Fibroblast Growth Factors in Lung Development and Regeneration: Mechanisms and Therapeutic Potential
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
2020/02/Y/NZ3/00028
National Science Centre, Poland
2023/51/B/NZ1/03027
National Science Centre, Poland
PubMed
40862735
PubMed Central
PMC12384526
DOI
10.3390/cells14161256
PII: cells14161256
Knihovny.cz E-resources
- Keywords
- FGFR signaling, fibroblast growth factors, lung development, lung regeneration,
- MeSH
- Cell Differentiation MeSH
- Fibroblast Growth Factors * metabolism MeSH
- Humans MeSH
- Lung * growth & development physiology metabolism MeSH
- Lung Diseases metabolism MeSH
- Regeneration * MeSH
- Signal Transduction MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Fibroblast Growth Factors * MeSH
Fibroblast growth factors (FGFs) play a key role in lung development by mediating complex interactions between epithelial and mesenchymal cells, which are central to processes such as branching morphogenesis, epithelial differentiation, and alveolarization. The findings regarding this interplay highlight the complexity of FGF signaling, as different FGFs contribute to various aspects of lung formation and maturation. Understanding the role of FGF proteins in shaping the lung is crucial for gaining insight into the biology of its development. Furthermore, FGFs orchestrate complex signaling pathways that regulate lung regeneration in adulthood. Therapeutic strategies targeting FGF-dependent pathways appear promising for repairing and improving lung function in diverse pulmonary diseases. In this review, we describe the current perception of the role of FGF proteins in lung development and regeneration, together with an overview of emerging therapeutic strategies aiming at FGF signaling in lung-related disorders.
Department of Biology Faculty of Medicine Masaryk University 62500 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital 65691 Brno Czech Republic
See more in PubMed
Rao Tata P., Rajagopal J. Plasticity in the Lung: Making and Breaking Cell Identity. Development. 2017;144:755–766. doi: 10.1242/dev.143784. PubMed DOI PMC
Nikolić M.Z., Sun D., Rawlins E.L. Human Lung Development: Recent Progress and New Challenges. Development. 2018;145:dev163485. doi: 10.1242/dev.163485. PubMed DOI PMC
Schittny J.C. Development of the Lung. Cell Tissue Res. 2017;367:427–444. doi: 10.1007/s00441-016-2545-0. PubMed DOI PMC
Whitsett J.A., Kalin T.V., Xu Y., Kalinichenko V.V. Building and Regenerating the Lung Cell by Cell. Physiol. Rev. 2019;99:513–554. doi: 10.1152/physrev.00001.2018. PubMed DOI PMC
Yang L., Zhou F., Zheng D., Wang D., Li X., Zhao C., Huang X. FGF/FGFR Signaling: From Lung Development to Respiratory Diseases. Cytokine Growth Factor Rev. 2021;62:94–104. doi: 10.1016/j.cytogfr.2021.09.002. PubMed DOI
Jones M.R., Lingampally A., Wu J., Sedighi J., Ahmadvand N., Wilhelm J., Vazquez-Armendariz A.I., Herold S., Chen C., Zhang J.S., et al. Evidence for Overlapping and Distinct Biological Activities and Transcriptional Targets Triggered by Fibroblast Growth Factor Receptor 2b Signaling between Mid- and Early Pseudoglandular Stages of Mouse Lung Development. Cells. 2020;9:1274. doi: 10.3390/cells9051274. PubMed DOI PMC
Drozdowska J., Cousens C., Finlayson J., Collie D., Dagleish M.P. Structural Development, Cellular Differentiation and Proliferation of the Respiratory Epithelium in the Bovine Fetal Lung. J. Comp. Pathol. 2016;154:42–56. doi: 10.1016/j.jcpa.2015.11.002. PubMed DOI
Rock J.R., Onaitis M.W., Rawlins E.L., Lu Y., Clark C.P., Xue Y., Randell S.H., Hogan B.L.M. Basal Cells as Stem Cells of the Mouse Trachea and Human Airway Epithelium. Proc. Natl. Acad. Sci. USA. 2009;106:12771–12775. doi: 10.1073/pnas.0906850106. PubMed DOI PMC
Perl A.K.T., Wert S.E., Nagy A., Lobe C.G., Whitsett J.A. Early Restriction of Peripheral and Proximal Cell Lineages during Formation of the Lung. Proc. Natl. Acad. Sci. USA. 2002;99:10482–10487. doi: 10.1073/pnas.152238499. PubMed DOI PMC
Herring M.J., Putney L.F., Wyatt G., Finkbeiner W.E., Hyde D.M. Growth of Alveoli during Postnatal Development in Humans Based on Stereological Estimation. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2014;307:338–344. doi: 10.1152/ajplung.00094.2014. PubMed DOI PMC
Rock J.R., Hogan B.L.M. Epithelial Progenitor Cells in Lung Development, Maintenance, Repair, and Disease. Annu. Rev. Cell Dev. Biol. 2011;27:493–512. doi: 10.1146/annurev-cellbio-100109-104040. PubMed DOI
Alysandratos K.D., Herriges M.J., Kotton D.N. Epithelial Stem and Progenitor Cells in Lung Repair and Regeneration. Annu. Rev. Physiol. 2021;83:529–550. doi: 10.1146/annurev-physiol-041520-092904. PubMed DOI PMC
Rock J.R., Gao X., Xue Y., Randell S.H., Kong Y.Y., Hogan B.L.M. Notch-Dependent Differentiation of Adult Airway Basal Stem Cells. Cell Stem Cell. 2011;8:639–648. doi: 10.1016/j.stem.2011.04.003. PubMed DOI PMC
Barkauskas C.E., Cronce M.J., Rackley C.R., Bowie E.J., Keene D.R., Stripp B.R., Randell S.H., Noble P.W., Hogan B.L.M. Type 2 Alveolar Cells Are Stem Cells in Adult Lung. J. Clin. Investig. 2013;123:3025–3036. doi: 10.1172/JCI68782. PubMed DOI PMC
Wu H., Tang N. Stem Cells in Pulmonary Alveolar Regeneration. Development. 2021;148:dev193458. doi: 10.1242/dev.193458. PubMed DOI
Taghizadeh S., Jones M.R., Olmer R., Ulrich S., Danopoulos S., Shen C., Chen C., Wilhelm J., Martin U., Chen C., et al. Fgf10 Signaling-Based Evidence for the Existence of an Embryonic Stage Distinct from the Pseudoglandular Stage During Mouse Lung Development. Front. Cell Dev. Biol. 2020;8:576604. doi: 10.3389/fcell.2020.576604. PubMed DOI PMC
