Near-isogenic lines of maize differing for glycinebetaine. Plant Physiol. 1995; 107(2): 621–630. PubMed PMC
Nuccio ML, Russell BL, Nolte KD, Rathinasabapathi B, Gage DA, Hanson AD. The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J. 1998; 16(4): 487–496. PubMed
Thornalley PJ. Glutathione-dependent detoxification of alpha-oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and anti-proliferative activity of glyoxalase I inhibitors. Chem-Biol Interact. 1998; 112: 137–151. PubMed
Mustafiz A, Sahoo KK, Singla-Pareek SL, Sopory SK. Metabolic engineering of glyoxalase pathway for enhancing stress tolerance in plants. Plant Stress Tolerance: Methods and Protocols/Methods in Molecular Biology. 2010; 639: 95–118. PubMed
Whitte CP. Urea metabolism in plants. Plant Sci. 2011; 180(3): 431–438. doi: 10.1016/j.plantsci.2010.11.010 PubMed DOI
Planchais S, Cabassa C, Toka I, Justin AM, Renou JP, Savouré A, et al. Basic amino acid carrier 2 gene expression modulates arginine and urea content and stress recovery in Arabidopsis leaves. Front Plant Sci. 2014; 5: article number 330. PubMed PMC
Szabados L, Savoure A. Proline: a multifunctional amino acid. Trends Plant Sci. 2010; 15(2): 89–97. doi: 10.1016/j.tplants.2009.11.009 PubMed DOI
Liu G, Ji Y, Bhuiyan NH, Pilot G, Selvaraj G, Zou J. Amino acid homeostasis modulates salicylic acid-associated redox status and defence responses in Arabidopsis. Plant Cell. 2010; 22(11): 3845–3863. doi: 10.1105/tpc.110.079392 PubMed DOI PMC
He Y, Dai SJ, Dufresne CP, Zhu N, Pang QY, Chen SX. Integrated proteomics and metabolomics of Arabidopsis acclimation to gene-dosage dependent perturbation of isopropylmalate dehydrogenases. PLOS ONE. 2013; 8(3): e57118 doi: 10.1371/journal.pone.0057118 PubMed DOI PMC
Araújo WL, Ishizaki K, Nunes-Nesi A, Larson TR, Tohge T, Krahnert I, et al. Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. Plant Cell. 2010; 22(5): 1549–1563. doi: 10.1105/tpc.110.075630 PubMed DOI PMC
Taylor A. Aminopeptidases—Structure and function. FASEB J. 1993; 7(2): 290–298. PubMed
Leaf fitness and stress response after the application of contaminated soil dust particulate matter
Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress