Ligand bias underlies differential signaling of multiple FGFs via FGFR1

. 2024 Apr 03 ; 12 () : . [epub] 20240403

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38568193

Grantová podpora
R01 GM068619 NIGMS NIH HHS - United States
GM068619 NIGMS NIH HHS - United States

The differential signaling of multiple FGF ligands through a single fibroblast growth factor (FGF) receptor (FGFR) plays an important role in embryonic development. Here, we use quantitative biophysical tools to uncover the mechanism behind differences in FGFR1c signaling in response to FGF4, FGF8, and FGF9, a process which is relevant for limb bud outgrowth. We find that FGF8 preferentially induces FRS2 phosphorylation and extracellular matrix loss, while FGF4 and FGF9 preferentially induce FGFR1c phosphorylation and cell growth arrest. Thus, we demonstrate that FGF8 is a biased FGFR1c ligand, as compared to FGF4 and FGF9. Förster resonance energy transfer experiments reveal a correlation between biased signaling and the conformation of the FGFR1c transmembrane domain dimer. Our findings expand the mechanistic understanding of FGF signaling during development and bring the poorly understood concept of receptor tyrosine kinase ligand bias into the spotlight.

Před aktualizací

doi: 10.1101/2022.01.06.475273 PubMed

Před aktualizací

doi: 10.7554/eLife.88144.1 PubMed

Před aktualizací

doi: 10.7554/eLife.88144.2 PubMed

Před aktualizací

doi: 10.7554/eLife.88144.3 PubMed

Zobrazit více v PubMed

Ahmed F, Zapata-Mercado E, Rahman S, Hristova K. The biased ligands NGF and NT-3 differentially stabilize Trk-A Dimers. Biophysical Journal. 2021;120:55–63. doi: 10.1016/j.bpj.2020.11.2262. PubMed DOI PMC

Anderson D, Sweeney DJ, Williams TA, Camm JD, Cochran JJ. Modern Business Statistics with Microsoft Excel. Cengage; 2001.

Bocharov EV, Mineev KS, Pavlov KV, Akimov SA, Kuznetsov AS, Efremov RG, Arseniev AS. Helix-helix interactions in membrane domains of bitopic proteins: specificity and role of lipid environment. Biochimica et Biophysica Acta. 2017;1859:561–576. doi: 10.1016/j.bbamem.2016.10.024. PubMed DOI

Browne BC, O’Brien N, Duffy MJ, Crown J, O’Donovan N. HER-2 signaling and inhibition in breast cancer. Current Cancer Drug Targets. 2009;9:419–438. doi: 10.2174/156800909788166484. PubMed DOI

Buchtova M, Chaloupkova R, Zakrzewska M, Vesela I, Cela P, Barathova J, Gudernova I, Zajickova R, Trantirek L, Martin J, Kostas M, Otlewski J, Damborsky J, Kozubik A, Wiedlocha A, Krejci P. Instability restricts signaling of multiple fibroblast growth factors. Cellular and Molecular Life Sciences. 2015;72:2445–2459. doi: 10.1007/s00018-015-1856-8. PubMed DOI PMC

Burgar HR, Burns HD, Elsden JL, Lalioti MD, Heath JK. Association of the signaling adaptor FRS2 with fibroblast growth factor receptor 1 (Fgfr1) is mediated by alternative splicing of the juxtamembrane domain. The Journal of Biological Chemistry. 2002;277:4018–4023. doi: 10.1074/jbc.M107785200. PubMed DOI

Chen LR, Novicky L, Merzlyakov M, Hristov T, Hristova K. Measuring the energetics of membrane protein dimerization in mammalian membranes. Journal of the American Chemical Society. 2010a;132:3628–3635. doi: 10.1021/ja910692u. PubMed DOI PMC

Chen L, Placone J, Novicky L, Hristova K. The extracellular domain of fibroblast growth factor receptor 3 inhibits ligand-independent dimerization. Science Signaling. 2010b;3:ra86. doi: 10.1126/scisignal.2001195. PubMed DOI PMC

Correll CC, McKittrick BA. Biased ligand modulation of seven transmembrane receptors (7TMRs): functional implications for drug discovery. Journal of Medicinal Chemistry. 2014;57:6887–6896. doi: 10.1021/jm401677g. PubMed DOI

Dailey L, Laplantine E, Priore R, Basilico C. A network of transcriptional and signaling events is activated by FGF to induce chondrocyte growth arrest and differentiation. The Journal of Cell Biology. 2003;161:1053–1066. doi: 10.1083/jcb.200302075. PubMed DOI PMC

Del Piccolo N, Placone J, He L, Agudelo SC, Hristova K. Production of plasma membrane vesicles with chloride salts and their utility as a cell membrane mimetic for biophysical characterization of membrane protein interactions. Analytical Chemistry. 2012;84:8650–8655. doi: 10.1021/ac301776j. PubMed DOI PMC

Digman MA, Gratton E. Scanning image correlation spectroscopy. BioEssays. 2012;34:377–385. doi: 10.1002/bies.201100118. PubMed DOI PMC

Doerner A, Scheck R, Schepartz A. Growth factor identity is encoded by discrete coiled-coil rotamers in the EGFR Juxtamembrane region. Chemistry & Biology. 2015;22:776–784. doi: 10.1016/j.chembiol.2015.05.008. PubMed DOI PMC

Ehlert FJ. Analysis of biased agonism. Progress in Molecular Biology and Translational Science. 2018;160:63–104. doi: 10.1016/bs.pmbts.2018.08.001. PubMed DOI

Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine & Growth Factor Reviews. 2005;16:139–149. doi: 10.1016/j.cytogfr.2005.01.001. PubMed DOI

Fafilek B, Hampl M, Ricankova N, Vesela I, Balek L, Kunova Bosakova M, Gudernova I, Varecha M, Buchtova M, Krejci P. Statins do not inhibit the FGFR signaling in chondrocytes. Osteoarthritis and Cartilage. 2017;25:1522–1530. doi: 10.1016/j.joca.2017.05.014. PubMed DOI

Fafilek B, Balek L, Bosakova MK, Varecha M, Nita A, Gregor T, Gudernova I, Krenova J, Ghosh S, Piskacek M, Jonatova L, Cernohorsky NH, Zieba JT, Kostas M, Haugsten EM, Wesche J, Erneux C, Trantirek L, Krakow D, Krejci P. The inositol phosphatase SHIP2 enables sustained ERK activation downstream of FGF receptors by recruiting Src kinases. Science Signaling. 2018;11:eaap8608. doi: 10.1126/scisignal.aap8608. PubMed DOI

Freed DM, Bessman NJ, Kiyatkin A, Salazar-Cavazos E, Byrne PO, Moore JO, Valley CC, Ferguson KM, Leahy DJ, Lidke DS, Lemmon MA. EGFR ligands differentially stabilize receptor dimers to specify signaling kinetics. Cell. 2017;171:683–695. doi: 10.1016/j.cell.2017.09.017. PubMed DOI PMC

Furdui CM, Lew ED, Schlessinger J, Anderson KS. Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction. Molecular Cell. 2006;21:711–717. doi: 10.1016/j.molcel.2006.01.022. PubMed DOI

Gleizes PE, Noaillac-Depeyre J, Amalric F, Gas N. Basic fibroblast growth factor (FGF-2) internalization through the heparan sulfate proteoglycans-mediated pathway: an ultrastructural approach. European Journal of Cell Biology. 1995;66:47–59. PubMed

Goetz R, Mohammadi M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nature Reviews Molecular Cell Biology. 2013;14:166–180. doi: 10.1038/nrm3528. PubMed DOI PMC

Gomez-Soler M, Petersen Gehring M, Lechtenberg BC, Zapata-Mercado E, Hristova K, Pasquale EB. Engineering nanomolar peptide ligands that differentially modulate EphA2 receptor signaling. The Journal of Biological Chemistry. 2019;294:8791–8805. doi: 10.1074/jbc.RA119.008213. PubMed DOI PMC

Gotoh N. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Science. 2008;99:1319–1325. doi: 10.1111/j.1349-7006.2008.00840.x. PubMed DOI PMC

Gudernova I, Foldynova-Trantirkova S, Ghannamova BE, Fafilek B, Varecha M, Balek L, Hruba E, Jonatova L, Jelinkova I, Kunova Bosakova M, Trantirek L, Mayer J, Krejci P. One reporter for in-cell activity profiling of majority of protein kinase oncogenes. eLife. 2017;6:e21536. doi: 10.7554/eLife.21536. PubMed DOI PMC

Gundry J, Glenn R, Alagesan P, Rajagopal S. A practical guide to approaching biased agonism at g protein coupled receptors. Frontiers in Neuroscience. 2017;11:17. doi: 10.3389/fnins.2017.00017. PubMed DOI PMC

Hadari YR, Kouhara H, Lax I, Schlessinger J. Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation. Molecular and Cellular Biology. 1998;18:3966–3973. doi: 10.1128/MCB.18.7.3966. PubMed DOI PMC

Huang Y, Bharill S, Karandur D, Peterson SM, Marita M, Shi X, Kaliszewski MJ, Smith AW, Isacoff EY, Kuriyan J. Molecular basis for multimerization in the activation of the epidermal growth factor receptor. eLife. 2016;5:e14107. doi: 10.7554/eLife.14107. PubMed DOI PMC

Hughes IG, Hase T. Measurements and their uncertainties: a practical guide to modern error analysis. Oxford University Press; 2010.

Kahsai AW, Xiao K, Rajagopal S, Ahn S, Shukla AK, Sun J, Oas TG, Lefkowitz RJ. Multiple ligand-specific conformations of the β2-adrenergic receptor. Nature Chemical Biology. 2011;7:692–700. doi: 10.1038/nchembio.634. PubMed DOI PMC

Kamemura N, Murakami S, Komatsu H, Sawanoi M, Miyamoto K, Ishidoh K, Kishimoto K, Tsuji A, Yuasa K. Type II cGMP-dependent protein kinase negatively regulates fibroblast growth factor signaling by phosphorylating Raf-1 at serine 43 in rat chondrosarcoma cells. Biochemical and Biophysical Research Communications. 2017;483:82–87. doi: 10.1016/j.bbrc.2017.01.001. PubMed DOI

Karl K, Paul MD, Pasquale EB, Hristova K. Ligand bias in receptor tyrosine kinase signaling. The Journal of Biological Chemistry. 2020;295:18494–18507. doi: 10.1074/jbc.REV120.015190. PubMed DOI PMC

Karl K, Hristova K. Pondering the mechanism of receptor tyrosine kinase activation: The case for ligand-specific dimer microstate ensembles. Current Opinion in Structural Biology. 2021;71:193–199. doi: 10.1016/j.sbi.2021.07.003. PubMed DOI PMC

Kenakin T. Functional selectivity and biased receptor signaling. The Journal of Pharmacology and Experimental Therapeutics. 2011;336:296–302. doi: 10.1124/jpet.110.173948. PubMed DOI

Kenakin T, Christopoulos A. Measurements of ligand bias and functional affinity. Nature Reviews. Drug Discovery. 2013;12:483. doi: 10.1038/nrd3954-c2. PubMed DOI

Kenakin T. Measurement of receptor signaling bias. Current Protocols in Pharmacology. 2016;74:2. doi: 10.1002/cpph.11. PubMed DOI

Kenakin T. Biased receptor signaling in drug discovery. Pharmacological Reviews. 2019;71:267–315. doi: 10.1124/pr.118.016790. PubMed DOI

Kimura T, Bosakova M, Nonaka Y, Hruba E, Yasuda K, Futakawa S, Kubota T, Fafilek B, Gregor T, Abraham SP, Gomolkova R, Belaskova S, Pesl M, Csukasi F, Duran I, Fujiwara M, Kavkova M, Zikmund T, Kaiser J, Buchtova M, Krakow D, Nakamura Y, Ozono K, Krejci P. An RNA aptamer restores defective bone growth in FGFR3-related skeletal dysplasia in mice. Science Translational Medicine. 2021;13:aba4226. doi: 10.1126/scitranslmed.aba4226. PubMed DOI

King C, Stoneman M, Raicu V, Hristova K. Fully quantified spectral imaging reveals in vivo membrane protein interactions. Integrative Biology. 2016;8:216–229. doi: 10.1039/c5ib00202h. PubMed DOI PMC

