Quantitative and qualitative differences in the activation of a fibroblast growth factor receptor by different FGF ligands

. 2024 Aug ; 78 () : 77-84. [epub] 20240709

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39043538

Grantová podpora
R01 GM068619 NIGMS NIH HHS - United States

Odkazy

PubMed 39043538
PubMed Central PMC11389727
DOI 10.1016/j.cytogfr.2024.07.002
PII: S1359-6101(24)00044-3
Knihovny.cz E-zdroje

The FGF system is the most complex of all receptor tyrosine kinase signaling networks with 18 FGF ligands and four FGFRs that deliver morphogenic signals to pattern most embryonic structures. Even when a single FGFR is expressed in the tissue, different FGFs can trigger dramatically different biological responses via this receptor. Here we show both quantitative and qualitative differences in the signaling of one of the FGF receptors, FGFR1c, in response to different FGFs. We provide an overview of the recent discovery that FGFs engage in biased signaling via FGFR1c. We discuss the concept of ligand bias, which represents qualitative differences in signaling as it is a measure of differential ligand preferences for different downstream responses. We show how FGF ligand bias manifests in functional data in cultured chondrocyte cells. We argue that FGF-ligand bias contributes substantially to FGF-driven developmental processes, along with known differences in FGF expression levels, FGF-FGFR binding coefficients and differences in FGF stability in vivo.

Zobrazit více v PubMed

Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, and Mohammadi M. 2000. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Molecular Cell 6:743–750. PubMed

Itoh N, and Ornitz DM. 2008. Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237:18–27. PubMed

Itoh N 2010. Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res 342:1–11. PubMed PMC

Colvin JS, White AC, Pratt SJ, and Ornitz DM. 2001. Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 128:2095–2106. PubMed

Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujimori T, Itoh N, and Takada S. 2002. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev 16:870–879. PubMed PMC

Usui H, Shibayama M, Ohbayashi N, Konishi M, Takada S, and Itoh N. 2004. Fgf18 is required for embryonic lung alveolar development. Biochem Biophys Res Commun 322:887–892. PubMed

Lu SY, Sheikh F, Sheppard PC, Fresnoza A, Duckworth ML, Detillieux KA, and Cattini PA. 2008. FGF-16 is required for embryonic heart development. Biochem Biophys Res Commun 373:270–274. PubMed PMC

Cholfin JA, and Rubenstein JL. 2007. Patterning of frontal cortex subdivisions by Fgf17. Proc Natl Acad Sci U S A 104:7652–7657. PubMed PMC

Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, and Kato S. 1999. Fgf10 is essential for limb and lung formation. Nature genetics 21:138–141. PubMed

Sun X, Mariani FV, and Martin GR. 2002. Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418:501–508. PubMed

Gros J, and Tabin CJ. 2014. Vertebrate limb bud formation is initiated by localized epithelial-to-mesenchymal transition. Science 343:1253–1256. PubMed PMC

Xu X, Weinstein M, Li C, Naski M, Cohen RI, Ornitz DM, Leder P, and Deng C. 1998. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 125:753–765. PubMed

Ornitz DM, Xu JS, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao GX, and Goldfarb M. 1996. Receptor specificity of the fibroblast growth factor family. Journal of Biological Chemistry 271:15292–15297. PubMed

Zhang XQ, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, and Ornitz DM. 2006. Receptor specificity of the fibroblast growth factor family - The complete mammalian FGF family. Journal of Biological Chemistry 281:15694–15700. PubMed PMC

Beenken A, and Mohammadi M. 2009. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253. PubMed PMC

Ornitz DM, and Itoh N. 2015. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4:215–266. PubMed PMC

Holzmann K, Grunt T, Heinzle C, Sampl S, Steinhoff H, Reichmann N, Kleiter M, Hauck M, and Marian B. 2012. Alternative Splicing of Fibroblast Growth Factor Receptor IgIII Loops in Cancer. J Nucleic Acids 2012:950508. PubMed PMC

Kalinina J, Dutta K, Ilghari D, Beenken A, Goetz R, Eliseenkova AV, Cowburn D, and Mohammadi M. 2012. The Alternatively Spliced Acid Box Region Plays a Key Role in FGF Receptor Autoinhibition. Structure 20:77–88. PubMed PMC

Paul MD, and Hristova K. 2019. The transition model of RTK activation: A quantitative framework for understanding RTK signaling and RTK modulator activity. Cytokine Growth Factor Rev 49:23–31. PubMed PMC

Sarabipour S, and Hristova K. 2016. Mechanism of FGF receptor dimerization and activation. Nat.Commun 7:10262. PubMed PMC

Karl K, and Hristova K. 2021. Pondering the mechanism of receptor tyrosine kinase activation: The case for ligand-specific dimer microstate ensembles. Curr Opin Struct Biol 71:193–199. PubMed PMC

Schlessinger J 2004. Common and distinct elements in cellular signaling via EGF and FGF receptors. Science 306:1506–1507. PubMed

Eswarakumar VP, Lax I, and Schlessinger J. 2005. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16:139–149. PubMed

Gotoh N 2008. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci 99:1319–1325. PubMed PMC

Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, and Chen L. 2020. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 5:181. PubMed PMC

Fortin D, Rom E, Sun H, Yayon A, and Bansal R. 2005. Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage. J Neurosci 25:7470–7479. PubMed PMC

Tarapongpun T, Onlamoon N, Tabu K, Chuthapisith S, and Taga T. 2024. The optimized priming effect of FGF-1 and FGF-2 enhances preadipocyte lineage commitment in human adipose-derived mesenchymal stem cells. Genes Cells 29:231–253. PubMed

Savchenko E, Teku GN, Boza-Serrano A, Russ K, Berns M, Deierborg T, Lamas NJ, Wichterle H, Rothstein J, Henderson CE, Vihinen M, and Roybon L. 2019. FGF family members differentially regulate maturation and proliferation of stem cell-derived astrocytes. Sci Rep 9:9610. PubMed PMC

Weksler NB, Lunstrum GP, Reid ES, and Horton WA. 1999. Differential effects of fibroblast growth factor (FGF) 9 and FGF2 on proliferation, differentiation and terminal differentiation of chondrocytic cells in vitro. Biochem J 342 Pt 3:677–682. PubMed PMC

Qiao J, Bush KT, Steer DL, Stuart RO, Sakurai H, Wachsman W, and Nigam SK. 2001. Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis. Mech Dev 109:123–135. PubMed

Olsen SK, Li JY, Bromleigh C, Eliseenkova AV, Ibrahimi OA, Lao Z, Zhang F, Linhardt RJ, Joyner AL, and Mohammadi M. 2006. Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes Dev 20:185–198. PubMed PMC

Liu A, Losos K, and Joyner AL. 1999. FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate. Development 126:4827–4838. PubMed

Lee SM, Danielian PS, Fritzsch B, and McMahon AP. 1997. Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124:959–969. PubMed

Mariani FV, Ahn CP, and Martin GR. 2008. Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature 453:401–U456. PubMed PMC

Krejci P, Masri B, Salazar L, Farrington-Rock C, Prats H, Thompson LM, and Wilcox WR. 2007. Bisindolylmaleimide I suppresses fibroblast growth factor-mediated activation of Erk MAP kinase in chondrocytes by preventing Shp2 association with the Frs2 and Gab1 adaptor proteins. Journal of Biological Chemistry 282:2929–2936. PubMed

Krejci P, Prochazkova J, Smutny J, Chlebova K, Lin P, Aklian A, Bryja V, Kozubik A, and Wilcox WR. 2010. FGFR3 signaling induces a reversible senescence phenotype in chondrocytes similar to oncogene-induced premature senescence. Bone 47:102–110. PubMed PMC

Rozenblatt-Rosen O, Mosonego-Ornan E, Sadot E, Madar-Shapiro L, Sheinin Y, Ginsberg D, and Yayon A. 2002. Induction of chondrocyte growth arrest by FGF: transcriptional and cytoskeletal alterations. J Cell Sci 115:553–562. PubMed

Raucci A, Laplantine E, Mansukhani A, and Basilico C. 2004. Activation of the ERK1/2 and p38 mitogen-activated protein kinase pathways mediates fibroblast growth factor-induced growth arrest of chondrocytes. J Biol Chem 279:1747–1756. PubMed

Kamemura N, Murakami S, Komatsu H, Sawanoi M, Miyamoto K, Ishidoh K, Kishimoto K, Tsuji A, and Yuasa K. 2017. Type II cGMP-dependent protein kinase negatively regulates fibroblast growth factor signaling by phosphorylating Raf-1 at serine 43 in rat chondrosarcoma cells. Biochem Biophys Res Commun 483:82–87. PubMed

Kolupaeva V, Daempfling L, and Basilico C. 2013. The B55alpha regulatory subunit of protein phosphatase 2A mediates fibroblast growth factor-induced p107 dephosphorylation and growth arrest in chondrocytes. Mol Cell Biol 33:2865–2878. PubMed PMC

Kimura T, Bosakova M, Nonaka Y, Hruba E, Yasuda K, Futakawa S, Kubota T, Fafilek B, Gregor T, Abraham SP, Gomolkova R, Belaskova S, Pesl M, Csukasi F, Duran I, Fujiwara M, Kavkova M, Zikmund T, Kaiser J, Buchtova M, Krakow D, Nakamura Y, Ozono K, and Krejci P. 2021. An RNA aptamer restores defective bone growth in FGFR3-related skeletal dysplasia in mice. Sci Transl Med 13. PubMed

Matsushita M, Kitoh H, Ohkawara B, Mishima K, Kaneko H, Ito M, Masuda A, Ishiguro N, and Ohno K. 2013. Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia. PLoS One 8:e81569. PubMed PMC

Wendt DJ, Dvorak-Ewell M, Bullens S, Lorget F, Bell SM, Peng J, Castillo S, Aoyagi-Scharber M, O’Neill CA, Krejci P, Wilcox WR, Rimoin DL, and Bunting S. 2015. Neutral endopeptidase-resistant C-type natriuretic peptide variant represents a new therapeutic approach for treatment of fibroblast growth factor receptor 3-related dwarfism. J Pharmacol Exp Ther 353:132–149. PubMed

Karl K, Del Piccolo N, Light T, Roy T, Deduja P, Ursachi VC, Fafilek B, Krejci P, and Hristova K. 2024. Ligand bias underlies differential signaling of multiple FGFs via FGFR1. Elife 12. PubMed PMC

Kenakin T 2019. Biased Receptor Signaling in Drug Discovery. Pharmacol Rev 71:267–315. PubMed

Karl K, Paul MD, Pasquale EB, and Hristova K. 2020. Ligand bias in receptor tyrosine kinase signaling. J Biol Chem 295:18494–18507. PubMed PMC

Krejci P, Masri B, Fontaine V, Mekikian PB, Weis M, Prats H, and Wilcox WR. 2005. Interaction of fibroblast growth factor and C-natriuretic peptide signaling in regulation of chondrocyte proliferation and extracellular matrix homeostasis. J Cell Sci 118:5089–5100. PubMed

Kenakin T 2017. Signaling bias in drug discovery. Expert Opin Drug Discov 12:321–333. PubMed

Kolb P, Kenakin T, Alexander SPH, Bermudez M, Bohn LM, Breinholt CS, Bouvier M, Hill SJ, Kostenis E, Martemyanov KA, Neubig RR, Onaran HO, Rajagopal S, Roth BL, Selent J, Shukla AK, Sommer ME, and Gloriam DE. 2022. Community guidelines for GPCR ligand bias: IUPHAR review 32. Br J Pharmacol 179:3651–3674. PubMed PMC

Black JW, and Leff P. 1983. Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 220:141–162. PubMed

Macdonald JL, and Pike LJ. 2008. Heterogeneity in EGF-binding affinities arises from negative cooperativity in an aggregating system. Proceedings of the National Academy of Sciences of the United States of America 105:112–117. PubMed PMC

King C, and Hristova K. 2019. Direct measurements of VEGF-VEGFR2 binding affinities reveal the coupling between ligand binding and receptor dimerization. J Biol Chem 294:9064–9075. PubMed PMC

Gomez-Soler M, Gehring MP, Lechtenberg BC, Zapata-Mercado E, Hristova K, and Pasquale EB. 2019. Engineering nanomolar peptide ligands that differentially modulate EphA2 receptor signaling. Journal of Biological Chemistry 294:8791–8805. PubMed PMC

Kenakin T 2016. Measurement of Receptor Signaling Bias. Curr Protoc Pharmacol 74:2 15 11–12 15 15. PubMed

Gundry J, Glenn R, Alagesan P, and Rajagopal S. 2017. A Practical Guide to Approaching Biased Agonism at G Protein Coupled Receptors. Front Neurosci 11:17. PubMed PMC

Mohammadi M, Olsen SK, and Ibrahimi OA. 2005. Structural basis for fibroblast growth factor receptor activation. Cytokine & Growth Factor Reviews 16:107–137. PubMed

Liu JJ, Horst R, Katritch V, Stevens RC, and Wuthrich K. 2012. Biased signaling pathways in beta2-adrenergic receptor characterized by 19F-NMR. Science 335:1106–1110. PubMed PMC

Fouillen A, Bous J, Granier S, Mouillac B, and Sounier R. 2023. Bringing GPCR Structural Biology to Medical Applications: Insights from Both V2 Vasopressin and Mu-Opioid Receptors. Membranes (Basel) 13. PubMed PMC

Sorokin A, Mohammadi M, Huang J, and Schlessinger J. 1994. Internalization of fibroblast growth factor receptor is inhibited by a point mutation at tyrosine 766. J Biol Chem 269:17056–17061. PubMed

Burgar HR, Burns HD, Elsden JL, Lalioti MD, and Heath JK. 2002. Association of the signaling adaptor FRS2 with fibroblast growth factor receptor 1 (Fgfr1) is mediated by alternative splicing of the juxtamembrane domain. J Biol Chem 277:4018–4023. PubMed

Smith JS, Lefkowitz RJ, and Rajagopal S. 2018. Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov 17:243–260. PubMed PMC

Mariani FV, and Martin GR. 2003. Deciphering skeletal patterning: clues from the limb. Nature 423:319–325. PubMed

Tabin C, and Wolpert L. 2007. Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes Dev 21:1433–1442. PubMed

Itoh N, and Ornitz DM. 2011. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem 149:121–130. PubMed PMC

Rottinger E, Saudemont A, Duboc V, Besnardeau L, McClay D, and Lepage T. 2008. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Development 135:353–365. PubMed

Lobocki M, Zakrzewska M, Szlachcic A, Krzyscik MA, Sokolowska-Wedzina A, and Otlewski J. 2017. High-Yield Site-Specific Conjugation of Fibroblast Growth Factor 1 with Monomethylauristatin E via Cysteine Flanked by Basic Residues. Bioconjug Chem 28:1850–1858. PubMed

Krzyscik MA, Zakrzewska M, Sorensen V, Sokolowska-Wedzina A, Lobocki M, Swiderska KW, Krowarsch D, Wiedlocha A, and Otlewski J. 2017. Cytotoxic Conjugates of Fibroblast Growth Factor 2 (FGF2) with Monomethyl Auristatin E for Effective Killing of Cells Expressing FGF Receptors. ACS Omega 2:3792–3805. PubMed PMC

Krzyscik MA, Zakrzewska M, Sorensen V, Oy GF, Brunheim S, Haugsten EM, Maelandsmo GM, Wiedlocha A, and Otlewski J. 2021. Fibroblast Growth Factor 2 Conjugated with Monomethyl Auristatin E Inhibits Tumor Growth in a Mouse Model. Biomacromolecules 22:4169–4180. PubMed PMC