Varma S., Cao Y., Tagne J.-B., Lakshminarayanan M., Li J., Friedman T.B., Morell R.J., Warburton D., Kotton D.N., Ramirez M.I. The Transcription Factors Grainyhead-like 2 and NK2-Homeobox 1 Form a Regulatory Loop That Coordinates Lung Epithelial Cell Morphogenesis and Differentiation. J. Biol. Chem. 2012;287:37282–37295. doi: 10.1074/jbc.M112.408401. PubMed DOI PMC
Danopoulos S., Shiosaki J., Al Alam D. FGF Signaling in Lung Development and Disease: Human versus Mouse. Front. Genet. 2019;10:170. doi: 10.3389/fgene.2019.00170. PubMed DOI PMC
Danopoulos S., Alonso I., Thornton M.E., Grubbs B.H., Bellusci S., Warburton D., Al Alam D. Human Lung Branching Morphogenesis Is Orchestrated by the Spatiotemporal Distribution of ACTA2, SOX2, and SOX9. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2018;314:L144–L149. doi: 10.1152/ajplung.00379.2017. PubMed DOI PMC
McCulley D., Wienhold M., Sun X. The Pulmonary Mesenchyme Directs Lung Development. Curr. Opin. Genet. Dev. 2015;32:98–105. doi: 10.1016/j.gde.2015.01.011. PubMed DOI PMC
Hogan B.L. Bone Morphogenetic Proteins: Multifunctional Regulators of Vertebrate Development. Genes Dev. 1996;10:1580–1594. doi: 10.1101/gad.10.13.1580. PubMed DOI
Parr B.A., McMahon A.P. Wnt Genes and Vertebrate Development. Curr. Opin. Genet. Dev. 1994;4:523–528. doi: 10.1016/0959-437X(94)90067-D. PubMed DOI
Hammerschmidt M., Brook A., McMahon A.P. The World According to bedgebog. Trends Genet. 1997;13:14–21. doi: 10.1016/S0168-9525(96)10051-2. PubMed DOI
Ornitz D.M., Itoh N. New Developments in the Biology of Fibroblast Growth Factors. WIREs Mech. Dis. 2022;14:e1549. doi: 10.1002/wsbm.1549. PubMed DOI PMC
Plotnikov A.N., Hubbard S.R., Schlessinger J., Mohammadi M. Crystal Structures of Two FGF-FGFR Complexes Reveal the Determinants of Ligand-Receptor Specificity. Cell. 2000;101:413–424. doi: 10.1016/S0092-8674(00)80851-X. PubMed DOI
Ornitz D.M., Itoh N. The Fibroblast Growth Factor Signaling Pathway. Wiley Interdiscip. Rev. Dev. Biol. 2015;4:215–266. doi: 10.1002/wdev.176. PubMed DOI PMC
Eswarakumar V.P., Lax I., Schlessinger J. Cellular Signaling by Fibroblast Growth Factor Receptors. Cytokine Growth Factor Rev. 2005;16:139–149. doi: 10.1016/j.cytogfr.2005.01.001. PubMed DOI
Beenken A., Mohammadi M. The FGF Family: Biology, Pathophysiology and Therapy. Nat. Rev. Drug Discov. 2009;8:235–253. doi: 10.1038/nrd2792. PubMed DOI PMC
Xie Y., Su N., Yang J., Tan Q., Huang S., Jin M., Ni Z., Zhang B., Zhang D., Luo F., et al. FGF/FGFR Signaling in Health and Disease. Signal Transduct. Target. Ther. 2020;5:181. doi: 10.1038/s41392-020-00222-7. PubMed DOI PMC
Porta R., Borea R., Coelho A., Khan S., Araújo A., Reclusa P., Franchina T., Van Der Steen N., Van Dam P., Ferri J., et al. FGFR a Promising Druggable Target in Cancer: Molecular Biology and New Drugs. Crit. Rev. Oncol. Hematol. 2017;113:256–267. doi: 10.1016/j.critrevonc.2017.02.018. PubMed DOI
Babina I.S., Turner N.C. Advances and Challenges in Targeting FGFR Signalling in Cancer. Nat. Rev. Cancer. 2017;17:318–332. doi: 10.1038/nrc.2017.8. PubMed DOI
Warburton D., Bellusci S., De Langhe S., Del Moral P.M., Fleury V., Mailleux A., Tefft D., Unbekandt M., Wang K., Shi W.W.E. Molecular Mechanisms of Early Lung Specification and Branching Morphogenesis. Pediatr. Res. 2005;57:26R–37R. doi: 10.1203/01.PDR.0000159570.01327.ED. PubMed DOI
Lebeche D., Malpel S., Cardoso W.V. Fibroblast Growth Factor Interactions in the Developing Lung. Mech. Dev. 1999;86:125–136. doi: 10.1016/S0925-4773(99)00124-0. PubMed DOI
Arman E., Haffner-Krausz R., Gorivodsky M., Lonai P. Fgfr2 Is Required for Limb Outgrowth and Lung-Branching Morphogenesis. Proc. Natl. Acad. Sci. USA. 1999;96:11895–11899. doi: 10.1073/pnas.96.21.11895. PubMed DOI PMC
Danopoulos S., Thornton M.E., Grubbs B.H., Frey M.R., Warburton D., Bellusci S., Al Alam D. Discordant Roles for FGF Ligands in Lung Branching Morphogenesis between Human and Mouse. J. Pathol. 2019;247:254–265. doi: 10.1002/path.5188. PubMed DOI PMC
Kolobaric A., Vukojevic K., Brekalo S., Misković J., Ries M., Lasic Arapovic L., Soljic V. Expression and Localization of FGFR1, FGFR2 and CTGF during Normal Human Lung Development. Acta Histochem. 2021;123:151719. doi: 10.1016/j.acthis.2021.151719. PubMed DOI
Yuan T., Klinkhammer K., Lyu H., Gao S., Yuan J., Hopkins S., Zhang J.S., De Langhe S.P. Temporospatial Expression of Fgfr1 and 2 During Lung Development, Homeostasis, and Regeneration. Front. Pharmacol. 2020;11:120. doi: 10.3389/fphar.2020.00120. PubMed DOI PMC
El Agha E., Herold S., Al Alam D., Quantius J., MacKenzie B.A., Carraro G., Moiseenko A., Chao C.M., Minoo P., Seeger W., et al. Fgf10-Positive Cells Represent a Progenitor Cell Population during Lung Development and Postnatally. Development. 2014;141:296–306. doi: 10.1242/dev.099747. PubMed DOI PMC
Li R., Herriges J.C., Chen L., Mecham R.P., Sun X. FGF Receptors Control Alveolar Elastogenesis. Development. 2017;144:4563–4572. doi: 10.1242/dev.149443. PubMed DOI PMC
Srisuma S., Bhattacharya S., Simon D.M., Solleti S.K., Tyagi S., Starcher B., Mariani T.J. Fibroblast Growth Factor Receptors Control Epithelial-Mesenchymal Interactions Necessary for Alveolar Elastogenesis. Am. J. Respir. Crit. Care Med. 2010;181:838–850. doi: 10.1164/rccm.200904-0544OC. PubMed DOI PMC
El Agha E., Seeger W., Bellusci S. Therapeutic and Pathological Roles of Fibroblast Growth Factors in Pulmonary Diseases. Dev. Dyn. 2017;246:235–244. doi: 10.1002/dvdy.24468. PubMed DOI
Cardoso W.V., Itoh A., Nogawa H., Mason I., Brody J.S. FGF-1 and FGF-7 Induce Distinct Patterns of Growth and Differentiation in Embryonic Lung Epithelium. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 1997;208:398–405. doi: 10.1002/(SICI)1097-0177(199703)208:3<398::AID-AJA10>3.0.CO;2-X. PubMed DOI
Folkman J., Klagsbrun M. Angiogenic Factors. Science. 1987;235:442–447. doi: 10.1126/science.2432664. PubMed DOI
Han R.N., Liu J., Tanswell A.K., Post M. Expression of Basic Fibroblast Growth Factor and Receptor: Immunolocalization Studies in Developing Rat Fetal Lung. Pediatr. Res. 1992;31:435–440. doi: 10.1203/00006450-199205000-00004. PubMed DOI
Padela S., Yi M., Cabacungan J., Shek S., Belcastro R., Masood A., Jankov R.P., Tanswell A.K. A Critical Role for Fibroblast Growth Factor-7 during Early Alveolar Formation in the Neonatal Rat. Pediatr. Res. 2008;63:232–238. doi: 10.1203/PDR.0b013e31815f6e3a. PubMed DOI
Shiratori M., Oshika E., Ung L.P., Singh G., Shinozuka H., Warburton D., Michalopoulos G., Katyal S.L. Keratinocyte Growth Factor and Embryonic Rat Lung Morphogenesis. Am. J. Respir. Cell Mol. Biol. 1996;15:328–338. doi: 10.1165/ajrcmb.15.3.8810636. PubMed DOI
Liu S., Sun D., Butler R., Rawlins E.L. RTK Signalling Promotes Epithelial Columnar Cell Shape and Apical Junction Maintenance in Human Lung Progenitor Cells. Development. 2023;150:dev201284. doi: 10.1242/dev.201284. PubMed DOI PMC
Teramoto H., Yoneda A., Puri P. Gene Expression of Fibroblast Growth Factors 10 and 7 Is Downregulated in the Lung of Nitrofen-Induced Diaphragmatic Hernia in Rats. J. Pediatr. Surg. 2003;38:1021–1024. doi: 10.1016/S0022-3468(03)00183-0. PubMed DOI
Warburton D., El-Hashash A., Carraro G., Tiozzo C., Sala F., Rogers O., De Langhe S., Kemp P.J., Riccardi D., Torday J., et al. Chapter Three—Lung Organogenesis. In: Koopman P., editor. Organogenesis in Development. Volume 90. Academic Press; Cambridge, MA, USA: 2010. pp. 73–158. PubMed PMC
Jones M.R., Chong L., Bellusci S. Fgf10/Fgfr2b Signaling Orchestrates the Symphony of Molecular, Cellular, and Physical Processes Required for Harmonious Airway Branching Morphogenesis. Front. Cell Dev. Biol. 2021;8:620667. doi: 10.3389/fcell.2020.620667. PubMed DOI PMC
Yin Y., Ornitz D.M. FGF9 and FGF10 Activate Distinct Signaling Pathways to Direct Lung Epithelial Specification and Branching. Physiol. Behav. 2020;176:139–148. doi: 10.1126/scisignal.aay4353. PubMed DOI PMC
Yuan T., Volckaert T., Chanda D., Thannickal V.J., De Langhe S.P. Fgf10 Signaling in Lung Development, Homeostasis, Disease, and Repair After Injury. Front. Genet. 2018;9:418. doi: 10.3389/fgene.2018.00418. PubMed DOI PMC
Abler L.L., Mansour S.L., Sun X. Conditional Gene Inactivation Reveals Roles for Fgf10 and Fgfr2 in Establishing a Normal Pattern of Epithelial Branching in the Mouse Lung. Dev. Dyn. 2009;238:1999–2013. doi: 10.1002/dvdy.22032. PubMed DOI PMC
Sekine K., Ohuchi H., Fujiwara M., Yamasaki M., Yoshizawa T., Sato T., Yagishita N., Matsui D., Koga Y., Itoh N., et al. Fgf10 Is Essential for Limb and Lung Formation. Nat. Genet. 1999;21:138–141. doi: 10.1038/5096. PubMed DOI
De Moerlooze L., Spencer-Dene B., Revest J.M., Hajihosseini M., Rosewell I., Dickson C. An Important Role for the IIIb Isoform of Fibroblast Growth Factor Receptor 2 (FGFR2) in Mesenchymal-Epithelial Signalling during Mouse Organogenesis. Development. 2000;127:483–492. doi: 10.1242/dev.127.3.483. PubMed DOI
Czyrek A.A., Baran K., Hruba E., Horackova A., Bosakova V., Chudzian J., Fafilek B., Laskova V., Stepankova V., Bednar D., et al. Increased Thermal Stability of FGF10 Leads to Ectopic Signaling during Development. Cell. Mol. Life Sci. 2025;82:167. doi: 10.1007/s00018-025-05681-1. PubMed DOI PMC
Volckaert T., Campbell A., Dill E., Li C., Minoo P., De Langhe S. Localized Fgf10 Expression Is Not Required for Lung Branching Morphogenesis but Prevents Differentiation of Epithelial Progenitors. Development. 2013;140:3731–3742. doi: 10.1242/dev.096560. PubMed DOI PMC
Li L., Feng J., Zhao S., Rong Z., Lin Y. SOX9 Inactivation Affects the Proliferation and Differentiation of Human Lung Organoids. Stem Cell Res. Ther. 2021;12:343. doi: 10.1186/s13287-021-02422-6. PubMed DOI PMC
Warburton D., Bellusci S., Del Moral P.-M., Kaartinen V., Lee M., Tefft D., Shi W. Growth Factor Signaling in Lung Morphogenetic Centers: Automaticity, Stereotypy and Symmetry. Respir. Res. 2003;4:5. doi: 10.1186/1465-9921-4-5. PubMed DOI PMC
Chuang P.-T., Kawcak T., McMahon A.P. Feedback Control of Mammalian Hedgehog Signaling by the Hedgehog-Binding Protein, Hip1, Modulates Fgf Signaling during Branching Morphogenesis of the Lung. Genes Dev. 2003;17:342–347. doi: 10.1101/gad.1026303. PubMed DOI PMC
Yin Y., Wang F., Ornitz D.M. Mesothelial- and Epithelial-Derived FGF9 Have Distinct Functions in the Regulation of Lung Development. Development. 2011;138:3169–3177. doi: 10.1242/dev.065110. PubMed DOI PMC
Yi L., Domyan E.T., Lewandoski M., Sun X. Fibroblast Growth Factor 9 Signaling Inhibits Airway Smooth Muscle Differentiation in Mouse Lung. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2009;238:123–137. doi: 10.1002/dvdy.21831. PubMed DOI PMC
del Moral P.-M., De Langhe S.P., Sala F.G., Veltmaat J.M., Tefft D., Wang K., Warburton D., Bellusci S. Differential Role of FGF9 on Epithelium and Mesenchyme in Mouse Embryonic Lung. Dev. Biol. 2006;293:77–89. doi: 10.1016/j.ydbio.2006.01.020. PubMed DOI
White A.C., Xu J., Yin Y., Smith C., Schmid G., Ornitz D.M. FGF9 and SHH Signaling Coordinate Lung Growth and Development through Regulation of Distinct Mesenchymal Domains. Development. 2006;133:1507–1517. doi: 10.1242/dev.02313. PubMed DOI
Colvin J.S., White A.C., Pratt S.J., Ornitz D.M. Lung Hypoplasia and Neonatal Death in Fgf9-Null Mice Identify This Gene as an Essential Regulator of Lung Mesenchyme. Development. 2001;2106:2095–2106. doi: 10.1242/dev.128.11.2095. PubMed DOI
White A.C., Lavine K.J., Ornitz D.M. FGF9 and SHH Regulate Mesenchymal Vegfa Expression and Development of the Pulmonary Capillary Network. Development. 2007;134:3743–3752. doi: 10.1242/dev.004879. PubMed DOI PMC
Yu S., Poe B., Schwarz M., Elliot S.A., Albertine K.H., Fenton S., Garg V., Moon A.M. Fetal and Postnatal Lung Defects Reveal a Novel and Required Role for Fgf8 in Lung Development. Dev. Biol. 2010;347:92–108. doi: 10.1016/j.ydbio.2010.08.013. PubMed DOI PMC
Frank D.U., Fotheringham L.K., Brewer J.A., Muglia L.J., Tristani-Firouzi M., Capecchi M.R., Moon A.M. An Fgf8 Mouse Mutant Phenocopies Human 22q11 Deletion Syndrome. Development. 2002;129:4591–4603. doi: 10.1242/dev.129.19.4591. PubMed DOI PMC
Franco-Montoya M.-L., Boucherat O., Thibault C., Chailley-Heu B., Incitti R., Delacourt C., Bourbon J.R. Profiling Target Genes of FGF18 in the Postnatal Mouse Lung: Possible Relevance for Alveolar Development. Physiol. Genom. 2011;43:1226–1240. doi: 10.1152/physiolgenomics.00034.2011. PubMed DOI PMC
McGowan S.E., McCoy D.M. Fibroblast Growth Factor Signaling in Myofibroblasts Differs from Lipofibroblasts during Alveolar Septation in Mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015;309:L463-74. doi: 10.1152/ajplung.00013.2015. PubMed DOI PMC
Chailley-Heu B., Boucherat O., Barlier-Mur A.-M., Bourbon J.R. FGF-18 Is Upregulated in the Postnatal Rat Lung and Enhances Elastogenesis in Myofibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005;288:L43-51. doi: 10.1152/ajplung.00096.2004. PubMed DOI
Whitsett J.A., Clark J.C., Picard L., Tichelaar J.W., Wert S.E., Itoh N., Perl A.K.T., Stahlman M.T. Fibroblast Growth Factor 18 Influences Proximal Programming during Lung Morphogenesis. J. Biol. Chem. 2002;277:22743–22749. doi: 10.1074/jbc.M202253200. PubMed DOI
Lopez E., Boucherat O., Franco-Montoya M.-L., Bourbon J.R., Delacourt C., Jarreau P.-H. Nitric Oxide Donor Restores Lung Growth Factor and Receptor Expression in Hyperoxia-Exposed Rat Pups. Am. J. Respir. Cell Mol. Biol. 2006;34:738–745. doi: 10.1165/rcmb.2005-0254OC. PubMed DOI
Boucherat O., Benachi A., Barlier-Mur A.-M., Franco-Montoya M.-L., Martinovic J., Thébaud B., Chailley-Heu B., Bourbon J.R. Decreased Lung Fibroblast Growth Factor 18 and Elastin in Human Congenital Diaphragmatic Hernia and Animal Models. Am. J. Respir. Crit. Care Med. 2007;175:1066–1077. doi: 10.1164/rccm.200601-050OC. PubMed DOI
Usui H., Shibayama M., Ohbayashi N., Konishi M., Takada S., Itoh N. Fgf18 Is Required for Embryonic Lung Alveolar Development. Biochem. Biophys. Res. Commun. 2004;322:887–892. doi: 10.1016/j.bbrc.2004.07.198. PubMed DOI
Danopoulos S., Belgacemi R., Hein R.F.C., Miller A.J., Deutsch G.H., Glass I., Spence J.R., Al Alam D. FGF18 Promotes Human Lung Branching Morphogenesis through Regulating Mesenchymal Progenitor Cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2023;324:L433–L444. doi: 10.1152/ajplung.00316.2022. PubMed DOI PMC
Pardo-Saganta A., Law B.M., Tata P.R., Villoria J., Saez B., Mou H., Zhao R., Rajagopal J. Injury Induces Direct Lineage Segregation of Functionally Distinct Airway Basal Stem/Progenitor Cell Subpopulations. Cell Stem Cell. 2015;23:237–337. doi: 10.1016/j.stem.2015.01.002. PubMed DOI PMC
Parekh K.R., Nawroth J., Pai A., Busch S.M., Senger C.N., Ryan A.L. Stem Cells and Lung Regeneration. Cell Physiol. 2020;319:C675–C693. doi: 10.1152/ajpcell.00036.2020. PubMed DOI PMC
Rawlins E.L., Okubo T., Xue Y., Brass D.M., Auten R.L., Hasegawa H., Wang F., Hogan B.L.M. The Role of Scgb1a1+ Clara Cells in the Long-Term Maintenance and Repair of Lung Airway, but Not Alveolar, Epithelium. Cell Stem Cell. 2009;4:525–534. doi: 10.1016/j.stem.2009.04.002. PubMed DOI PMC
Zheng D., Limmon G.V., Yin L., Leung N.H.N., Yu H., Chow V.T.K., Chen J. Regeneration of Alveolar Type I and II Cells from Scgb1a1-Expressing Cells Following Severe Pulmonary Damage Induced by Bleomycin and Influenza. PLoS ONE. 2012;7:e48451. doi: 10.1371/journal.pone.0048451. PubMed DOI PMC
Tata A., Kobayashi Y., Chow R.D., Tran J., Desai A., Massri A.J., McCord T.J., Gunn M.D., Tata P.R. Myoepithelial Cells of Submucosal Glands Can Function as Reserve Stem Cells to Regenerate Airways after Injury. Cell Stem Cell. 2018;22:668–683.e6. doi: 10.1016/j.stem.2018.03.018. PubMed DOI PMC
Zuo W., Zhang T., Wu D.Z.A., Guan S.P., Liew A.A., Yamamoto Y., Wang X., Lim S.J., Vincent M., Lessard M., et al. P63 + Krt5 + Distal Airway Stem Cells Are Essential for Lung Regeneration. Nature. 2015;517:616–620. doi: 10.1038/nature13903. PubMed DOI PMC
Guha A., Deshpande A., Jain A., Sebastiani P., Cardoso W.V. Uroplakin 3a+ Cells Are a Distinctive Population of Epithelial Progenitors That Contribute to Airway Maintenance and Post-Injury Repair. Cell Rep. 2017;19:246–254. doi: 10.1016/j.celrep.2017.03.051. PubMed DOI
Salwig I., Spitznagel B., Vazquez-Armendariz A.I., Khalooghi K., Guenther S., Herold S., Szibor M., Braun T. Bronchioalveolar Stem Cells Are a Main Source for Regeneration of Distal Lung Epithelia In Vivo. EMBO J. 2019;38:e102099. doi: 10.15252/embj.2019102099. PubMed DOI PMC
Basil M.C., Katzen J., Engler A.E., Guo M., Herriges M.J., Kathiriya J.J., Windmueller R., Ysasi A.B., Zacharias W.J., Chapman H.A., et al. The Cellular and Physiological Basis for Lung Repair and Regeneration: Past, Present, and Future. Cell Stem Cell. 2020;26:482–502. doi: 10.1016/j.stem.2020.03.009. PubMed DOI PMC
Zacharias W.J., Frank D.B., Zepp J.A., Morley M.P., Alkhaleel F., Kong J., Zhou S., Cantu E., Edward E. Regeneration of the Lung Alveolus by an Evolutionarily Conserved Epithelial Progenitor. Nature. 2018;555:251–255. doi: 10.1038/nature25786. PubMed DOI PMC
Wu M., Zhang X., Lin Y., Zeng Y. Roles of Airway Basal Stem Cells in Lung Homeostasis and Regenerative Medicine. Respir. Res. 2022;23:122. doi: 10.1186/s12931-022-02042-5. PubMed DOI PMC
Balasooriya G.I., Johnson J.A., Basson M.A., Rawlins E.L. An FGFR1-SPRY2 Signaling Axis Limits Basal Cell Proliferation in the Steady-State Airway Epithelium. Dev. Cell. 2016;37:85–97. doi: 10.1016/j.devcel.2016.03.001. PubMed DOI PMC
Balasooriya G.I., Goschorska M., Piddini E., Rawlins E.L. FGFR2 Is Required for Airway Basal Cell Self-Renewal and Terminal Differentiation. Development. 2017;144:1600–1606. doi: 10.1242/dev.135681. PubMed DOI PMC
Volckaert T., Yuan T., Chao C.M., Bell H., Sitaula A., Szimmtenings L., El Agha E., Chanda D., Majka S., Bellusci S., et al. Fgf10-Hippo Epithelial-Mesenchymal Crosstalk Maintains and Recruits Lung Basal Stem Cells. Dev. Cell. 2017;43:48–59.e5. doi: 10.1016/j.devcel.2017.09.003. PubMed DOI PMC
Yuan T., Volckaert T., Redente E.F., Hopkins S., Klinkhammer K., Wasnick R., Chao C.M., Yuan J., Zhang J.S., Yao C., et al. FGF10-FGFR2B Signaling Generates Basal Cells and Drives Alveolar Epithelial Regeneration by Bronchial Epithelial Stem Cells after Lung Injury. Stem Cell Rep. 2019;12:1041–1055. doi: 10.1016/j.stemcr.2019.04.003. PubMed DOI PMC
Liberti D.C., Kremp M.M., Liberti W.A., Penkala I.J., Li S., Zhou S., Morrisey E.E. Alveolar Epithelial Cell Fate Is Maintained in a Spatially Restricted Manner to Promote Lung Regeneration after Acute Injury. Cell Rep. 2021;35:109092. doi: 10.1016/j.celrep.2021.109092. PubMed DOI PMC
Dorry S.J., Ansbro B.O., Ornitz D.M., Mutlu G.M., Guzy R.D. FGFR2 Is Required for AEC2 Homeostasis and Survival after Bleomycin-Induced Lung Injury. Am. J. Respir. Cell Mol. Biol. 2020;62:608–621. doi: 10.1165/rcmb.2019-0079OC. PubMed DOI PMC
Penkala I.J., Liberti D.C., Pankin J., Sivakumar A., Kremp M.M., Jayachandran S., Katzen J., Leach J.P., Windmueller R., Stolz K., et al. Age-Dependent Alveolar Epithelial Plasticity Orchestrates Lung Homeostasis and Regeneration. Cell Stem Cell. 2021;28:1775–1789.e5. doi: 10.1016/j.stem.2021.04.026. PubMed DOI PMC
Volckaert T., Dill E., Campbell A., Tiozzo C., Majka S., Bellusci S., De Langhe S.P. Parabronchial Smooth Muscle Constitutes an Airway Epithelial Stem Cell Niche in the Mouse Lung after Injury. J. Clin. Investig. 2011;121:4409–4419. doi: 10.1172/JCI58097. PubMed DOI PMC
Volckaert T., Campbell A., De Langhe S. C-Myc Regulates Proliferation and Fgf10 Expression in Airway Smooth Muscle after Airway Epithelial Injury in Mouse. PLoS ONE. 2013;8:e71426. doi: 10.1371/journal.pone.0071426. PubMed DOI PMC
McQualter J.L., McCarty R.C., Van der Velden J., O’Donoghue R.J.J., Asselin-Labat M.L., Bozinovski S., Bertoncello I. TGF-β Signaling in Stromal Cells Acts Upstream of FGF-10 to Regulate Epithelial Stem Cell Growth in the Adult Lung. Stem Cell Res. 2013;11:1222–1233. doi: 10.1016/j.scr.2013.08.007. PubMed DOI
Tong L., Zhou J., Rong L., Seeley E.J., Pan J., Zhu X., Liu J., Wang Q., Tang X., Qu J., et al. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-Resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury. Sci. Rep. 2016;6:21642. doi: 10.1038/srep21642. PubMed DOI PMC
Marega M., Chen C., Bellusci S. Cross-Talk Between Inflammation and Fibroblast Growth Factor 10 During Organogenesis and Pathogenesis: Lessons Learnt from the Lung and Other Organs. Front. Cell Dev. Biol. 2021;9:656883. doi: 10.3389/fcell.2021.656883. PubMed DOI PMC
Liu L., Song C., Li J., Wang Q., Zhu M., Hu Y., Chen J., Chen C., Zhang J.S., Dong N., et al. Fibroblast Growth Factor 10 Alleviates Particulate Matter-Induced Lung Injury by Inhibiting the HMGB1-TLR4 Pathway. Aging. 2020;12:1186–1200. doi: 10.18632/aging.102676. PubMed DOI PMC
Weaver M., Dunn N.R., Hogan B.L. Bmp4 and Fgf10 Play Opposing Roles during Lung Bud Morphogenesis. Development. 2000;127:2695–2704. doi: 10.1242/dev.127.12.2695. PubMed DOI
Bellusci S., Grindley J., Emoto H., Itoh N., Hogan B.L. Fibroblast Growth Factor 10 (FGF10) and Branching Morphogenesis in the Embryonic Mouse Lung. Development. 1997;124:4867–4878. doi: 10.1242/dev.124.23.4867. PubMed DOI
Ware L.B. Keratinocyte Growth Factor as an Epithelial Protective Agent: Where Do We Stand? Int. J. Radiat. Oncol. Biol. Phys. 2004;60:1345–1346. doi: 10.1016/j.ijrobp.2004.09.015. PubMed DOI
Yildirim A.O., Muyal V., John G., Müller B., Seifart C., Kasper M., Fehrenbach H. Palifermin Induces Alveolar Maintenance Programs in Emphysematous Mice. Am. J. Respir. Crit. Care Med. 2010;181:705–717. doi: 10.1164/rccm.200804-573OC. PubMed DOI
Plantier L., Marchand-Adam S., Antico Arciuch V.G., Boyer L., De Coster C., Marchal J., Bachoual R., Mailleux A., Boczkowski J., Crestani B. Keratinocyte Growth Factor Protects against Elastase-Induced Pulmonary Emphysema in Mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007;293:L1230-9. doi: 10.1152/ajplung.00460.2006. PubMed DOI
Hadzic S., Wu C.-Y., Gredic M., Pak O., Loku E., Kraut S., Kojonazarov B., Wilhelm J., Brosien M., Bednorz M., et al. Fibroblast Growth Factor 10 Reverses Cigarette Smoke- and Elastase-Induced Emphysema and Pulmonary Hypertension in Mice. Eur. Respir. J. 2023;62:2201606. doi: 10.1183/13993003.01606-2022. PubMed DOI PMC
Guzy R.D., Li L., Smith C., Dorry S.J., Koo H.Y., Chen L., Ornitz D.M. Pulmonary Fibrosis Requires Cell-Autonomous Mesenchymal Fibroblast Growth Factor (FGF) Signaling. J. Biol. Chem. 2017;292:10364–10378. doi: 10.1074/jbc.M117.791764. PubMed DOI PMC
Liu G., Philp A.M., Corte T., Travis M.A., Schilter H., Hansbro N.G., Burns C.J., Eapen M.S., Sohal S.S., Burgess J.K., et al. Therapeutic Targets in Lung Tissue Remodelling and Fibrosis. Pharmacol. Ther. 2021;225:107839. doi: 10.1016/j.pharmthera.2021.107839. PubMed DOI
Pan L., Cheng Y., Yang W., Wu X., Zhu H., Hu M., Zhang Y., Zhang M. Nintedanib Ameliorates Bleomycin-Induced Pulmonary Fibrosis, Inflammation, Apoptosis, and Oxidative Stress by Modulating PI3K/Akt/MTOR Pathway in Mice. Inflammation. 2023;46:1531–1542. doi: 10.1007/s10753-023-01825-2. PubMed DOI PMC
Zhao M., Wang L., Wang M., Zhou S., Lu Y., Cui H., Racanelli A.C., Zhang L., Ye T., Ding B., et al. Targeting Fibrosis, Mechanisms and Cilinical Trials. Signal Transduct. Target. Ther. 2022;7:206. doi: 10.1038/s41392-022-01070-3. PubMed DOI PMC
Liu Z.-W., Zhao M.-Y., Su X.-L., Ye T.-H., Zhuang Y.-J., Zhang Y., Zhang Z.-Z., Yang J.-L., Chen L.-J., Long C.-F., et al. The Antifibrotic Effect and Mechanism of a Novel Tyrosine Kinase Inhibitor, ZSP1603, in Preclinical Models of Pulmonary Fibrosis. Eur. Rev. Med. Pharmacol. Sci. 2020;24:1481–1491. doi: 10.26355/eurrev_202002_20207. PubMed DOI
Yu Z., Wang D., Zhou Z., He S., Chen A., Wang J. Mutant Soluble Ectodomain of Fibroblast Growth Factor Receptor-2 IIIc Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice. Biol. Pharm. Bull. 2012;35:731–736. doi: 10.1248/bpb.35.731. PubMed DOI
El Agha E., Schwind F., Ruppert C., Günther A., Bellusci S., Schermuly R.T., Kosanovic D. Is the Fibroblast Growth Factor Signaling Pathway a Victim of Receptor Tyrosine Kinase Inhibition in Pulmonary Parenchymal and Vascular Remodeling? Am. J. Physiol. Lung Cell. Mol. Physiol. 2018;315:L248–L252. doi: 10.1152/ajplung.00140.2018. PubMed DOI
Jieming G., Liu C., Yang Y., Mo S., Yang X., Wang J. Inhibitory Effects of MsFGFR2c on the Epithelial-to-Mesenchymal Transition of AE2 Cells in Pulmonary Fibrosis. Biotechnol. Lett. 2020;42:1061–1070. doi: 10.1007/s10529-020-02852-x. PubMed DOI PMC
Guzy R.D., Stoilov I., Elton T.J., Mecham R.P., Ornitz D.M. Fibroblast Growth Factor 2 Is Required for Epithelial Recovery, but Not for Pulmonary Fibrosis, in Response to Bleomycin. Am. J. Respir. Cell Mol. Biol. 2015;52:116–128. doi: 10.1165/rcmb.2014-0184OC. PubMed DOI PMC
Finlay G.A., Thannickal V.J., Fanburg B.L., Paulson K.E. Transforming Growth Factor-Beta 1-Induced Activation of the ERK Pathway/Activator Protein-1 in Human Lung Fibroblasts Requires the Autocrine Induction of Basic Fibroblast Growth Factor. J. Biol. Chem. 2000;275:27650–27656. doi: 10.1074/jbc.M000893200. PubMed DOI
Ju W., Zhihong Y., Zhiyou Z., Qin H., Dingding W., Li S., Baowei Z., Xing W., Ying H., An H. Inhibition of α-SMA by the Ectodomain of FGFR2c Attenuates Lung Fibrosis. Mol. Med. 2012;18:992–1002. doi: 10.2119/molmed.2011.00425. PubMed DOI PMC
Joannes A., Brayer S., Besnard V., Marchal-Sommé J., Jaillet M., Mordant P., Mal H., Borie R., Crestani B., Mailleux A.A. FGF9 and FGF18 in Idiopathic Pulmonary Fibrosis Promote Survival and Migration and Inhibit Myofibroblast Differentiation of Human Lung Fibroblasts in Vitro. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016;310:L615–L629. doi: 10.1152/ajplung.00185.2015. PubMed DOI
Justet A., Ghanem M., Boghanim T., Hachem M., Vasarmidi E., Jaillet M., Vadel A., Joannes A., Mordant P., Bonniaud P., et al. FGF19 Is Downregulated in Idiopathic Pulmonary Fibrosis and Inhibits Lung Fibrosis in Mice. Am. J. Respir. Cell Mol. Biol. 2022;67:173–187. doi: 10.1165/rcmb.2021-0246OC. PubMed DOI
Zhang S., Yu D., Wang M., Huang T., Wu H., Zhang Y., Zhang T., Wang W., Yin J., Ren G., et al. FGF21 Attenuates Pulmonary Fibrogenesis through Ameliorating Oxidative Stress In Vivo and In Vitro. Biomed. Pharmacother. 2018;103:1516–1525. doi: 10.1016/j.biopha.2018.03.100. PubMed DOI
Barnes J.W., Duncan D., Helton S., Hutcheson S., Kurundkar D., Logsdon N.J., Locy M., Garth J., Denson R., Farver C., et al. Role of Fibroblast Growth Factor 23 and Klotho Cross Talk in Idiopathic Pulmonary Fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019;317:L141–L154. doi: 10.1152/ajplung.00246.2018. PubMed DOI PMC
Sanders C.J., Doherty P.C., Thomas P.G. Respiratory Epithelial Cells in Innate Immunity to Influenza Virus Infection. Cell Tissue Res. 2011;343:13–21. doi: 10.1007/s00441-010-1043-z. PubMed DOI
Wang K., Lai C., Li T., Wang C., Wang W., Ni B., Bai C., Zhang S., Han L., Gu H., et al. Basic Fibroblast Growth Factor Protects against Influenza A Virus-Induced Acute Lung Injury by Recruiting Neutrophils. J. Mol. Cell Biol. 2018;10:573–585. doi: 10.1093/jmcb/mjx047. PubMed DOI
Nikolaidis N.M., Noel J.G., Pitstick L.B., Gardner J.C., Uehara Y., Wu H., Saito A., Lewnard K.E., Liu H., White M.R., et al. Mitogenic Stimulation Accelerates Influenza-Induced Mortality by Increasing Susceptibility of Alveolar Type II Cells to Infection. Proc. Natl. Acad. Sci. USA. 2017;114:E6613–E6622. doi: 10.1073/pnas.1621172114. PubMed DOI PMC
Ray P., Devaux Y., Stolz D.B., Yarlagadda M., Watkins S.C., Lu Y., Chen L., Yang X.-F., Ray A. Inducible Expression of Keratinocyte Growth Factor (KGF) in Mice Inhibits Lung Epithelial Cell Death Induced by Hyperoxia. Proc. Natl. Acad. Sci. USA. 2003;100:6098–6103. doi: 10.1073/pnas.1031851100. PubMed DOI PMC
Tichelaar J.W., Lu W., Whitsett J.A. Conditional Expression of Fibroblast Growth Factor-7 in the Developing and Mature Lung. J. Biol. Chem. 2000;275:11858–11864. doi: 10.1074/jbc.275.16.11858. PubMed DOI
Guery B.P., Mason C.M., Dobard E.P., Beaucaire G., Summer W.R., Nelson S. Keratinocyte Growth Factor Increases Transalveolar Sodium Reabsorption in Normal and Injured Rat Lungs. Am. J. Respir. Crit. Care Med. 1997;155:1777–1784. doi: 10.1164/ajrccm.155.5.9154891. PubMed DOI
Blaisdell C.J., Pellettieri J.P., Loughlin C.E., Chu S., Zeitlin P.L. Keratinocyte Growth Factor Stimulates CLC-2 Expression in Primary Fetal Rat Distal Lung Epithelial Cells. Am. J. Respir. Cell Mol. Biol. 1999;20:842–847. doi: 10.1165/ajrcmb.20.4.3431. PubMed DOI
Wang Y., Folkesson H.G., Jayr C., Ware L.B., Matthay M.A. Alveolar Epithelial Fluid Transport Can Be Simultaneously Upregulated by Both KGF and Beta-Agonist Therapy. J. Appl. Physiol. 1999;87:1852–1860. doi: 10.1152/jappl.1999.87.5.1852. PubMed DOI
Hu Z., Dai J., Xu T., Chen H., Shen G., Zhou J., Ma H., Wang Y., Jin L. FGF18 Alleviates Sepsis-Induced Acute Lung Injury by Inhibiting the NF-ΚB Pathway. Respir. Res. 2024;25:108. doi: 10.1186/s12931-024-02733-1. PubMed DOI PMC
Shao L., Wang J., Karatas O.F., Feng S., Zhang Y., Creighton C.J., Ittmann M. Fibroblast Growth Factor Receptor Signaling Plays a Key Role in Transformation Induced by the TMPRSS2/ERG Fusion Gene and Decreased PTEN. Oncotarget. 2018;9:14456–14471. doi: 10.18632/oncotarget.24470. PubMed DOI PMC
Kiyan Y., Schultalbers A., Chernobrivaia E., Tkachuk S., Rong S., Shushakova N., Haller H. Calcium Dobesilate Reduces SARS-CoV-2 Entry into Endothelial Cells by Inhibiting Virus Binding to Heparan Sulfate. Sci. Rep. 2022;12:16878. doi: 10.1038/s41598-022-20973-3. PubMed DOI PMC
Cuevas P., Manquillo A., Guillen P., GIménez-Gallego G. Fibroblast Growth Factor: A Target for COVID-19 Infection. Int. J. Med. Rev. Case Rep. 2020;4:10–5455. doi: 10.5455/IJMRCR.Fibroblast-growth-factor-COVID-19. DOI
Meini S., Giani T., Tascini C. Intussusceptive Angiogenesis in Covid-19: Hypothesis on the Significance and Focus on the Possible Role of FGF2. Mol. Biol. Rep. 2020;47:8301–8304. doi: 10.1007/s11033-020-05831-7. PubMed DOI PMC
Karadeniz H., Avanoğlu Güler A., Özger H.S., Yıldız P.A., Erbaş G., Bozdayı G., Deveci Bulut T., Gülbahar Ö., Yapar D., Küçük H., et al. The Prognostic Value of Lung Injury and Fibrosis Markers, KL-6, TGF-Β1, FGF-2 in COVID-19 Patients. Biomark. Insights. 2022;17:11772719221135444. doi: 10.1177/11772719221135443. PubMed DOI PMC
Gupta A., Jayakumar M.N., Saleh M.A., Kannan M., Halwani R., Qaisar R., Ahmad F. SARS-CoV-2 Infection- Induced Growth Factors Play Differential Roles in COVID-19 Pathogenesis. Life Sci. 2022;304:120703. doi: 10.1016/j.lfs.2022.120703. PubMed DOI PMC
Demir A.D. Serum FGF-21 Levels During COVID-19 Infection Recovery Period. Med. Bull. Haseki. 2024;62:168–174. doi: 10.4274/haseki.galenos.2024.9752. DOI
Global, Regional, and National Deaths, Prevalence, Disability-Adjusted Life Years, and Years Lived with Disability for Chronic Obstructive Pulmonary Disease and Asthma, 1990-2015: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet. Respir. Med. 2017;5:691–706. doi: 10.1016/S2213-2600(17)30293-X. PubMed DOI PMC
Jiang T., Hu W., Zhang S., Ren C., Lin S., Zhou Z., Wu H., Yin J., Tan L. Fibroblast Growth Factor 10 Attenuates Chronic Obstructive Pulmonary Disease by Protecting against Glycocalyx Impairment and Endothelial Apoptosis. Respir. Res. 2022;23:269. doi: 10.1186/s12931-022-02193-5. PubMed DOI PMC
Weidenfeld S., Kuebler W.M. Shedding First Light on the Alveolar Epithelial Glycocalyx. Am. J. Respir. Cell Mol. Biol. 2018;59:283–284. doi: 10.1165/rcmb.2018-0108ED. PubMed DOI
Reitsma S., Slaaf D.W., Vink H., van Zandvoort M.A.M.J., oude Egbrink M.G.A. The Endothelial Glycocalyx: Composition, Functions, and Visualization. Pflugers Arch. 2007;454:345–359. doi: 10.1007/s00424-007-0212-8. PubMed DOI PMC
Chandra D., Sciurba F.C., Gladwin M.T. Endothelial Chronic Destructive Pulmonary Disease (E-CDPD): Is Endothelial Apoptosis a Subphenotype or Prequel to COPD? Am. J. Respir. Crit. Care Med. 2011;184:153–155. doi: 10.1164/rccm.201104-0758ED. PubMed DOI
Kranenburg A.R., Willems-Widyastuti A., Mooi W.J., Saxena P.R., Sterk P.J., de Boer W.I., Sharma H.S. Chronic Obstructive Pulmonary Disease Is Associated with Enhanced Bronchial Expression of FGF-1, FGF-2, and FGFR-1. J. Pathol. 2005;206:28–38. doi: 10.1002/path.1748. PubMed DOI
Krick S., Grabner A., Baumlin N., Yanucil C., Helton S., Grosche A., Sailland J., Geraghty P., Viera L., Russell D.W., et al. Fibroblast Growth Factor 23 and Klotho Contribute to Airway Inflammation. Eur. Respir. J. 2018;52:1800236. doi: 10.1183/13993003.00236-2018. PubMed DOI PMC
Gulati S., Wells J.M., Urdaneta G.P., Balestrini K., Vital I., Tovar K., Barnes J.W., Bhatt S.P., Campos M., Krick S. Fibroblast Growth Factor 23 Is Associated with a Frequent Exacerbator Phenotype in COPD: A Cross-Sectional Pilot Study. Int. J. Mol. Sci. 2019;20:2292. doi: 10.3390/ijms20092292. PubMed DOI PMC
Wang X., Hou X., Zhao Y., Zhao R., Dai J., Dai H., Wang C. The Early and Late Intervention Effects of Collagen-Binding FGF2 on Elastase-Induced Lung Injury. Biomed. Pharmacother. 2023;158:114147. doi: 10.1016/j.biopha.2022.114147. PubMed DOI
Kawago M., Yoshimasu T., Tabata Y., Yamamoto M., Hirai Y., Kinoshita T., Okamura Y. Intrapleural Administration of Gelatin-Embedded, Sustained-Release Basic Fibroblast Growth Factor for the Regeneration of Emphysematous Lungs in Rats. J. Thorac. Cardiovasc. Surg. 2014;147:1644–1649. doi: 10.1016/j.jtcvs.2013.07.039. PubMed DOI
Kim Y.-S., Hong G., Kim D.H., Kim Y.M., Kim Y.-K., Oh Y.-M., Jee Y.-K. The Role of FGF-2 in Smoke-Induced Emphysema and the Therapeutic Potential of Recombinant FGF-2 in Patients with COPD. Exp. Mol. Med. 2018;50:50. doi: 10.1038/s12276-018-0178-y. PubMed DOI PMC
Morino S., Nakamura T., Toba T., Takahashi M., Kushibiki T., Tabata Y., Shimizu Y. Fibroblast Growth Factor-2 Induces Recovery of Pulmonary Blood Flow in Canine Emphysema Models. Chest. 2005;128:920–926. doi: 10.1378/chest.128.2.920. PubMed DOI
Xu S., Kuang J., Liu J., Ma C., Feng Y., Su Z. Association between Fibroblast Growth Factor 7 and the Risk of Chronic Obstructive Pulmonary Disease. Acta Pharmacol. Sin. 2012;33:998–1003. doi: 10.1038/aps.2012.69. PubMed DOI PMC
Zhang X., Guo Y., Yang J., Niu J., Du L., Li H., Li X. A Functional Variant Alters Binding of Activating Protein 1 Regulating Expression of FGF7 Gene Associated with Chronic Obstructive Pulmonary Disease. BMC Med. Genet. 2019;20:33. doi: 10.1186/s12881-019-0761-7. PubMed DOI PMC
Hokuto I., Perl A.-K.T., Whitsett J.A. Prenatal, but Not Postnatal, Inhibition of Fibroblast Growth Factor Receptor Signaling Causes Emphysema. J. Biol. Chem. 2003;278:415–421. doi: 10.1074/jbc.M208328200. PubMed DOI
Paisley D., Bevan L., Choy K.J., Gross C. The Pneumonectomy Model of Compensatory Lung Growth: Insights into Lung Regeneration. Pharmacol. Ther. 2014;142:196–205. doi: 10.1016/j.pharmthera.2013.12.006. PubMed DOI
Brody J.S., Burki R., Kaplan N. Deoxyribonucleic Acid Synthesis in Lung Cells during Compensatory Lung Growth after Pneumonectomy. Am. Rev. Respir. Dis. 1978;117:307–316. PubMed
Paxson J.A., Gruntman A., Parkin C.D., Mazan M.R., Davis A., Ingenito E.P., Hoffman A.M. Age-Dependent Decline in Mouse Lung Regeneration with Loss of Lung Fibroblast Clonogenicity and Increased Myofibroblastic Differentiation. PLoS ONE. 2011;6:e23232. doi: 10.1371/journal.pone.0023232. PubMed DOI PMC
Paxson J.A., Gruntman A.M., Davis A.M., Parkin C.M., Ingenito E.P., Hoffman A.M. Age Dependence of Lung Mesenchymal Stromal Cell Dynamics Following Pneumonectomy. Stem Cells Dev. 2013;22:3214–3225. doi: 10.1089/scd.2012.0477. PubMed DOI PMC
Yin Y., White A.C., Huh S.-H., Hilton M.J., Kanazawa H., Long F., Ornitz D.M. An FGF-WNT Gene Regulatory Network Controls Lung Mesenchyme Development. Dev. Biol. 2008;319:426–436. doi: 10.1016/j.ydbio.2008.04.009. PubMed DOI PMC
Bolte C., Flood H.M., Ren X., Jagannathan S., Barski A., Kalin T.V., Kalinichenko V. V FOXF1 Transcription Factor Promotes Lung Regeneration after Partial Pneumonectomy. Sci. Rep. 2017;7:10690. doi: 10.1038/s41598-017-11175-3. PubMed DOI PMC
Armanios M. Syndromes of Telomere Shortening. Annu. Rev. Genom. Hum. Genet. 2009;10:45–61. doi: 10.1146/annurev-genom-082908-150046. PubMed DOI PMC
Pelaia C., Crimi C., Vatrella A., Tinello C., Terracciano R., Pelaia G. Molecular Targets for Biological Therapies of Severe Asthma. Front. Immunol. 2020;11:603312. doi: 10.3389/fimmu.2020.603312. PubMed DOI PMC
Holgate S.T., Wenzel S., Postma D.S., Weiss S.T., Renz H., Sly P.D. Asthma. Nat. Rev. Dis. Prim. 2015;1:15025. doi: 10.1038/nrdp.2015.25. PubMed DOI PMC
Tan Y.-Y., Zhou H.-Q., Lin Y.-J., Yi L.-T., Chen Z.-G., Cao Q.-D., Guo Y.-R., Wang Z.-N., Chen S.-D., Li Y., et al. FGF2 Is Overexpressed in Asthma and Promotes Airway Inflammation through the FGFR/MAPK/NF-ΚB Pathway in Airway Epithelial Cells. Mil. Med. Res. 2022;9:7. doi: 10.1186/s40779-022-00366-3. PubMed DOI PMC
Nimmagadda S.R., Spahn J.D., Leung D.Y., Szefler S.J. Steroid-Resistant Asthma: Evaluation and Management. Ann. Allergy Asthma Immunol. 1996;77:345–356. doi: 10.1016/S1081-1206(10)63332-7. PubMed DOI
Guidi R., Xu D., Choy D.F., Ramalingam T.R., Lee W.P., Modrusan Z., Liang Y., Marsters S., Ashkenazi A., Huynh A., et al. Steroid-Induced Fibroblast Growth Factors Drive an Epithelial-Mesenchymal Inflammatory Axis in Severe Asthma. Sci. Transl. Med. 2022;14:eabl8146. doi: 10.1126/scitranslmed.abl8146. PubMed DOI PMC
Frank L. Protective Effect of Keratinocyte Growth Factor against Lung Abnormalities Associated with Hyperoxia in Prematurely Born Rats. Neonatology. 2003;83:263–272. doi: 10.1159/000069480. PubMed DOI
Gupte V.V., Ramasamy S.K., Reddy R., Lee J., Weinreb P.H., Violette S.M., Guenther A., Warburton D., Driscoll B., Minoo P., et al. Overexpression of Fibroblast Growth Factor-10 during Both Inflammatory and Fibrotic Phases Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice. Am. J. Respir. Crit. Care Med. 2009;180:424–436. doi: 10.1164/rccm.200811-1794OC. PubMed DOI PMC
Buchtova M., Chaloupkova R., Zakrzewska M., Vesela I., Cela P., Barathova J., Gudernova I., Zajickova R., Trantirek L., Martin J., et al. Instability Restricts Signaling of Multiple Fibroblast Growth Factors. Cell. Mol. Life Sci. 2015;72:2445–2459. doi: 10.1007/s00018-015-1856-8. PubMed DOI PMC
Zakrzewska M., Krowarsch D., Wiedlocha A., Otlewski J. Design of Fully Active FGF-1 Variants with Increased Stability. Protein Eng. Des. Sel. 2004;17:603–611. doi: 10.1093/protein/gzh076. PubMed DOI
Patton J.S., Byron P.R. Inhaling Medicines: Delivering Drugs to the Body through the Lungs. Nat. Rev. Drug Discov. 2007;6:67–74. doi: 10.1038/nrd2153. PubMed DOI
Fu Z.H., Jiang Z.Y., Sun W., Xiong Z.F., Liao X.C., Liu M.Z., Xu B., Guo G.H. Effects of Aerosol Inhalation of Recombinant Human Keratinocyte Growth Factor 2 on the Lung Tissue of Rabbits with Severe Smoke Inhalation Injury. Chin. J. Burn. 2018;34:466–475. doi: 10.3760/cma.j.issn.1009-2587.2018.07.009. PubMed DOI
Ibrahim B.M., Jun S.W., Lee M.Y., Kang S.H., Yeo Y. Development of Inhalable Dry Powder Formulation of Basic Fibroblast Growth Factor. Int. J. Pharm. 2010;385:66–72. doi: 10.1016/j.ijpharm.2009.10.029. PubMed DOI
Zhang P., Yue L., Leng Q.Q., Chang C., Gan C., Ye T., Cao D. Targeting FGFR for Cancer Therapy. J. Hematol. Oncol. 2024;17:39. doi: 10.1186/s13045-024-01558-1. PubMed DOI PMC
Bulcaen M., Kortleven P., Liu R.B., Maule G., Dreano E., Kelly M., Ensinck M.M., Thierie S., Smits M., Ciciani M., et al. Prime Editing Functionally Corrects Cystic Fibrosis-Causing CFTR Mutations in Human Organoids and Airway Epithelial Cells. Cell Reports Med. 2024;5:101544. doi: 10.1016/j.xcrm.2024.101544. PubMed DOI PMC
Chen M., Lu Y., Liu Y.H., Liu Q.Y., Deng S.Y., Liu Y., Cui X.L., Liang J., Zhang X.D., Fan Y.J., et al. Injectable Microgels with Hybrid Exosomes of Chondrocyte-Targeted FGF18 Gene-Editing. Adv. Mater. 2024;36:e2312559. doi: 10.1002/adma.202312559. PubMed DOI