Kiyatkin A, van Alderwerelt van Rosenburgh IK, Klein DE, Lemmon MA. Kinetics of receptor tyrosine kinase activation define ERK signaling dynamics. Science Signaling. 2020;13:eaaz5267. doi: 10.1126/scisignal.aaz5267. PubMed DOI PMC

Kolupaeva V, Daempfling L, Basilico C. The B55α regulatory subunit of protein phosphatase 2A mediates fibroblast growth factor-induced p107 dephosphorylation and growth arrest in chondrocytes. Molecular and Cellular Biology. 2013;33:2865–2878. doi: 10.1128/MCB.01730-12. PubMed DOI PMC

Krejci P, Prochazkova J, Smutny J, Chlebova K, Lin P, Aklian A, Bryja V, Kozubik A, Wilcox WR. FGFR3 signaling induces a reversible senescence phenotype in chondrocytes similar to oncogene-induced premature senescence. Bone. 2010;47:102–110. doi: 10.1016/j.bone.2010.03.021. PubMed DOI PMC

Kufareva I, Gustavsson M, Zheng Y, Stephens BS, Handel TM. What Do Structures Tell Us About Chemokine Receptor Function and Antagonism? Annual Review of Biophysics. 2017;46:175–198. doi: 10.1146/annurev-biophys-051013-022942. PubMed DOI PMC

Kumar R, George B, Campbell MR, Verma N, Paul AM, Melo-Alvim C, Ribeiro L, Pillai MR, da Costa LM, Moasser MM. HER family in cancer progression: From discovery to 2020 and beyond. Advances in Cancer Research. 2020;147:109–160. doi: 10.1016/bs.acr.2020.04.001. PubMed DOI

Lax I, Wong A, Lamothe B, Lee A, Frost A, Hawes J, Schlessinger J. The docking protein FRS2alpha controls a MAP kinase-mediated negative feedback mechanism for signaling by FGF receptors. Molecular Cell. 2002;10:709–719. doi: 10.1016/s1097-2765(02)00689-5. PubMed DOI

Le X, Nilsson M, Goldman J, Reck M, Nakagawa K, Kato T, Ares LP, Frimodt-Moller B, Wolff K, Visseren-Grul C, Heymach JV, Garon EB. Dual EGFR-VEGF pathway inhibition: a promising strategy for patients with EGFR-Mutant NSCLC. Journal of Thoracic Oncology. 2021;16:205–215. doi: 10.1016/j.jtho.2020.10.006. PubMed DOI

Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–1134. doi: 10.1016/j.cell.2010.06.011. PubMed DOI PMC

Lew ED, Furdui CM, Anderson KS, Schlessinger J. The precise sequence of FGF receptor autophosphorylation is kinetically driven and is disrupted by oncogenic mutations. Science Signaling. 2009;2:ra6. doi: 10.1126/scisignal.2000021. PubMed DOI PMC

Li E, Hristova K. Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies. Biochemistry. 2006;45:6241–6251. doi: 10.1021/bi060609y. PubMed DOI PMC

Liu JJ, Horst R, Katritch V, Stevens RC, Wüthrich K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science. 2012;335:1106–1110. doi: 10.1126/science.1215802. PubMed DOI PMC

Lu C, Mi LZ, Grey MJ, Zhu J, Graef E, Yokoyama S, Springer TA. Structural evidence for loose linkage between ligand binding and kinase activation in the epidermal growth factor receptor. Molecular and Cellular Biology. 2010;30:5432–5443. doi: 10.1128/MCB.00742-10. PubMed DOI PMC

Luttrell LM. Minireview: more than just a hammer: ligand “bias” and pharmaceutical discovery. Molecular Endocrinology. 2014;28:281–294. doi: 10.1210/me.2013-1314. PubMed DOI PMC

Mariani FV, Martin GR. Deciphering skeletal patterning: clues from the limb. Nature. 2003;423:319–325. doi: 10.1038/nature01655. PubMed DOI

Mariani FV, Ahn CP, Martin GR. Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature. 2008;453:401–405. doi: 10.1038/nature06876. PubMed DOI PMC

Matsushita M, Kitoh H, Ohkawara B, Mishima K, Kaneko H, Ito M, Masuda A, Ishiguro N, Ohno K. Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia. PLOS ONE. 2013;8:e81569. doi: 10.1371/journal.pone.0081569. PubMed DOI PMC

Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine & Growth Factor Reviews. 2005;16:107–137. doi: 10.1016/j.cytogfr.2005.01.008. PubMed DOI

Moscatelli D. High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of A role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. Journal of Cellular Physiology. 1987;131:123–130. doi: 10.1002/jcp.1041310118. PubMed DOI

Needham SR, Roberts SK, Arkhipov A, Mysore VP, Tynan CJ, Zanetti-Domingues LC, Kim ET, Losasso V, Korovesis D, Hirsch M, Rolfe DJ, Clarke DT, Winn MD, Lajevardipour A, Clayton AHA, Pike LJ, Perani M, Parker PJ, Shan Y, Shaw DE, Martin-Fernandez ML. EGFR oligomerization organizes kinase-active dimers into competent signalling platforms. Nature Communications. 2016;7:13307. doi: 10.1038/ncomms13307. PubMed DOI PMC

Nikolov DB, Xu K, Himanen JP. Homotypic receptor-receptor interactions regulating Eph signaling. Cell Adhesion & Migration. 2014;8:360–365. doi: 10.4161/19336918.2014.971684. PubMed DOI PMC

Ong SH, Guy GR, Hadari YR, Laks S, Gotoh N, Schlessinger J, Lax I. FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Molecular and Cellular Biology. 2000;20:979–989. doi: 10.1128/MCB.20.3.979-989.2000. PubMed DOI PMC

Ornitz DM, Xu JS, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao GX, Goldfarb M. Receptor specificity of the fibroblast growth factor family. The Journal of Biological Chemistry. 1996;271:15292–15297. doi: 10.1074/jbc.271.25.15292. PubMed DOI

Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biology. 2001;2:REVIEWS3005. doi: 10.1186/gb-2001-2-3-reviews3005. PubMed DOI PMC

Passos-Bueno MR, Sertié AL, Richieri-Costa A, Alonso LG, Zatz M, Alonso N, Brunoni D, Ribeiro SF. Description of a new mutation and characterization of FGFR1, FGFR2, and FGFR3 mutations among Brazilian patients with syndromic craniosynostoses. American Journal of Medical Genetics. 1998;78:237–241. PubMed

Paul MD, Hristova K. The RTK interactome: overview and perspective on RTK heterointeractions. Chemical Reviews. 2019;119:5881–5921. doi: 10.1021/acs.chemrev.8b00467. PubMed DOI PMC

Paul MD, Grubb HN, Hristova K. Quantifying the strength of heterointeractions among receptor tyrosine kinases from different subfamilies: implications for cell signaling. Journal of Biological Chemistry. 2020;295:9917–9933. doi: 10.1074/jbc.RA120.013639. PubMed DOI PMC

Paul MD, Rainwater R, Zuo Y, Gu L, Hristova K. Probing membrane protein association using concentration-dependent number and brightness. Angewandte Chemie. 2021;60:6503–6508. doi: 10.1002/anie.202010049. PubMed DOI PMC

Priore R, Dailey L, Basilico C. Downregulation of Akt activity contributes to the growth arrest induced by FGF in chondrocytes. Journal of Cellular Physiology. 2006;207:800–808. doi: 10.1002/jcp.20620. PubMed DOI

Rajagopal S, Ahn S, Rominger DH, Gowen-MacDonald W, Lam CM, Dewire SM, Violin JD, Lefkowitz RJ. Quantifying ligand bias at seven-transmembrane receptors. Molecular Pharmacology. 2011;80:367–377. doi: 10.1124/mol.111.072801. PubMed DOI PMC

Raucci A, Laplantine E, Mansukhani A, Basilico C. Activation of the ERK1/2 and p38 mitogen-activated protein kinase pathways mediates fibroblast growth factor-induced growth arrest of chondrocytes. The Journal of Biological Chemistry. 2004;279:1747–1756. doi: 10.1074/jbc.M310384200. PubMed DOI

Rauch C, Farge E. Endocytosis switch controlled by transmembrane osmotic pressure and phospholipid number asymmetry. Biophysical Journal. 2000;78:3036–3047. doi: 10.1016/S0006-3495(00)76842-1. PubMed DOI PMC

Robertson SC, Tynan JA, Donoghue DJ. RTK mutations and human syndromeswhen good receptors turn bad. Trends in Genetics. 2000;16:265–271. doi: 10.1016/s0168-9525(00)02021-7. PubMed DOI

Roghani M, Mansukhani A, Dell’Era P, Bellosta P, Basilico C, Rifkin DB, Moscatelli D. Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding. The Journal of Biological Chemistry. 1994;269:3976–3984. PubMed

Rozenblatt-Rosen O, Mosonego-Ornan E, Sadot E, Madar-Shapiro L, Sheinin Y, Ginsberg D, Yayon A. Induction of chondrocyte growth arrest by FGF: transcriptional and cytoskeletal alterations. Journal of Cell Science. 2002;115:553–562. doi: 10.1242/jcs.115.3.553. PubMed DOI

Sarabipour S, Del Piccolo N, Hristova K. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging förster resonance energy transfer. Accounts of Chemical Research. 2015;48:2262–2269. doi: 10.1021/acs.accounts.5b00238. PubMed DOI PMC

Sarabipour S, Ballmer-Hofer K, Hristova K. VEGFR-2 conformational switch in response to ligand binding. eLife. 2016;5:e13876. doi: 10.7554/eLife.13876. PubMed DOI PMC

Sarabipour S, Hristova K. Mechanism of FGF receptor dimerization and activation. Nature Communications. 2016;7:10262. doi: 10.1038/ncomms10262. PubMed DOI PMC

Scheck RA, Lowder MA, Appelbaum JS, Schepartz A. Bipartite tetracysteine display reveals allosteric control of ligand-specific EGFR activation. ACS Chemical Biology. 2012;7:1367–1376. doi: 10.1021/cb300216f. PubMed DOI PMC

Schlessinger J. Cell Signaling by receptor tyrosine kinases. Cell. 2000;103:211–225. doi: 10.1016/S0092-8674(00)00114-8. PubMed DOI

Schlessinger J. Common and distinct elements in cellular signaling via EGF and FGF receptors. Science. 2004;306:1506–1507. doi: 10.1126/science.1105396. PubMed DOI

Seiradake E, Harlos K, Sutton G, Aricescu AR, Jones EY. An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nature Structural & Molecular Biology. 2010;17:398–402. doi: 10.1038/nsmb.1782. PubMed DOI PMC

Seiradake E, Schaupp A, del Toro Ruiz D, Kaufmann R, Mitakidis N, Harlos K, Aricescu AR, Klein R, Jones EY. Structurally encoded intraclass differences in EphA clusters drive distinct cell responses. Nature Structural & Molecular Biology. 2013;20:958–964. doi: 10.1038/nsmb.2617. PubMed DOI PMC

Seo AN, Jin Y, Lee HJ, Sun PL, Kim H, Jheon S, Kim K, Lee CT, Chung JH. FGFR1 amplification is associated with poor prognosis and smoking in non-small-cell lung cancer. Virchows Archiv. 2014;465:547–558. doi: 10.1007/s00428-014-1634-2. PubMed DOI

Singh DR, Kanvinde P, King C, Pasquale EB, Hristova K. The EphA2 receptor is activated through induction of distinct, ligand-dependent oligomeric structures. Communications Biology. 2018;1:15. doi: 10.1038/s42003-018-0017-7. PubMed DOI PMC

Sinha B, Köster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L, Morone N, Parton RG, Raposo G, Sens P, Lamaze C, Nassoy P. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell. 2011;144:402–413. doi: 10.1016/j.cell.2010.12.031. PubMed DOI PMC

Smith JS, Lefkowitz RJ, Rajagopal S. Biased signalling: from simple switches to allosteric microprocessors. Nature Reviews. Drug Discovery. 2018;17:243–260. doi: 10.1038/nrd.2017.229. PubMed DOI PMC

Sorokin A, Mohammadi M, Huang J, Schlessinger J. Internalization of fibroblast growth factor receptor is inhibited by a point mutation at tyrosine 766. The Journal of Biological Chemistry. 1994;269:17056–17061. PubMed

Stoneman MR, Biener G, Ward RJ, Pediani JD, Badu D, Eis A, Popa I, Milligan G, Raicu V. A general method to quantify ligand-driven oligomerization from fluorescence-based images. Nature Methods. 2019;16:493–496. doi: 10.1038/s41592-019-0408-9. PubMed DOI PMC

Suwanmajo T, Krishnan J. Biphasic responses in multi-site phosphorylation systems. Journal of the Royal Society, Interface. 2013;10:20130742. doi: 10.1098/rsif.2013.0742. PubMed DOI PMC

Tabin C, Wolpert L. Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes & Development. 2007;21:1433–1442. doi: 10.1101/gad.1547407. PubMed DOI

Tomlinson DC, Lamont FR, Shnyder SD, Knowles MA. Fibroblast growth factor receptor 1 promotes proliferation and survival via activation of the mitogen-activated protein kinase pathway in bladder cancer. Cancer Research. 2009;69:4613–4620. doi: 10.1158/0008-5472.CAN-08-2816. PubMed DOI PMC

Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA, Natrajan R, Marchio C, Iorns E, Mackay A, Gillett C, Grigoriadis A, Tutt A, Reis-Filho JS, Ashworth A. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Research. 2010;70:2085–2094. doi: 10.1158/0008-5472.CAN-09-3746. PubMed DOI PMC

Wacker D, Wang C, Katritch V, Han GW, Huang XP, Vardy E, McCorvy JD, Jiang Y, Chu M, Siu FY, Liu W, Xu HE, Cherezov V, Roth BL, Stevens RC. Structural features for functional selectivity at serotonin receptors. Science. 2013;340:615–619. doi: 10.1126/science.1232808. PubMed DOI PMC

Wendt DJ, Dvorak-Ewell M, Bullens S, Lorget F, Bell SM, Peng J, Castillo S, Aoyagi-Scharber M, O’Neill CA, Krejci P, Wilcox WR, Rimoin DL, Bunting S. Neutral endopeptidase-resistant C-type natriuretic peptide variant represents a new therapeutic approach for treatment of fibroblast growth factor receptor 3-related dwarfism. The Journal of Pharmacology and Experimental Therapeutics. 2015;353:132–149. doi: 10.1124/jpet.114.218560. PubMed DOI

White KE, Cabral JM, Davis SI, Fishburn T, Evans WE, Ichikawa S, Fields J, Yu X, Shaw NJ, McLellan NJ, McKeown C, Fitzpatrick D, Yu K, Ornitz DM, Econs MJ. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. American Journal of Human Genetics. 2005;76:361–367. doi: 10.1086/427956. PubMed DOI PMC

Wilkie AOM. Bad bones, absent smell, selfish testes: the pleiotropic consequences of human FGF receptor mutations. Cytokine & Growth Factor Reviews. 2005;16:187–203. doi: 10.1016/j.cytogfr.2005.03.001. PubMed DOI

Wykosky J, Palma E, Gibo DM, Ringler S, Turner CP, Debinski W. Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor. Oncogene. 2008;27:7260–7273. doi: 10.1038/onc.2008.328. PubMed DOI PMC

Xian W, Schwertfeger KL, Rosen JM. Distinct roles of fibroblast growth factor receptor 1 and 2 in regulating cell survival and epithelial-mesenchymal transition. Molecular Endocrinology. 2007;21:987–1000. doi: 10.1210/me.2006-0518. PubMed DOI

Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L. FGF/FGFR signaling in health and disease. Signal Transduction and Targeted Therapy. 2020;5:181. doi: 10.1038/s41392-020-00222-7. PubMed DOI PMC

Yang J-L, Huang Z-F, Yin J-Q, Deng Y-L, Xie X-B, Li F-B, Yang J-F. A proposed classification system for guiding surgical strategy in cases of severe spinal deformity based on spinal cord function. European Spine Journal. 2016;25:1821–1829. doi: 10.1007/s00586-015-4367-2. PubMed DOI

Zhang XQ, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family: the complete mammalian FGF family. The Journal of Biological Chemistry. 2006;281:15694–15700. doi: 10.1074/jbc.M601252200. PubMed DOI PMC

Zheng Y, Han GW, Abagyan R, Wu B, Stevens RC, Cherezov V, Kufareva I, Handel TM. Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV. Immunity. 2017;46:1005–1017. doi: 10.1016/j.immuni.2017.05.002. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...