Increased thermal stability of FGF10 leads to ectopic signaling during development
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40257501
PubMed Central
PMC12011707
DOI
10.1007/s00018-025-05681-1
PII: 10.1007/s00018-025-05681-1
Knihovny.cz E-zdroje
- Klíčová slova
- Development, FGF10, Fibroblast growth factor, Lung, Morphogen, Stability,
- MeSH
- fibroblastový růstový faktor 10 * metabolismus genetika chemie MeSH
- lidé MeSH
- myši MeSH
- plíce metabolismus embryologie MeSH
- receptory fibroblastových růstových faktorů metabolismus MeSH
- signální transdukce * MeSH
- stabilita proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Fgf10 protein, mouse MeSH Prohlížeč
- fibroblastový růstový faktor 10 * MeSH
- receptory fibroblastových růstových faktorů MeSH
Fibroblast growth factors (FGFs) control organ morphogenesis during development as well as tissue homeostasis and repair in the adult organism. Despite their importance, many mechanisms that regulate FGF function are still poorly understood. Interestingly, the thermodynamic stability of 22 mammalian FGFs varies widely, with some FGFs remaining stable at body temperature for more than 24 h, while others lose their activity within minutes. How thermodynamic stability contributes to the function of FGFs during development remains unknown. Here we show that FGF10, an important limb and lung morphogen, exists as an intrinsically unstable protein that is prone to unfolding and is rapidly inactivated at 37 °C. Using rationally driven directed mutagenesis, we have developed several highly stable (STAB) FGF10 variants with a melting temperature of over 19 °C more than that of wildtype FGF10. In cellular assays in vitro, the FGF10-STABs did not differ from wildtype FGF10 in terms of binding to FGF receptors, activation of downstream FGF receptor signaling in cells, and induction of gene expression. In mouse embryonal lung explants, FGF10-STABs, but not wildtype FGF10, suppressed branching, resulting in increased alveolarization and expansion of epithelial tissue. Similarly, FGF10-STAB1, but not FGF10 wildtype, inhibited the growth of mouse embryonic tibias and markedly altered limb morphogenesis when implanted into chicken limb buds, collectively demonstrating that thermal instability should be considered an important regulator of FGF function that prevents ectopic signaling. Furthermore, we show enhanced differentiation of human iPSC-derived lung organoids and improved regeneration in ex vivo lung injury models mediated by FGF10-STABs, suggesting an application in cell therapy.
Department of Biology Faculty of Medicine Masaryk University Brno 62500 Czech Republic
Department of Biophysics Faculty of Biotechnology University of Wroclaw Wroclaw 50 383 Poland
Department of Experimental Biology Faculty of Science Masaryk University Brno 62500 Czech Republic
Enantis Ltd Brno 62500 Czech Republic
Excellence Cluster Cardio Pulmonary Institute Justus Liebig University 35392 Giessen Germany
Institute of Animal Physiology and Genetics Czech Academy of Sciences Brno 60200 Czech Republic
Institute of Hematology and Blood Transfusion Prague 12800 Czech Republic
International Clinical Research Center St Anne's University Hospital Brno 65691 Czech Republic
Zobrazit více v PubMed
Itoh N, Ornitz DM (2008) Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237:18–27. 10.1002/dvdy.21388 PubMed
Colvin JS, Green RP, Schmahl J et al (2001) Male-to-Female sex reversal in mice lacking fibroblast growth factor 9. Cell 104:875–889. 10.1016/S0092-8674(01)00284-7 PubMed
Ohbayashi N, Shibayama M, Kurotaki Y et al (2002) FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev 16:870–879. 10.1101/gad.965702 PubMed PMC
Usui H, Shibayama M, Ohbayashi N et al (2004) Fgf18 is required for embryonic lung alveolar development. Biochem Biophys Res Commun 322:887–892. 10.1016/j.bbrc.2004.07.198 PubMed
Lu SY, Sontag DP, Detillieux KA, Cattini PA (2008) FGF-16 is released from neonatal cardiac myocytes and alters growth-related signaling: a possible role in postnatal development. Am J Physiol-Cell Ph 294:C1242–C1249. 10.1152/ajpcell.00529.2007 PubMed PMC
Cholfin JA, Rubenstein JLR (2007) Patterning of frontal cortex subdivisions by Fgf17. P Natl Sci 104:7652–7657. 10.1073/pnas.0702225104 PubMed PMC
Sekine K, Ohuchi H, Fujiwara M et al (1999) Fgf10 is essential for limb and lung formation. Nat Genet 21:138–141. 10.1038/5096 PubMed
Zakrzewska M, Krowarsch D, Wiedlocha A, Otlewski J (2004) Design of fully active FGF-1 variants with increased stability. Protein Eng Des Sel 17:603–611. 10.1093/protein/gzh076 PubMed
Zakrzewska M, Krowarsch D, Wiedlocha A et al (2005) Highly stable mutants of human fibroblast growth factor-1 exhibit prolonged biological action. J Mol Biol 352:860–875. 10.1016/j.jmb.2005.07.066 PubMed
Zakrzewska M, Wiedlocha A, Szlachcic A et al (2009) Increased protein stability of FGF1 can compensate for its reduced affinity for heparin. J Biol Chem 284:25388–25403. 10.1074/jbc.M109.001289 PubMed PMC
Chen G, Gulbranson DR, Yu P et al (2012) Thermal stability of fibroblast growth factor protein is a determinant factor in regulating Self-Renewal, differentiation, and reprogramming in human pluripotent stem cells. Stem Cells 30:623–630. 10.1002/stem.1021 PubMed PMC
Buchtova M, Chaloupkova R, Zakrzewska M et al (2015) Instability restricts signaling of multiple fibroblast growth factors. Cell Mol Life Sci 72:2445–2459. 10.1007/s00018-015-1856-8 PubMed PMC
Miller DL, Ortega S, Bashayan O et al (2000) Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol 20:2260–2268. 10.1128/MCB.20.6.2260-2268.2000 PubMed PMC
Gudernova I, Foldynova-Trantirkova S, El Ghannamova B et al (2017) One reporter for in-cell activity profiling of majority of protein kinase oncogenes. Elife 6. 10.7554/eLife.21536 PubMed PMC
Hansson EM, Teixeira AI, Gustafsson MV et al (2006) Recording Notch signaling in real time. Dev Neurosci 28:118–127. 10.1159/000090758 PubMed
Patel H, Ewels P, Manning J et al (2024) nf-core/rnaseq: nf-core/rnaseq v3.18.0 - Lithium Lynx (3.18.0)
Ewels PA, Peltzer A, Fillinger S et al (2020) The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol 38:276–278. 10.1038/s41587-020-0439-x PubMed
Grüning B, Dale R, Sjödin A et al (2018) Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods 15:475–476. 10.1038/s41592-018-0046-7 PubMed PMC
da Veiga Leprevost F, Grüning BA, Alves Aflitos S et al (2017) BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics 33:2580–2582. 10.1093/bioinformatics/btx192 PubMed PMC
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10. 10.14806/ej.17.1.200
Harrison PW, Amode MR, Austine-Orimoloye O et al (2024) Ensembl 2024. Nucleic Acids Res 52:D891–D899. 10.1093/nar/gkad1049 PubMed PMC
Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. 10.1093/bioinformatics/bts635 PubMed PMC
Patro R, Duggal G, Love MI et al (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–419. 10.1038/nmeth.4197 PubMed PMC
Love MI, Huber W, Anders S (2014) Moderated Estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. 10.1186/s13059-014-0550-8 PubMed PMC
Yeh BK, Igarashi M, Eliseenkova AV et al (2003) Structural basis by which alternative splicing confers specificity in fibroblast growth factor receptors. P Natl Sci 100:2266–2271. 10.1073/pnas.0436500100 PubMed PMC
Bednar D, Beerens K, Sebestova E et al (2015) FireProt: Energy- and Evolution-Based computational design of thermostable Multiple-Point mutants. PLoS Comput Biol 11:e1004556. 10.1371/journal.pcbi.1004556 PubMed PMC
Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations. J Mol Biol 320:369–387. 10.1016/S0022-2836(02)00442-4 PubMed
Kellogg EH, Leaver-Fay A, Baker D (2011) Role of conformational sampling in computing mutation‐induced changes in protein structure and stability. Proteins 79:830–838. 10.1002/prot.22921 PubMed PMC
Dvorak P, Bednar D, Vanacek P et al (2018) Computer-assisted engineering of hyperstable fibroblast growth factor 2. Biotechnol Bioeng 115:850–862. 10.1002/bit.26531 PubMed
Frickey T, Lupas A (2004) CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20:3702–3704. 10.1093/bioinformatics/bth444 PubMed
Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. 10.1186/1471-2105-5-113 PubMed PMC
Steipe B, Schiller B, Plückthun A, Steinbacher S (1994) Sequence statistics reliably predict stabilizing mutations in a protein domain. J Mol Biol 240:188–192. 10.1006/jmbi.1994.1434 PubMed
Mistry J, Chuguransky S, Williams L et al (2021) Pfam: the protein families database in 2021. Nucleic Acids Res 49:D412–D419. 10.1093/nar/gkaa913 PubMed PMC
Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel 8:127–134. 10.1093/protein/8.2.127 PubMed
Pellegrini L, Burke DF, von Delft F et al (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407:1029–1034. 10.1038/35039551 PubMed
Schlessinger J, Plotnikov AN, Ibrahimi OA et al (2000) Crystal structure of a ternary FGF-FGFR-Heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6:743–750. 10.1016/S1097-2765(00)00073-3 PubMed
Laskowski RA, Rullmann JAC, MacArthur MW et al (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486. 10.1007/BF00228148 PubMed
Sokolowska-Wedzina A, Borek A, Chudzian J et al (2014) Efficient production and purification of extracellular domain of human FGFR-Fc fusion proteins from Chinese hamster ovary cells. Protein Expr Purif 99:50–57. 10.1016/j.pep.2014.03.012 PubMed
Stoneman MR, Biener G, Ward RJ et al (2019) A general method to quantify ligand-driven oligomerization from fluorescence-based images. Nat Methods 16:493–496. 10.1038/s41592-019-0408-9 PubMed PMC
Zapata-Mercado E, Biener G, McKenzie DM et al (2022) The efficacy of receptor tyrosine kinase EphA2 autophosphorylation increases with EphA2 oligomer size. J Biol Chem 298:102370. 10.1016/j.jbc.2022.102370 PubMed PMC
Yu J, Hu K, Smuga-Otto K et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Sci (1979) 324:797–801. 10.1126/science.1172482 PubMed PMC
Miller AJ, Dye BR, Ferrer-Torres D et al (2019) Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc 14:518–540. 10.1038/s41596-018-0104-8 PubMed PMC
Dye BR, Hill DR, Ferguson MA et al (2015) In vitro generation of human pluripotent stem cell derived lung organoids. Elife 4:e05098. 10.7554/eLife.05098 PubMed PMC
Jose SS, De Zuani M, Tidu F et al (2020) Comparison of two human organoid models of lung and intestinal inflammation reveals Toll-like receptor signalling activation and monocyte recruitment. Clin Transl Immunol 9(5):e1131. 10.1002/cti2.1131 PubMed PMC
Seimetz M, Sommer N, Bednorz M et al (2020) NADPH oxidase subunit NOXO1 is a target for emphysema treatment in COPD. Nat Metab 2:532–546. 10.1038/s42255-020-0215-8 PubMed
Wu C-Y, Cilic A, Pak O et al (2023) CEACAM6 as a novel therapeutic target to boost HO-1—mediated antioxidant defense in COPD. Am J Respir Crit Care Med 207:1576–1590. 10.1164/rccm.202208-1603OC PubMed
Alsafadi HN, Staab-Weijnitz CA, Lehmann M et al (2017) An ex vivo model to induce early fibrosis-like changes in human precision-cut lung slices. Am J Physiol-Lung C 312:L896–L902. 10.1152/ajplung.00084.2017 PubMed
Van Dijk EM, Culha S, Menzen MH et al (2017) Elastase-Induced parenchymal disruption and airway hyper responsiveness in mouse precision cut lung slices: toward an ex vivo COPD model. Front Physiol 7:657. 10.3389/fphys.2016.00657 PubMed PMC
Hadzic S, Wu C-Y, Gredic M et al (2023) Fibroblast growth factor 10 reverses cigarette smoke- and elastase-induced emphysema and pulmonary hypertension in mice. Eur Respir J 62:2201606. 10.1183/13993003.01606-2022 PubMed PMC
Ornitz DM, Xu J, Colvin JS et al (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271:15292–15297. 10.1074/jbc.271.25.15292 PubMed
Ibrahimi OA, Zhang F, Eliseenkova AV et al (2004) Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Hum Mol Genet 13:2313–2324. 10.1093/hmg/ddh235 PubMed PMC
Hadari YR, Gotoh N, Kouhara H et al (2001) Critical role for the docking-protein FRS2α in FGF receptor-mediated signal transduction pathways. P Natl Sci 98:8578–8583. 10.1073/pnas.161259898 PubMed PMC
Fafilek B, Balek L, Bosakova MK et al (2018) The inositol phosphatase SHIP2 enables sustained ERK activation downstream of FGF receptors by recruiting Src kinases. Sci Signal 11(548):eaap8608. 10.1126/scisignal.aap8608 PubMed
Al Alam D, Danopoulos S, Schall K et al (2015) Fibroblast growth factor 10 alters the balance between goblet and Paneth cells in the adult mouse small intestine. Am J Physiol-Gastr L 308:G678–G690. 10.1152/ajpgi.00158.2014 PubMed PMC
Herriges JC, Verheyden JM, Zhang Z et al (2015) FGF-Regulated ETV transcription factors control FGF-SHH feedback loop in lung branching. Dev Cell 35:322–332. 10.1016/j.devcel.2015.10.006 PubMed PMC
Morgani SM, Saiz N, Garg V et al (2018) A Sprouty4 reporter to monitor FGF/ERK signaling activity in ESCs and mice. Dev Biol 441:104–126. 10.1016/j.ydbio.2018.06.017 PubMed PMC
Minowada G, Jarvis LA, Chi CL et al (1999) Vertebrate sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126:4465–4475. 10.1242/dev.126.20.4465 PubMed
Li C, Scott DA, Hatch E et al (2007) Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development 134:167–176. 10.1242/dev.02701 PubMed PMC
Zhang X, Ibrahimi OA, Olsen SK et al (2006) Receptor specificity of the fibroblast growth factor family. J Biol Chem 281:15694–15700. 10.1074/jbc.M601252200 PubMed PMC
Krejci P, Salazar L, Goodridge HS et al (2008) STAT1 and STAT3 do not participate in FGF-mediated growth arrest in chondrocytes. J Cell Sci 121:272–281. 10.1242/jcs.017160 PubMed
Krejci P, Prochazkova J, Bryja V et al (2009) Fibroblast growth factor inhibits interferon γ-STAT1 and Interleukin 6-STAT3 signaling in chondrocytes. Cell Signal 21:151–160. 10.1016/j.cellsig.2008.10.006 PubMed PMC
Raucci A, Laplantine E, Mansukhani A, Basilico C (2004) Activation of the ERK1/2 and p38 Mitogen-activated protein kinase pathways mediates fibroblast growth Factor-induced growth arrest of chondrocytes. J Biol Chem 279:1747–1756. 10.1074/jbc.M310384200 PubMed
Kolupaeva V, Basilico C (2012) Overexpression of Cyclin E/CDK2 complexes overcomes FGF-induced cell cycle arrest in the presence of hypophosphorylated Rb proteins. Cell Cycle 11:2557–2566. 10.4161/cc.20944 PubMed PMC
Zlinska V, Feketova Z, Czyrek A et al (2025) Specific Inhibition of fibroblast growth factor receptor 1 signaling by a DNA aptamer. Mol Ther Nucleic Acids 36:102405. 10.1016/j.omtn.2024.102405 PubMed PMC
Stoneman MR, Raicu N, Biener G, Raicu V (2020) Fluorescence-based methods for the study of Protein-Protein interactions modulated by ligand binding. Curr Pharm Des 26:5668–5683. 10.2174/1381612826666201116120934 PubMed
Paul MD, Grubb HN, Hristova K (2020) Quantifying the strength of heterointeractions among receptor tyrosine kinases from different subfamilies: implications for cell signaling. J Biol Chem 295:9917–9933. 10.1074/jbc.RA120.013639 PubMed PMC
Paul MD, Rainwater R, Zuo Y et al (2021) Probing membrane protein association using Concentration-Dependent number and brightness. Angew Chem Int Edit 60:6503–6508. 10.1002/anie.202010049 PubMed PMC
Singh DR, Ahmed F, Sarabipour S, Hristova K (2017) Intracellular domain contacts contribute to Ecadherin constitutive dimerization in the plasma membrane. J Mol Biol 429:2231–2245. 10.1016/j.jmb.2017.05.020 PubMed PMC
Karl K, Del Piccolo N, Light T et al (2024) Ligand bias underlies differential signaling of multiple FGFs via FGFR1. Elife 12:RP88144. 10.7554/eLife.88144 PubMed PMC
Chioni A-M, Grose R (2009) Negative regulation of fibroblast growth factor 10 (FGF-10) by polyoma enhancer activator 3 (PEA3). Eur J Cell Biol 88:371–384. 10.1016/j.ejcb.2009.01.004 PubMed PMC
Veth TS, Francavilla C, Heck AJR, Altelaar M (2023) Elucidating fibroblast growth Factor–Induced Kinome dynamics using targeted mass spectrometry and dynamic modeling. Mol Cell Proteom 22:100594. 10.1016/j.mcpro.2023.100594 PubMed PMC
Kharitonenkov A, Shiyanova TL, Koester A et al (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115:1627–1635. 10.1172/JCI23606 PubMed PMC
Geer DJ, Swartz DD, Andreadis ST (2005) Biomimetic delivery of keratinocyte growth factor upon cellular demand for accelerated wound healing in vitro and in vivo. Am J Pathol 167:1575–1586. 10.1016/S0002-9440(10)61242-4 PubMed PMC
Szymczyk J, Czyrek A, Otlewski J, Zakrzewska M (2023) FGF1 protects MCF-7 cells against Taltobulin through both the MEKs/ERKs and PI3K/AKT signaling pathway. Biomedicines 11:1856. 10.3390/biomedicines11071856 PubMed PMC
Volckaert T, Campbell A, Dill E et al (2013) Localized Fgf10 expression is not required for lung branching morphogenesis but prevents differentiation of epithelial progenitors. Development 140:3731–3742. 10.1242/dev.096560 PubMed PMC
Abler LL, Mansour SL, Sun X (2009) Conditional gene inactivation reveals roles for Fgf10 and Fgfr2 in Establishing a normal pattern of epithelial branching in the mouse lung. Dev Dynam 238:1999–2013. 10.1002/dvdy.22032 PubMed PMC
Hashimoto S, Nakano H, Suguta Y et al (2012) Exogenous fibroblast growth Factor-10 induces cystic lung development with altered target gene expression in the presence of heparin in cultures of embryonic rat lung. Pathobiology 79:127–143. 10.1159/000334839 PubMed PMC
Ohuchi H, Nakagawa T, Yamamoto A et al (1997) The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124:2235–2244. 10.1242/dev.124.11.2235 PubMed
Dubey VK, Lee J, Somasundaram T et al (2007) Spackling the crack: stabilizing human fibroblast growth Factor-1 by targeting the N and C terminus β-Strand interactions. J Mol Biol 371:256–268. 10.1016/j.jmb.2007.05.065 PubMed
Jan Vilim, Ghazalova T, Petulova E et al (2023) Computer-assisted stabilization of fibroblast growth factor FGF-18. Comput Struct Biotechnol J 21:5144–5152. 10.1016/j.csbj.2023.10.009 PubMed PMC
Sugawara S, Ito T, Sato S et al (2014) Production of an aminoterminally truncated, stable type of bioactive mouse fibroblast growth factor 4 in Escherichia coli. J Biosci Bioeng 117:525–530. 10.1016/j.jbiosc.2013.10.009 PubMed
Qin K, Yu M, Fan J et al (2024) Canonical and noncanonical Wnt signaling: multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 11:103–134. 10.1016/j.gendis.2023.01.030 PubMed PMC
Wu M, Wu S, Chen W, Li Y-P (2024) The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res 34:101–123. 10.1038/s41422-023-00918-9 PubMed PMC
Martinez-Hackert E, Sundan A, Holien T (2021) Receptor binding competition: A paradigm for regulating TGF-β family action. Cytokine Growth Factor Rev 57:39–54. 10.1016/j.cytogfr.2020.09.003 PubMed PMC
Cruciat C-M, Niehrs C (2013) Secreted and transmembrane Wnt inhibitors and activators. Cold Spring Harb Perspect Biol 5:a015081–a015081. 10.1101/cshperspect.a015081 PubMed PMC
Correns A, Zimmermann L-MA, Baldock C, Sengle G (2021) BMP antagonists in tissue development and disease. Matrix Biol Plus 11:100071. 10.1016/j.mbplus.2021.100071 PubMed PMC
Lee H, Camuto CM, Niehrs C (2024) R-Spondin 2 governs xenopus left-right body axis formation by Establishing an FGF signaling gradient. Nat Commun 15:1003. 10.1038/s41467-024-44951-7 PubMed PMC
Derrick T, Grillo AO, Vitharana SN et al (2007) Effect of polyanions on the structure and stability of repifermin™ (Keratinocyte growth Factor-2). J Pharm Sci 96:761–776. 10.1002/jps.20797 PubMed
Govind Kumar V, Agrawal S, Kumar TKS, Moradi M (2021) Mechanistic picture for monomeric human fibroblast growth factor 1 stabilization by heparin binding. J Phys Chem B 125:12690–12697. 10.1021/acs.jpcb.1c07772 PubMed
Bellusci S, Grindley J, Emoto H et al (1997) Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124:4867–4878. 10.1242/dev.124.23.4867 PubMed
Yin Y, Wang F, Ornitz DM (2011) Mesothelial- and epithelial-derived FGF9 have distinct functions in the regulation of lung development. Development 138:3169–3177. 10.1242/dev.065110 PubMed PMC
Yin Y, Ornitz DM (2020) FGF9 and FGF10 activate distinct signaling pathways to direct lung epithelial specification and branching. Sci Signal 13(621):eaay4353. 10.1126/scisignal.aay4353 PubMed PMC
Xu X, Weinstein M, Li C et al (1998) Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 125:753–765. 10.1242/dev.125.4.753 PubMed
Sun X, Mariani FV, Martin GR (2002) Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418:501–508. 10.1038/nature00902 PubMed
Gros J, Tabin CJ (2014) Vertebrate limb bud formation is initiated by localized Epithelial-to-Mesenchymal transition. Sci (1979) 343:1253–1256. 10.1126/science.1248228 PubMed PMC
Havens BA, Rodgers B, Mina M (2006) Tissue-specific expression of Fgfr2b and Fgfr2c isoforms, Fgf10 and Fgf9 in the developing chick mandible. Arch Oral Biol 51:134–145. 10.1016/j.archoralbio.2005.06.011 PubMed
Bell GW, Yatskievych TA, Antin PB (2004) GEISHA, a whole-mount in situ hybridization gene expression screen in chicken embryos. Dev Dynam 229:677–687. 10.1002/dvdy.10503 PubMed
Krejci P, Krakow D, Mekikian PB, Wilcox WR (2007) Fibroblast growth factors 1, 2, 17, and 19 are the predominant FGF ligands expressed in human fetal growth plate cartilage. Pediatr Res 61:267–272. 10.1203/pdr.0b013e318030d157 PubMed
Delezoide A-L, Benoist-Lasselin C, Legeai-Mallet L et al (1998) Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification. Mech Dev 77:19–30. 10.1016/S0925-4773(98)00133-6 PubMed
Olney RC, Wang J, Sylvester JE, Mougey EB (2004) Growth factor regulation of human growth plate chondrocyte proliferation in vitro. Biochem Biophys Res Commun 317:1171–1182. 10.1016/j.bbrc.2004.03.170 PubMed
Yoshioka H, Kagawa K, Minamizaki T et al (2023) Developmental impairments of craniofacial bone and cartilage in Transgenic mice expressing FGF10. Bone Rep 18:101692. 10.1016/j.bonr.2023.101692 PubMed PMC
Alexandre P, Wassef M (2005) Does the isthmic organizer influence D/V patterning of the midbrain? Brain Res Rev 49:127–133. 10.1016/j.brainresrev.2005.04.003 PubMed