Krzyscik MA, Zakrzewska M, and Otlewski J. 2020. Site-Specific, Stoichiometric-Controlled, PEGylated Conjugates of Fibroblast Growth Factor 2 (FGF2) with Hydrophilic Auristatin Y for Highly Selective Killing of Cancer Cells Overproducing Fibroblast Growth Factor Receptor 1 (FGFR1). Mol Pharm 17:2734–2748. PubMed PMC

Agrawal S, Govind Kumar V, Gundampati RK, Moradi M, and Kumar TKS. 2021. Characterization of the structural forces governing the reversibility of the thermal unfolding of the human acidic fibroblast growth factor. Sci Rep 11:15579. PubMed PMC

Dvorak P, Bednar D, Vanacek P, Balek L, Eiselleova L, Stepankova V, Sebestova E, Kunova Bosakova M, Konecna Z, Mazurenko S, Kunka A, Vanova T, Zoufalova K, Chaloupkova R, Brezovsky J, Krejci P, Prokop Z, Dvorak P, and Damborsky J. 2018. Computer-assisted engineering of hyperstable fibroblast growth factor 2. Biotechnol Bioeng 115:850–862. PubMed

de La Bourdonnaye G, Ghazalova T, Fojtik P, Kutalkova K, Bednar D, Damborsky J, Rotrekl V, Stepankova V, and Chaloupkova R. 2024. Computer-aided engineering of stabilized fibroblast growth factor 21. Comput Struct Biotechnol J 23:942–951. PubMed PMC

Decker CG, Wang Y, Paluck SJ, Shen L, Loo JA, Levine AJ, Miller LS, and Maynard HD. 2016. Fibroblast growth factor 2 dimer with superagonist in vitro activity improves granulation tissue formation during wound healing. Biomaterials 81:157–168. PubMed PMC

Nawrocka D, Krzyscik MA, Opalinski L, Zakrzewska M, and Otlewski J. 2020. Stable Fibroblast Growth Factor 2 Dimers with High Pro-Survival and Mitogenic Potential. Int J Mol Sci 21. PubMed PMC

Krzyscik MA, Opalinski L, Szymczyk J, and Otlewski J. 2022. Cyclic and dimeric fibroblast growth factor 2 variants with high biomedical potential. Int J Biol Macromol 218:243–258. PubMed

Ho CCM, Chhabra A, Starkl P, Schnorr PJ, Wilmes S, Moraga I, Kwon HS, Gaudenzio N, Sibilano R, Wehrman TS, Gakovic M, Sockolosky JT, Tiffany MR, Ring AM, Piehler J, Weissman IL, Galli SJ, Shizuru JA, and Garcia KC. 2017. Decoupling the Functional Pleiotropy of Stem Cell Factor by Tuning c-Kit Signaling. Cell 168:1041–1052 e1018. PubMed PMC

Vomaske J, Melnychuk RM, Smith PP, Powell J, Hall L, DeFilippis V, Fruh K, Smit M, Schlaepfer DD, Nelson JA, and Streblow DN. 2009. Differential ligand binding to a human cytomegalovirus chemokine receptor determines cell type-specific motility. PLoS Pathog 5:e1000304. PubMed PMC

Ibrahimi OA, Zhang FM, Eliseenkova AV, Itoh N, Linhardt RJ, and Mohammadi M. 2004. Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Human Molecular Genetics 13:2313–2324. PubMed PMC

Gomez-Soler M, Gehring MP, Lechtenberg BC, Zapata-Mercado E, Ruelos A, Matsumoto MW, Hristova K, and Pasquale EB. 2022. Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling. iScience 25:103870. PubMed PMC

Bondza S, Foy E, Brooks J, Andersson K, Robinson J, Richalet P, and Buijs J. 2017. Real-time Characterization of Antibody Binding to Receptors on Living Immune Cells. Front Immunol 8:455. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace