• This record comes from PubMed

Fibroblast Growth Factors in Lung Development and Regeneration: Mechanisms and Therapeutic Potential

. 2025 Aug 14 ; 14 (16) : . [epub] 20250814

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
2020/02/Y/NZ3/00028 National Science Centre, Poland
2023/51/B/NZ1/03027 National Science Centre, Poland

Fibroblast growth factors (FGFs) play a key role in lung development by mediating complex interactions between epithelial and mesenchymal cells, which are central to processes such as branching morphogenesis, epithelial differentiation, and alveolarization. The findings regarding this interplay highlight the complexity of FGF signaling, as different FGFs contribute to various aspects of lung formation and maturation. Understanding the role of FGF proteins in shaping the lung is crucial for gaining insight into the biology of its development. Furthermore, FGFs orchestrate complex signaling pathways that regulate lung regeneration in adulthood. Therapeutic strategies targeting FGF-dependent pathways appear promising for repairing and improving lung function in diverse pulmonary diseases. In this review, we describe the current perception of the role of FGF proteins in lung development and regeneration, together with an overview of emerging therapeutic strategies aiming at FGF signaling in lung-related disorders.

See more in PubMed

Rao Tata P., Rajagopal J. Plasticity in the Lung: Making and Breaking Cell Identity. Development. 2017;144:755–766. doi: 10.1242/dev.143784. PubMed DOI PMC

Nikolić M.Z., Sun D., Rawlins E.L. Human Lung Development: Recent Progress and New Challenges. Development. 2018;145:dev163485. doi: 10.1242/dev.163485. PubMed DOI PMC

Schittny J.C. Development of the Lung. Cell Tissue Res. 2017;367:427–444. doi: 10.1007/s00441-016-2545-0. PubMed DOI PMC

Whitsett J.A., Kalin T.V., Xu Y., Kalinichenko V.V. Building and Regenerating the Lung Cell by Cell. Physiol. Rev. 2019;99:513–554. doi: 10.1152/physrev.00001.2018. PubMed DOI PMC

Yang L., Zhou F., Zheng D., Wang D., Li X., Zhao C., Huang X. FGF/FGFR Signaling: From Lung Development to Respiratory Diseases. Cytokine Growth Factor Rev. 2021;62:94–104. doi: 10.1016/j.cytogfr.2021.09.002. PubMed DOI

Jones M.R., Lingampally A., Wu J., Sedighi J., Ahmadvand N., Wilhelm J., Vazquez-Armendariz A.I., Herold S., Chen C., Zhang J.S., et al. Evidence for Overlapping and Distinct Biological Activities and Transcriptional Targets Triggered by Fibroblast Growth Factor Receptor 2b Signaling between Mid- and Early Pseudoglandular Stages of Mouse Lung Development. Cells. 2020;9:1274. doi: 10.3390/cells9051274. PubMed DOI PMC

Drozdowska J., Cousens C., Finlayson J., Collie D., Dagleish M.P. Structural Development, Cellular Differentiation and Proliferation of the Respiratory Epithelium in the Bovine Fetal Lung. J. Comp. Pathol. 2016;154:42–56. doi: 10.1016/j.jcpa.2015.11.002. PubMed DOI

Rock J.R., Onaitis M.W., Rawlins E.L., Lu Y., Clark C.P., Xue Y., Randell S.H., Hogan B.L.M. Basal Cells as Stem Cells of the Mouse Trachea and Human Airway Epithelium. Proc. Natl. Acad. Sci. USA. 2009;106:12771–12775. doi: 10.1073/pnas.0906850106. PubMed DOI PMC

Perl A.K.T., Wert S.E., Nagy A., Lobe C.G., Whitsett J.A. Early Restriction of Peripheral and Proximal Cell Lineages during Formation of the Lung. Proc. Natl. Acad. Sci. USA. 2002;99:10482–10487. doi: 10.1073/pnas.152238499. PubMed DOI PMC

Herring M.J., Putney L.F., Wyatt G., Finkbeiner W.E., Hyde D.M. Growth of Alveoli during Postnatal Development in Humans Based on Stereological Estimation. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2014;307:338–344. doi: 10.1152/ajplung.00094.2014. PubMed DOI PMC

Rock J.R., Hogan B.L.M. Epithelial Progenitor Cells in Lung Development, Maintenance, Repair, and Disease. Annu. Rev. Cell Dev. Biol. 2011;27:493–512. doi: 10.1146/annurev-cellbio-100109-104040. PubMed DOI

Alysandratos K.D., Herriges M.J., Kotton D.N. Epithelial Stem and Progenitor Cells in Lung Repair and Regeneration. Annu. Rev. Physiol. 2021;83:529–550. doi: 10.1146/annurev-physiol-041520-092904. PubMed DOI PMC

Rock J.R., Gao X., Xue Y., Randell S.H., Kong Y.Y., Hogan B.L.M. Notch-Dependent Differentiation of Adult Airway Basal Stem Cells. Cell Stem Cell. 2011;8:639–648. doi: 10.1016/j.stem.2011.04.003. PubMed DOI PMC

Barkauskas C.E., Cronce M.J., Rackley C.R., Bowie E.J., Keene D.R., Stripp B.R., Randell S.H., Noble P.W., Hogan B.L.M. Type 2 Alveolar Cells Are Stem Cells in Adult Lung. J. Clin. Investig. 2013;123:3025–3036. doi: 10.1172/JCI68782. PubMed DOI PMC

Wu H., Tang N. Stem Cells in Pulmonary Alveolar Regeneration. Development. 2021;148:dev193458. doi: 10.1242/dev.193458. PubMed DOI

Taghizadeh S., Jones M.R., Olmer R., Ulrich S., Danopoulos S., Shen C., Chen C., Wilhelm J., Martin U., Chen C., et al. Fgf10 Signaling-Based Evidence for the Existence of an Embryonic Stage Distinct from the Pseudoglandular Stage During Mouse Lung Development. Front. Cell Dev. Biol. 2020;8:576604. doi: 10.3389/fcell.2020.576604. PubMed DOI PMC

Varma S., Cao Y., Tagne J.-B., Lakshminarayanan M., Li J., Friedman T.B., Morell R.J., Warburton D., Kotton D.N., Ramirez M.I. The Transcription Factors Grainyhead-like 2 and NK2-Homeobox 1 Form a Regulatory Loop That Coordinates Lung Epithelial Cell Morphogenesis and Differentiation. J. Biol. Chem. 2012;287:37282–37295. doi: 10.1074/jbc.M112.408401. PubMed DOI PMC

Danopoulos S., Shiosaki J., Al Alam D. FGF Signaling in Lung Development and Disease: Human versus Mouse. Front. Genet. 2019;10:170. doi: 10.3389/fgene.2019.00170. PubMed DOI PMC

Danopoulos S., Alonso I., Thornton M.E., Grubbs B.H., Bellusci S., Warburton D., Al Alam D. Human Lung Branching Morphogenesis Is Orchestrated by the Spatiotemporal Distribution of ACTA2, SOX2, and SOX9. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2018;314:L144–L149. doi: 10.1152/ajplung.00379.2017. PubMed DOI PMC

McCulley D., Wienhold M., Sun X. The Pulmonary Mesenchyme Directs Lung Development. Curr. Opin. Genet. Dev. 2015;32:98–105. doi: 10.1016/j.gde.2015.01.011. PubMed DOI PMC

Hogan B.L. Bone Morphogenetic Proteins: Multifunctional Regulators of Vertebrate Development. Genes Dev. 1996;10:1580–1594. doi: 10.1101/gad.10.13.1580. PubMed DOI

Parr B.A., McMahon A.P. Wnt Genes and Vertebrate Development. Curr. Opin. Genet. Dev. 1994;4:523–528. doi: 10.1016/0959-437X(94)90067-D. PubMed DOI

Hammerschmidt M., Brook A., McMahon A.P. The World According to bedgebog. Trends Genet. 1997;13:14–21. doi: 10.1016/S0168-9525(96)10051-2. PubMed DOI

Ornitz D.M., Itoh N. New Developments in the Biology of Fibroblast Growth Factors. WIREs Mech. Dis. 2022;14:e1549. doi: 10.1002/wsbm.1549. PubMed DOI PMC

Plotnikov A.N., Hubbard S.R., Schlessinger J., Mohammadi M. Crystal Structures of Two FGF-FGFR Complexes Reveal the Determinants of Ligand-Receptor Specificity. Cell. 2000;101:413–424. doi: 10.1016/S0092-8674(00)80851-X. PubMed DOI

Ornitz D.M., Itoh N. The Fibroblast Growth Factor Signaling Pathway. Wiley Interdiscip. Rev. Dev. Biol. 2015;4:215–266. doi: 10.1002/wdev.176. PubMed DOI PMC

Eswarakumar V.P., Lax I., Schlessinger J. Cellular Signaling by Fibroblast Growth Factor Receptors. Cytokine Growth Factor Rev. 2005;16:139–149. doi: 10.1016/j.cytogfr.2005.01.001. PubMed DOI

Beenken A., Mohammadi M. The FGF Family: Biology, Pathophysiology and Therapy. Nat. Rev. Drug Discov. 2009;8:235–253. doi: 10.1038/nrd2792. PubMed DOI PMC

Xie Y., Su N., Yang J., Tan Q., Huang S., Jin M., Ni Z., Zhang B., Zhang D., Luo F., et al. FGF/FGFR Signaling in Health and Disease. Signal Transduct. Target. Ther. 2020;5:181. doi: 10.1038/s41392-020-00222-7. PubMed DOI PMC

Porta R., Borea R., Coelho A., Khan S., Araújo A., Reclusa P., Franchina T., Van Der Steen N., Van Dam P., Ferri J., et al. FGFR a Promising Druggable Target in Cancer: Molecular Biology and New Drugs. Crit. Rev. Oncol. Hematol. 2017;113:256–267. doi: 10.1016/j.critrevonc.2017.02.018. PubMed DOI

Babina I.S., Turner N.C. Advances and Challenges in Targeting FGFR Signalling in Cancer. Nat. Rev. Cancer. 2017;17:318–332. doi: 10.1038/nrc.2017.8. PubMed DOI

Warburton D., Bellusci S., De Langhe S., Del Moral P.M., Fleury V., Mailleux A., Tefft D., Unbekandt M., Wang K., Shi W.W.E. Molecular Mechanisms of Early Lung Specification and Branching Morphogenesis. Pediatr. Res. 2005;57:26R–37R. doi: 10.1203/01.PDR.0000159570.01327.ED. PubMed DOI

Lebeche D., Malpel S., Cardoso W.V. Fibroblast Growth Factor Interactions in the Developing Lung. Mech. Dev. 1999;86:125–136. doi: 10.1016/S0925-4773(99)00124-0. PubMed DOI

Arman E., Haffner-Krausz R., Gorivodsky M., Lonai P. Fgfr2 Is Required for Limb Outgrowth and Lung-Branching Morphogenesis. Proc. Natl. Acad. Sci. USA. 1999;96:11895–11899. doi: 10.1073/pnas.96.21.11895. PubMed DOI PMC

Danopoulos S., Thornton M.E., Grubbs B.H., Frey M.R., Warburton D., Bellusci S., Al Alam D. Discordant Roles for FGF Ligands in Lung Branching Morphogenesis between Human and Mouse. J. Pathol. 2019;247:254–265. doi: 10.1002/path.5188. PubMed DOI PMC

Kolobaric A., Vukojevic K., Brekalo S., Misković J., Ries M., Lasic Arapovic L., Soljic V. Expression and Localization of FGFR1, FGFR2 and CTGF during Normal Human Lung Development. Acta Histochem. 2021;123:151719. doi: 10.1016/j.acthis.2021.151719. PubMed DOI

Yuan T., Klinkhammer K., Lyu H., Gao S., Yuan J., Hopkins S., Zhang J.S., De Langhe S.P. Temporospatial Expression of Fgfr1 and 2 During Lung Development, Homeostasis, and Regeneration. Front. Pharmacol. 2020;11:120. doi: 10.3389/fphar.2020.00120. PubMed DOI PMC

El Agha E., Herold S., Al Alam D., Quantius J., MacKenzie B.A., Carraro G., Moiseenko A., Chao C.M., Minoo P., Seeger W., et al. Fgf10-Positive Cells Represent a Progenitor Cell Population during Lung Development and Postnatally. Development. 2014;141:296–306. doi: 10.1242/dev.099747. PubMed DOI PMC

Li R., Herriges J.C., Chen L., Mecham R.P., Sun X. FGF Receptors Control Alveolar Elastogenesis. Development. 2017;144:4563–4572. doi: 10.1242/dev.149443. PubMed DOI PMC

Srisuma S., Bhattacharya S., Simon D.M., Solleti S.K., Tyagi S., Starcher B., Mariani T.J. Fibroblast Growth Factor Receptors Control Epithelial-Mesenchymal Interactions Necessary for Alveolar Elastogenesis. Am. J. Respir. Crit. Care Med. 2010;181:838–850. doi: 10.1164/rccm.200904-0544OC. PubMed DOI PMC

El Agha E., Seeger W., Bellusci S. Therapeutic and Pathological Roles of Fibroblast Growth Factors in Pulmonary Diseases. Dev. Dyn. 2017;246:235–244. doi: 10.1002/dvdy.24468. PubMed DOI

Cardoso W.V., Itoh A., Nogawa H., Mason I., Brody J.S. FGF-1 and FGF-7 Induce Distinct Patterns of Growth and Differentiation in Embryonic Lung Epithelium. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 1997;208:398–405. doi: 10.1002/(SICI)1097-0177(199703)208:3<398::AID-AJA10>3.0.CO;2-X. PubMed DOI

Folkman J., Klagsbrun M. Angiogenic Factors. Science. 1987;235:442–447. doi: 10.1126/science.2432664. PubMed DOI

Han R.N., Liu J., Tanswell A.K., Post M. Expression of Basic Fibroblast Growth Factor and Receptor: Immunolocalization Studies in Developing Rat Fetal Lung. Pediatr. Res. 1992;31:435–440. doi: 10.1203/00006450-199205000-00004. PubMed DOI

Padela S., Yi M., Cabacungan J., Shek S., Belcastro R., Masood A., Jankov R.P., Tanswell A.K. A Critical Role for Fibroblast Growth Factor-7 during Early Alveolar Formation in the Neonatal Rat. Pediatr. Res. 2008;63:232–238. doi: 10.1203/PDR.0b013e31815f6e3a. PubMed DOI

Shiratori M., Oshika E., Ung L.P., Singh G., Shinozuka H., Warburton D., Michalopoulos G., Katyal S.L. Keratinocyte Growth Factor and Embryonic Rat Lung Morphogenesis. Am. J. Respir. Cell Mol. Biol. 1996;15:328–338. doi: 10.1165/ajrcmb.15.3.8810636. PubMed DOI

Liu S., Sun D., Butler R., Rawlins E.L. RTK Signalling Promotes Epithelial Columnar Cell Shape and Apical Junction Maintenance in Human Lung Progenitor Cells. Development. 2023;150:dev201284. doi: 10.1242/dev.201284. PubMed DOI PMC

Teramoto H., Yoneda A., Puri P. Gene Expression of Fibroblast Growth Factors 10 and 7 Is Downregulated in the Lung of Nitrofen-Induced Diaphragmatic Hernia in Rats. J. Pediatr. Surg. 2003;38:1021–1024. doi: 10.1016/S0022-3468(03)00183-0. PubMed DOI

Warburton D., El-Hashash A., Carraro G., Tiozzo C., Sala F., Rogers O., De Langhe S., Kemp P.J., Riccardi D., Torday J., et al. Chapter Three—Lung Organogenesis. In: Koopman P., editor. Organogenesis in Development. Volume 90. Academic Press; Cambridge, MA, USA: 2010. pp. 73–158. PubMed PMC

Jones M.R., Chong L., Bellusci S. Fgf10/Fgfr2b Signaling Orchestrates the Symphony of Molecular, Cellular, and Physical Processes Required for Harmonious Airway Branching Morphogenesis. Front. Cell Dev. Biol. 2021;8:620667. doi: 10.3389/fcell.2020.620667. PubMed DOI PMC

Yin Y., Ornitz D.M. FGF9 and FGF10 Activate Distinct Signaling Pathways to Direct Lung Epithelial Specification and Branching. Physiol. Behav. 2020;176:139–148. doi: 10.1126/scisignal.aay4353. PubMed DOI PMC

Yuan T., Volckaert T., Chanda D., Thannickal V.J., De Langhe S.P. Fgf10 Signaling in Lung Development, Homeostasis, Disease, and Repair After Injury. Front. Genet. 2018;9:418. doi: 10.3389/fgene.2018.00418. PubMed DOI PMC

Abler L.L., Mansour S.L., Sun X. Conditional Gene Inactivation Reveals Roles for Fgf10 and Fgfr2 in Establishing a Normal Pattern of Epithelial Branching in the Mouse Lung. Dev. Dyn. 2009;238:1999–2013. doi: 10.1002/dvdy.22032. PubMed DOI PMC

Sekine K., Ohuchi H., Fujiwara M., Yamasaki M., Yoshizawa T., Sato T., Yagishita N., Matsui D., Koga Y., Itoh N., et al. Fgf10 Is Essential for Limb and Lung Formation. Nat. Genet. 1999;21:138–141. doi: 10.1038/5096. PubMed DOI

De Moerlooze L., Spencer-Dene B., Revest J.M., Hajihosseini M., Rosewell I., Dickson C. An Important Role for the IIIb Isoform of Fibroblast Growth Factor Receptor 2 (FGFR2) in Mesenchymal-Epithelial Signalling during Mouse Organogenesis. Development. 2000;127:483–492. doi: 10.1242/dev.127.3.483. PubMed DOI

Czyrek A.A., Baran K., Hruba E., Horackova A., Bosakova V., Chudzian J., Fafilek B., Laskova V., Stepankova V., Bednar D., et al. Increased Thermal Stability of FGF10 Leads to Ectopic Signaling during Development. Cell. Mol. Life Sci. 2025;82:167. doi: 10.1007/s00018-025-05681-1. PubMed DOI PMC

Volckaert T., Campbell A., Dill E., Li C., Minoo P., De Langhe S. Localized Fgf10 Expression Is Not Required for Lung Branching Morphogenesis but Prevents Differentiation of Epithelial Progenitors. Development. 2013;140:3731–3742. doi: 10.1242/dev.096560. PubMed DOI PMC

Li L., Feng J., Zhao S., Rong Z., Lin Y. SOX9 Inactivation Affects the Proliferation and Differentiation of Human Lung Organoids. Stem Cell Res. Ther. 2021;12:343. doi: 10.1186/s13287-021-02422-6. PubMed DOI PMC

Warburton D., Bellusci S., Del Moral P.-M., Kaartinen V., Lee M., Tefft D., Shi W. Growth Factor Signaling in Lung Morphogenetic Centers: Automaticity, Stereotypy and Symmetry. Respir. Res. 2003;4:5. doi: 10.1186/1465-9921-4-5. PubMed DOI PMC

Chuang P.-T., Kawcak T., McMahon A.P. Feedback Control of Mammalian Hedgehog Signaling by the Hedgehog-Binding Protein, Hip1, Modulates Fgf Signaling during Branching Morphogenesis of the Lung. Genes Dev. 2003;17:342–347. doi: 10.1101/gad.1026303. PubMed DOI PMC

Yin Y., Wang F., Ornitz D.M. Mesothelial- and Epithelial-Derived FGF9 Have Distinct Functions in the Regulation of Lung Development. Development. 2011;138:3169–3177. doi: 10.1242/dev.065110. PubMed DOI PMC

Yi L., Domyan E.T., Lewandoski M., Sun X. Fibroblast Growth Factor 9 Signaling Inhibits Airway Smooth Muscle Differentiation in Mouse Lung. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2009;238:123–137. doi: 10.1002/dvdy.21831. PubMed DOI PMC

del Moral P.-M., De Langhe S.P., Sala F.G., Veltmaat J.M., Tefft D., Wang K., Warburton D., Bellusci S. Differential Role of FGF9 on Epithelium and Mesenchyme in Mouse Embryonic Lung. Dev. Biol. 2006;293:77–89. doi: 10.1016/j.ydbio.2006.01.020. PubMed DOI

White A.C., Xu J., Yin Y., Smith C., Schmid G., Ornitz D.M. FGF9 and SHH Signaling Coordinate Lung Growth and Development through Regulation of Distinct Mesenchymal Domains. Development. 2006;133:1507–1517. doi: 10.1242/dev.02313. PubMed DOI

Colvin J.S., White A.C., Pratt S.J., Ornitz D.M. Lung Hypoplasia and Neonatal Death in Fgf9-Null Mice Identify This Gene as an Essential Regulator of Lung Mesenchyme. Development. 2001;2106:2095–2106. doi: 10.1242/dev.128.11.2095. PubMed DOI

White A.C., Lavine K.J., Ornitz D.M. FGF9 and SHH Regulate Mesenchymal Vegfa Expression and Development of the Pulmonary Capillary Network. Development. 2007;134:3743–3752. doi: 10.1242/dev.004879. PubMed DOI PMC

Yu S., Poe B., Schwarz M., Elliot S.A., Albertine K.H., Fenton S., Garg V., Moon A.M. Fetal and Postnatal Lung Defects Reveal a Novel and Required Role for Fgf8 in Lung Development. Dev. Biol. 2010;347:92–108. doi: 10.1016/j.ydbio.2010.08.013. PubMed DOI PMC

Frank D.U., Fotheringham L.K., Brewer J.A., Muglia L.J., Tristani-Firouzi M., Capecchi M.R., Moon A.M. An Fgf8 Mouse Mutant Phenocopies Human 22q11 Deletion Syndrome. Development. 2002;129:4591–4603. doi: 10.1242/dev.129.19.4591. PubMed DOI PMC

Franco-Montoya M.-L., Boucherat O., Thibault C., Chailley-Heu B., Incitti R., Delacourt C., Bourbon J.R. Profiling Target Genes of FGF18 in the Postnatal Mouse Lung: Possible Relevance for Alveolar Development. Physiol. Genom. 2011;43:1226–1240. doi: 10.1152/physiolgenomics.00034.2011. PubMed DOI PMC

McGowan S.E., McCoy D.M. Fibroblast Growth Factor Signaling in Myofibroblasts Differs from Lipofibroblasts during Alveolar Septation in Mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015;309:L463-74. doi: 10.1152/ajplung.00013.2015. PubMed DOI PMC

Chailley-Heu B., Boucherat O., Barlier-Mur A.-M., Bourbon J.R. FGF-18 Is Upregulated in the Postnatal Rat Lung and Enhances Elastogenesis in Myofibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005;288:L43-51. doi: 10.1152/ajplung.00096.2004. PubMed DOI

Whitsett J.A., Clark J.C., Picard L., Tichelaar J.W., Wert S.E., Itoh N., Perl A.K.T., Stahlman M.T. Fibroblast Growth Factor 18 Influences Proximal Programming during Lung Morphogenesis. J. Biol. Chem. 2002;277:22743–22749. doi: 10.1074/jbc.M202253200. PubMed DOI

Lopez E., Boucherat O., Franco-Montoya M.-L., Bourbon J.R., Delacourt C., Jarreau P.-H. Nitric Oxide Donor Restores Lung Growth Factor and Receptor Expression in Hyperoxia-Exposed Rat Pups. Am. J. Respir. Cell Mol. Biol. 2006;34:738–745. doi: 10.1165/rcmb.2005-0254OC. PubMed DOI

Boucherat O., Benachi A., Barlier-Mur A.-M., Franco-Montoya M.-L., Martinovic J., Thébaud B., Chailley-Heu B., Bourbon J.R. Decreased Lung Fibroblast Growth Factor 18 and Elastin in Human Congenital Diaphragmatic Hernia and Animal Models. Am. J. Respir. Crit. Care Med. 2007;175:1066–1077. doi: 10.1164/rccm.200601-050OC. PubMed DOI

Usui H., Shibayama M., Ohbayashi N., Konishi M., Takada S., Itoh N. Fgf18 Is Required for Embryonic Lung Alveolar Development. Biochem. Biophys. Res. Commun. 2004;322:887–892. doi: 10.1016/j.bbrc.2004.07.198. PubMed DOI

Danopoulos S., Belgacemi R., Hein R.F.C., Miller A.J., Deutsch G.H., Glass I., Spence J.R., Al Alam D. FGF18 Promotes Human Lung Branching Morphogenesis through Regulating Mesenchymal Progenitor Cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2023;324:L433–L444. doi: 10.1152/ajplung.00316.2022. PubMed DOI PMC

Pardo-Saganta A., Law B.M., Tata P.R., Villoria J., Saez B., Mou H., Zhao R., Rajagopal J. Injury Induces Direct Lineage Segregation of Functionally Distinct Airway Basal Stem/Progenitor Cell Subpopulations. Cell Stem Cell. 2015;23:237–337. doi: 10.1016/j.stem.2015.01.002. PubMed DOI PMC

Parekh K.R., Nawroth J., Pai A., Busch S.M., Senger C.N., Ryan A.L. Stem Cells and Lung Regeneration. Cell Physiol. 2020;319:C675–C693. doi: 10.1152/ajpcell.00036.2020. PubMed DOI PMC

Rawlins E.L., Okubo T., Xue Y., Brass D.M., Auten R.L., Hasegawa H., Wang F., Hogan B.L.M. The Role of Scgb1a1+ Clara Cells in the Long-Term Maintenance and Repair of Lung Airway, but Not Alveolar, Epithelium. Cell Stem Cell. 2009;4:525–534. doi: 10.1016/j.stem.2009.04.002. PubMed DOI PMC

Zheng D., Limmon G.V., Yin L., Leung N.H.N., Yu H., Chow V.T.K., Chen J. Regeneration of Alveolar Type I and II Cells from Scgb1a1-Expressing Cells Following Severe Pulmonary Damage Induced by Bleomycin and Influenza. PLoS ONE. 2012;7:e48451. doi: 10.1371/journal.pone.0048451. PubMed DOI PMC

Tata A., Kobayashi Y., Chow R.D., Tran J., Desai A., Massri A.J., McCord T.J., Gunn M.D., Tata P.R. Myoepithelial Cells of Submucosal Glands Can Function as Reserve Stem Cells to Regenerate Airways after Injury. Cell Stem Cell. 2018;22:668–683.e6. doi: 10.1016/j.stem.2018.03.018. PubMed DOI PMC

Zuo W., Zhang T., Wu D.Z.A., Guan S.P., Liew A.A., Yamamoto Y., Wang X., Lim S.J., Vincent M., Lessard M., et al. P63 + Krt5 + Distal Airway Stem Cells Are Essential for Lung Regeneration. Nature. 2015;517:616–620. doi: 10.1038/nature13903. PubMed DOI PMC

Guha A., Deshpande A., Jain A., Sebastiani P., Cardoso W.V. Uroplakin 3a+ Cells Are a Distinctive Population of Epithelial Progenitors That Contribute to Airway Maintenance and Post-Injury Repair. Cell Rep. 2017;19:246–254. doi: 10.1016/j.celrep.2017.03.051. PubMed DOI

Salwig I., Spitznagel B., Vazquez-Armendariz A.I., Khalooghi K., Guenther S., Herold S., Szibor M., Braun T. Bronchioalveolar Stem Cells Are a Main Source for Regeneration of Distal Lung Epithelia In Vivo. EMBO J. 2019;38:e102099. doi: 10.15252/embj.2019102099. PubMed DOI PMC

Basil M.C., Katzen J., Engler A.E., Guo M., Herriges M.J., Kathiriya J.J., Windmueller R., Ysasi A.B., Zacharias W.J., Chapman H.A., et al. The Cellular and Physiological Basis for Lung Repair and Regeneration: Past, Present, and Future. Cell Stem Cell. 2020;26:482–502. doi: 10.1016/j.stem.2020.03.009. PubMed DOI PMC

Zacharias W.J., Frank D.B., Zepp J.A., Morley M.P., Alkhaleel F., Kong J., Zhou S., Cantu E., Edward E. Regeneration of the Lung Alveolus by an Evolutionarily Conserved Epithelial Progenitor. Nature. 2018;555:251–255. doi: 10.1038/nature25786. PubMed DOI PMC

Wu M., Zhang X., Lin Y., Zeng Y. Roles of Airway Basal Stem Cells in Lung Homeostasis and Regenerative Medicine. Respir. Res. 2022;23:122. doi: 10.1186/s12931-022-02042-5. PubMed DOI PMC

Balasooriya G.I., Johnson J.A., Basson M.A., Rawlins E.L. An FGFR1-SPRY2 Signaling Axis Limits Basal Cell Proliferation in the Steady-State Airway Epithelium. Dev. Cell. 2016;37:85–97. doi: 10.1016/j.devcel.2016.03.001. PubMed DOI PMC

Balasooriya G.I., Goschorska M., Piddini E., Rawlins E.L. FGFR2 Is Required for Airway Basal Cell Self-Renewal and Terminal Differentiation. Development. 2017;144:1600–1606. doi: 10.1242/dev.135681. PubMed DOI PMC

Volckaert T., Yuan T., Chao C.M., Bell H., Sitaula A., Szimmtenings L., El Agha E., Chanda D., Majka S., Bellusci S., et al. Fgf10-Hippo Epithelial-Mesenchymal Crosstalk Maintains and Recruits Lung Basal Stem Cells. Dev. Cell. 2017;43:48–59.e5. doi: 10.1016/j.devcel.2017.09.003. PubMed DOI PMC

Yuan T., Volckaert T., Redente E.F., Hopkins S., Klinkhammer K., Wasnick R., Chao C.M., Yuan J., Zhang J.S., Yao C., et al. FGF10-FGFR2B Signaling Generates Basal Cells and Drives Alveolar Epithelial Regeneration by Bronchial Epithelial Stem Cells after Lung Injury. Stem Cell Rep. 2019;12:1041–1055. doi: 10.1016/j.stemcr.2019.04.003. PubMed DOI PMC

Liberti D.C., Kremp M.M., Liberti W.A., Penkala I.J., Li S., Zhou S., Morrisey E.E. Alveolar Epithelial Cell Fate Is Maintained in a Spatially Restricted Manner to Promote Lung Regeneration after Acute Injury. Cell Rep. 2021;35:109092. doi: 10.1016/j.celrep.2021.109092. PubMed DOI PMC

Dorry S.J., Ansbro B.O., Ornitz D.M., Mutlu G.M., Guzy R.D. FGFR2 Is Required for AEC2 Homeostasis and Survival after Bleomycin-Induced Lung Injury. Am. J. Respir. Cell Mol. Biol. 2020;62:608–621. doi: 10.1165/rcmb.2019-0079OC. PubMed DOI PMC

Penkala I.J., Liberti D.C., Pankin J., Sivakumar A., Kremp M.M., Jayachandran S., Katzen J., Leach J.P., Windmueller R., Stolz K., et al. Age-Dependent Alveolar Epithelial Plasticity Orchestrates Lung Homeostasis and Regeneration. Cell Stem Cell. 2021;28:1775–1789.e5. doi: 10.1016/j.stem.2021.04.026. PubMed DOI PMC

Volckaert T., Dill E., Campbell A., Tiozzo C., Majka S., Bellusci S., De Langhe S.P. Parabronchial Smooth Muscle Constitutes an Airway Epithelial Stem Cell Niche in the Mouse Lung after Injury. J. Clin. Investig. 2011;121:4409–4419. doi: 10.1172/JCI58097. PubMed DOI PMC

Volckaert T., Campbell A., De Langhe S. C-Myc Regulates Proliferation and Fgf10 Expression in Airway Smooth Muscle after Airway Epithelial Injury in Mouse. PLoS ONE. 2013;8:e71426. doi: 10.1371/journal.pone.0071426. PubMed DOI PMC

McQualter J.L., McCarty R.C., Van der Velden J., O’Donoghue R.J.J., Asselin-Labat M.L., Bozinovski S., Bertoncello I. TGF-β Signaling in Stromal Cells Acts Upstream of FGF-10 to Regulate Epithelial Stem Cell Growth in the Adult Lung. Stem Cell Res. 2013;11:1222–1233. doi: 10.1016/j.scr.2013.08.007. PubMed DOI

Tong L., Zhou J., Rong L., Seeley E.J., Pan J., Zhu X., Liu J., Wang Q., Tang X., Qu J., et al. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-Resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury. Sci. Rep. 2016;6:21642. doi: 10.1038/srep21642. PubMed DOI PMC

Marega M., Chen C., Bellusci S. Cross-Talk Between Inflammation and Fibroblast Growth Factor 10 During Organogenesis and Pathogenesis: Lessons Learnt from the Lung and Other Organs. Front. Cell Dev. Biol. 2021;9:656883. doi: 10.3389/fcell.2021.656883. PubMed DOI PMC

Liu L., Song C., Li J., Wang Q., Zhu M., Hu Y., Chen J., Chen C., Zhang J.S., Dong N., et al. Fibroblast Growth Factor 10 Alleviates Particulate Matter-Induced Lung Injury by Inhibiting the HMGB1-TLR4 Pathway. Aging. 2020;12:1186–1200. doi: 10.18632/aging.102676. PubMed DOI PMC

Weaver M., Dunn N.R., Hogan B.L. Bmp4 and Fgf10 Play Opposing Roles during Lung Bud Morphogenesis. Development. 2000;127:2695–2704. doi: 10.1242/dev.127.12.2695. PubMed DOI

Bellusci S., Grindley J., Emoto H., Itoh N., Hogan B.L. Fibroblast Growth Factor 10 (FGF10) and Branching Morphogenesis in the Embryonic Mouse Lung. Development. 1997;124:4867–4878. doi: 10.1242/dev.124.23.4867. PubMed DOI

Ware L.B. Keratinocyte Growth Factor as an Epithelial Protective Agent: Where Do We Stand? Int. J. Radiat. Oncol. Biol. Phys. 2004;60:1345–1346. doi: 10.1016/j.ijrobp.2004.09.015. PubMed DOI

Yildirim A.O., Muyal V., John G., Müller B., Seifart C., Kasper M., Fehrenbach H. Palifermin Induces Alveolar Maintenance Programs in Emphysematous Mice. Am. J. Respir. Crit. Care Med. 2010;181:705–717. doi: 10.1164/rccm.200804-573OC. PubMed DOI

Plantier L., Marchand-Adam S., Antico Arciuch V.G., Boyer L., De Coster C., Marchal J., Bachoual R., Mailleux A., Boczkowski J., Crestani B. Keratinocyte Growth Factor Protects against Elastase-Induced Pulmonary Emphysema in Mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007;293:L1230-9. doi: 10.1152/ajplung.00460.2006. PubMed DOI

Hadzic S., Wu C.-Y., Gredic M., Pak O., Loku E., Kraut S., Kojonazarov B., Wilhelm J., Brosien M., Bednorz M., et al. Fibroblast Growth Factor 10 Reverses Cigarette Smoke- and Elastase-Induced Emphysema and Pulmonary Hypertension in Mice. Eur. Respir. J. 2023;62:2201606. doi: 10.1183/13993003.01606-2022. PubMed DOI PMC

Guzy R.D., Li L., Smith C., Dorry S.J., Koo H.Y., Chen L., Ornitz D.M. Pulmonary Fibrosis Requires Cell-Autonomous Mesenchymal Fibroblast Growth Factor (FGF) Signaling. J. Biol. Chem. 2017;292:10364–10378. doi: 10.1074/jbc.M117.791764. PubMed DOI PMC

Liu G., Philp A.M., Corte T., Travis M.A., Schilter H., Hansbro N.G., Burns C.J., Eapen M.S., Sohal S.S., Burgess J.K., et al. Therapeutic Targets in Lung Tissue Remodelling and Fibrosis. Pharmacol. Ther. 2021;225:107839. doi: 10.1016/j.pharmthera.2021.107839. PubMed DOI

Pan L., Cheng Y., Yang W., Wu X., Zhu H., Hu M., Zhang Y., Zhang M. Nintedanib Ameliorates Bleomycin-Induced Pulmonary Fibrosis, Inflammation, Apoptosis, and Oxidative Stress by Modulating PI3K/Akt/MTOR Pathway in Mice. Inflammation. 2023;46:1531–1542. doi: 10.1007/s10753-023-01825-2. PubMed DOI PMC

Zhao M., Wang L., Wang M., Zhou S., Lu Y., Cui H., Racanelli A.C., Zhang L., Ye T., Ding B., et al. Targeting Fibrosis, Mechanisms and Cilinical Trials. Signal Transduct. Target. Ther. 2022;7:206. doi: 10.1038/s41392-022-01070-3. PubMed DOI PMC

Liu Z.-W., Zhao M.-Y., Su X.-L., Ye T.-H., Zhuang Y.-J., Zhang Y., Zhang Z.-Z., Yang J.-L., Chen L.-J., Long C.-F., et al. The Antifibrotic Effect and Mechanism of a Novel Tyrosine Kinase Inhibitor, ZSP1603, in Preclinical Models of Pulmonary Fibrosis. Eur. Rev. Med. Pharmacol. Sci. 2020;24:1481–1491. doi: 10.26355/eurrev_202002_20207. PubMed DOI

Yu Z., Wang D., Zhou Z., He S., Chen A., Wang J. Mutant Soluble Ectodomain of Fibroblast Growth Factor Receptor-2 IIIc Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice. Biol. Pharm. Bull. 2012;35:731–736. doi: 10.1248/bpb.35.731. PubMed DOI

El Agha E., Schwind F., Ruppert C., Günther A., Bellusci S., Schermuly R.T., Kosanovic D. Is the Fibroblast Growth Factor Signaling Pathway a Victim of Receptor Tyrosine Kinase Inhibition in Pulmonary Parenchymal and Vascular Remodeling? Am. J. Physiol. Lung Cell. Mol. Physiol. 2018;315:L248–L252. doi: 10.1152/ajplung.00140.2018. PubMed DOI

Jieming G., Liu C., Yang Y., Mo S., Yang X., Wang J. Inhibitory Effects of MsFGFR2c on the Epithelial-to-Mesenchymal Transition of AE2 Cells in Pulmonary Fibrosis. Biotechnol. Lett. 2020;42:1061–1070. doi: 10.1007/s10529-020-02852-x. PubMed DOI PMC

Guzy R.D., Stoilov I., Elton T.J., Mecham R.P., Ornitz D.M. Fibroblast Growth Factor 2 Is Required for Epithelial Recovery, but Not for Pulmonary Fibrosis, in Response to Bleomycin. Am. J. Respir. Cell Mol. Biol. 2015;52:116–128. doi: 10.1165/rcmb.2014-0184OC. PubMed DOI PMC

Finlay G.A., Thannickal V.J., Fanburg B.L., Paulson K.E. Transforming Growth Factor-Beta 1-Induced Activation of the ERK Pathway/Activator Protein-1 in Human Lung Fibroblasts Requires the Autocrine Induction of Basic Fibroblast Growth Factor. J. Biol. Chem. 2000;275:27650–27656. doi: 10.1074/jbc.M000893200. PubMed DOI

Ju W., Zhihong Y., Zhiyou Z., Qin H., Dingding W., Li S., Baowei Z., Xing W., Ying H., An H. Inhibition of α-SMA by the Ectodomain of FGFR2c Attenuates Lung Fibrosis. Mol. Med. 2012;18:992–1002. doi: 10.2119/molmed.2011.00425. PubMed DOI PMC

Joannes A., Brayer S., Besnard V., Marchal-Sommé J., Jaillet M., Mordant P., Mal H., Borie R., Crestani B., Mailleux A.A. FGF9 and FGF18 in Idiopathic Pulmonary Fibrosis Promote Survival and Migration and Inhibit Myofibroblast Differentiation of Human Lung Fibroblasts in Vitro. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016;310:L615–L629. doi: 10.1152/ajplung.00185.2015. PubMed DOI

Justet A., Ghanem M., Boghanim T., Hachem M., Vasarmidi E., Jaillet M., Vadel A., Joannes A., Mordant P., Bonniaud P., et al. FGF19 Is Downregulated in Idiopathic Pulmonary Fibrosis and Inhibits Lung Fibrosis in Mice. Am. J. Respir. Cell Mol. Biol. 2022;67:173–187. doi: 10.1165/rcmb.2021-0246OC. PubMed DOI

Zhang S., Yu D., Wang M., Huang T., Wu H., Zhang Y., Zhang T., Wang W., Yin J., Ren G., et al. FGF21 Attenuates Pulmonary Fibrogenesis through Ameliorating Oxidative Stress In Vivo and In Vitro. Biomed. Pharmacother. 2018;103:1516–1525. doi: 10.1016/j.biopha.2018.03.100. PubMed DOI

Barnes J.W., Duncan D., Helton S., Hutcheson S., Kurundkar D., Logsdon N.J., Locy M., Garth J., Denson R., Farver C., et al. Role of Fibroblast Growth Factor 23 and Klotho Cross Talk in Idiopathic Pulmonary Fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019;317:L141–L154. doi: 10.1152/ajplung.00246.2018. PubMed DOI PMC

Sanders C.J., Doherty P.C., Thomas P.G. Respiratory Epithelial Cells in Innate Immunity to Influenza Virus Infection. Cell Tissue Res. 2011;343:13–21. doi: 10.1007/s00441-010-1043-z. PubMed DOI

Wang K., Lai C., Li T., Wang C., Wang W., Ni B., Bai C., Zhang S., Han L., Gu H., et al. Basic Fibroblast Growth Factor Protects against Influenza A Virus-Induced Acute Lung Injury by Recruiting Neutrophils. J. Mol. Cell Biol. 2018;10:573–585. doi: 10.1093/jmcb/mjx047. PubMed DOI

Nikolaidis N.M., Noel J.G., Pitstick L.B., Gardner J.C., Uehara Y., Wu H., Saito A., Lewnard K.E., Liu H., White M.R., et al. Mitogenic Stimulation Accelerates Influenza-Induced Mortality by Increasing Susceptibility of Alveolar Type II Cells to Infection. Proc. Natl. Acad. Sci. USA. 2017;114:E6613–E6622. doi: 10.1073/pnas.1621172114. PubMed DOI PMC

Ray P., Devaux Y., Stolz D.B., Yarlagadda M., Watkins S.C., Lu Y., Chen L., Yang X.-F., Ray A. Inducible Expression of Keratinocyte Growth Factor (KGF) in Mice Inhibits Lung Epithelial Cell Death Induced by Hyperoxia. Proc. Natl. Acad. Sci. USA. 2003;100:6098–6103. doi: 10.1073/pnas.1031851100. PubMed DOI PMC

Tichelaar J.W., Lu W., Whitsett J.A. Conditional Expression of Fibroblast Growth Factor-7 in the Developing and Mature Lung. J. Biol. Chem. 2000;275:11858–11864. doi: 10.1074/jbc.275.16.11858. PubMed DOI

Guery B.P., Mason C.M., Dobard E.P., Beaucaire G., Summer W.R., Nelson S. Keratinocyte Growth Factor Increases Transalveolar Sodium Reabsorption in Normal and Injured Rat Lungs. Am. J. Respir. Crit. Care Med. 1997;155:1777–1784. doi: 10.1164/ajrccm.155.5.9154891. PubMed DOI

Blaisdell C.J., Pellettieri J.P., Loughlin C.E., Chu S., Zeitlin P.L. Keratinocyte Growth Factor Stimulates CLC-2 Expression in Primary Fetal Rat Distal Lung Epithelial Cells. Am. J. Respir. Cell Mol. Biol. 1999;20:842–847. doi: 10.1165/ajrcmb.20.4.3431. PubMed DOI

Wang Y., Folkesson H.G., Jayr C., Ware L.B., Matthay M.A. Alveolar Epithelial Fluid Transport Can Be Simultaneously Upregulated by Both KGF and Beta-Agonist Therapy. J. Appl. Physiol. 1999;87:1852–1860. doi: 10.1152/jappl.1999.87.5.1852. PubMed DOI

Hu Z., Dai J., Xu T., Chen H., Shen G., Zhou J., Ma H., Wang Y., Jin L. FGF18 Alleviates Sepsis-Induced Acute Lung Injury by Inhibiting the NF-ΚB Pathway. Respir. Res. 2024;25:108. doi: 10.1186/s12931-024-02733-1. PubMed DOI PMC

Shao L., Wang J., Karatas O.F., Feng S., Zhang Y., Creighton C.J., Ittmann M. Fibroblast Growth Factor Receptor Signaling Plays a Key Role in Transformation Induced by the TMPRSS2/ERG Fusion Gene and Decreased PTEN. Oncotarget. 2018;9:14456–14471. doi: 10.18632/oncotarget.24470. PubMed DOI PMC

Kiyan Y., Schultalbers A., Chernobrivaia E., Tkachuk S., Rong S., Shushakova N., Haller H. Calcium Dobesilate Reduces SARS-CoV-2 Entry into Endothelial Cells by Inhibiting Virus Binding to Heparan Sulfate. Sci. Rep. 2022;12:16878. doi: 10.1038/s41598-022-20973-3. PubMed DOI PMC

Cuevas P., Manquillo A., Guillen P., GIménez-Gallego G. Fibroblast Growth Factor: A Target for COVID-19 Infection. Int. J. Med. Rev. Case Rep. 2020;4:10–5455. doi: 10.5455/IJMRCR.Fibroblast-growth-factor-COVID-19. DOI

Meini S., Giani T., Tascini C. Intussusceptive Angiogenesis in Covid-19: Hypothesis on the Significance and Focus on the Possible Role of FGF2. Mol. Biol. Rep. 2020;47:8301–8304. doi: 10.1007/s11033-020-05831-7. PubMed DOI PMC

Karadeniz H., Avanoğlu Güler A., Özger H.S., Yıldız P.A., Erbaş G., Bozdayı G., Deveci Bulut T., Gülbahar Ö., Yapar D., Küçük H., et al. The Prognostic Value of Lung Injury and Fibrosis Markers, KL-6, TGF-Β1, FGF-2 in COVID-19 Patients. Biomark. Insights. 2022;17:11772719221135444. doi: 10.1177/11772719221135443. PubMed DOI PMC

Gupta A., Jayakumar M.N., Saleh M.A., Kannan M., Halwani R., Qaisar R., Ahmad F. SARS-CoV-2 Infection- Induced Growth Factors Play Differential Roles in COVID-19 Pathogenesis. Life Sci. 2022;304:120703. doi: 10.1016/j.lfs.2022.120703. PubMed DOI PMC

Demir A.D. Serum FGF-21 Levels During COVID-19 Infection Recovery Period. Med. Bull. Haseki. 2024;62:168–174. doi: 10.4274/haseki.galenos.2024.9752. DOI

Global, Regional, and National Deaths, Prevalence, Disability-Adjusted Life Years, and Years Lived with Disability for Chronic Obstructive Pulmonary Disease and Asthma, 1990-2015: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet. Respir. Med. 2017;5:691–706. doi: 10.1016/S2213-2600(17)30293-X. PubMed DOI PMC

Jiang T., Hu W., Zhang S., Ren C., Lin S., Zhou Z., Wu H., Yin J., Tan L. Fibroblast Growth Factor 10 Attenuates Chronic Obstructive Pulmonary Disease by Protecting against Glycocalyx Impairment and Endothelial Apoptosis. Respir. Res. 2022;23:269. doi: 10.1186/s12931-022-02193-5. PubMed DOI PMC

Weidenfeld S., Kuebler W.M. Shedding First Light on the Alveolar Epithelial Glycocalyx. Am. J. Respir. Cell Mol. Biol. 2018;59:283–284. doi: 10.1165/rcmb.2018-0108ED. PubMed DOI

Reitsma S., Slaaf D.W., Vink H., van Zandvoort M.A.M.J., oude Egbrink M.G.A. The Endothelial Glycocalyx: Composition, Functions, and Visualization. Pflugers Arch. 2007;454:345–359. doi: 10.1007/s00424-007-0212-8. PubMed DOI PMC

Chandra D., Sciurba F.C., Gladwin M.T. Endothelial Chronic Destructive Pulmonary Disease (E-CDPD): Is Endothelial Apoptosis a Subphenotype or Prequel to COPD? Am. J. Respir. Crit. Care Med. 2011;184:153–155. doi: 10.1164/rccm.201104-0758ED. PubMed DOI

Kranenburg A.R., Willems-Widyastuti A., Mooi W.J., Saxena P.R., Sterk P.J., de Boer W.I., Sharma H.S. Chronic Obstructive Pulmonary Disease Is Associated with Enhanced Bronchial Expression of FGF-1, FGF-2, and FGFR-1. J. Pathol. 2005;206:28–38. doi: 10.1002/path.1748. PubMed DOI

Krick S., Grabner A., Baumlin N., Yanucil C., Helton S., Grosche A., Sailland J., Geraghty P., Viera L., Russell D.W., et al. Fibroblast Growth Factor 23 and Klotho Contribute to Airway Inflammation. Eur. Respir. J. 2018;52:1800236. doi: 10.1183/13993003.00236-2018. PubMed DOI PMC

Gulati S., Wells J.M., Urdaneta G.P., Balestrini K., Vital I., Tovar K., Barnes J.W., Bhatt S.P., Campos M., Krick S. Fibroblast Growth Factor 23 Is Associated with a Frequent Exacerbator Phenotype in COPD: A Cross-Sectional Pilot Study. Int. J. Mol. Sci. 2019;20:2292. doi: 10.3390/ijms20092292. PubMed DOI PMC

Wang X., Hou X., Zhao Y., Zhao R., Dai J., Dai H., Wang C. The Early and Late Intervention Effects of Collagen-Binding FGF2 on Elastase-Induced Lung Injury. Biomed. Pharmacother. 2023;158:114147. doi: 10.1016/j.biopha.2022.114147. PubMed DOI

Kawago M., Yoshimasu T., Tabata Y., Yamamoto M., Hirai Y., Kinoshita T., Okamura Y. Intrapleural Administration of Gelatin-Embedded, Sustained-Release Basic Fibroblast Growth Factor for the Regeneration of Emphysematous Lungs in Rats. J. Thorac. Cardiovasc. Surg. 2014;147:1644–1649. doi: 10.1016/j.jtcvs.2013.07.039. PubMed DOI

Kim Y.-S., Hong G., Kim D.H., Kim Y.M., Kim Y.-K., Oh Y.-M., Jee Y.-K. The Role of FGF-2 in Smoke-Induced Emphysema and the Therapeutic Potential of Recombinant FGF-2 in Patients with COPD. Exp. Mol. Med. 2018;50:50. doi: 10.1038/s12276-018-0178-y. PubMed DOI PMC

Morino S., Nakamura T., Toba T., Takahashi M., Kushibiki T., Tabata Y., Shimizu Y. Fibroblast Growth Factor-2 Induces Recovery of Pulmonary Blood Flow in Canine Emphysema Models. Chest. 2005;128:920–926. doi: 10.1378/chest.128.2.920. PubMed DOI

Xu S., Kuang J., Liu J., Ma C., Feng Y., Su Z. Association between Fibroblast Growth Factor 7 and the Risk of Chronic Obstructive Pulmonary Disease. Acta Pharmacol. Sin. 2012;33:998–1003. doi: 10.1038/aps.2012.69. PubMed DOI PMC

Zhang X., Guo Y., Yang J., Niu J., Du L., Li H., Li X. A Functional Variant Alters Binding of Activating Protein 1 Regulating Expression of FGF7 Gene Associated with Chronic Obstructive Pulmonary Disease. BMC Med. Genet. 2019;20:33. doi: 10.1186/s12881-019-0761-7. PubMed DOI PMC

Hokuto I., Perl A.-K.T., Whitsett J.A. Prenatal, but Not Postnatal, Inhibition of Fibroblast Growth Factor Receptor Signaling Causes Emphysema. J. Biol. Chem. 2003;278:415–421. doi: 10.1074/jbc.M208328200. PubMed DOI

Paisley D., Bevan L., Choy K.J., Gross C. The Pneumonectomy Model of Compensatory Lung Growth: Insights into Lung Regeneration. Pharmacol. Ther. 2014;142:196–205. doi: 10.1016/j.pharmthera.2013.12.006. PubMed DOI

Brody J.S., Burki R., Kaplan N. Deoxyribonucleic Acid Synthesis in Lung Cells during Compensatory Lung Growth after Pneumonectomy. Am. Rev. Respir. Dis. 1978;117:307–316. PubMed

Paxson J.A., Gruntman A., Parkin C.D., Mazan M.R., Davis A., Ingenito E.P., Hoffman A.M. Age-Dependent Decline in Mouse Lung Regeneration with Loss of Lung Fibroblast Clonogenicity and Increased Myofibroblastic Differentiation. PLoS ONE. 2011;6:e23232. doi: 10.1371/journal.pone.0023232. PubMed DOI PMC

Paxson J.A., Gruntman A.M., Davis A.M., Parkin C.M., Ingenito E.P., Hoffman A.M. Age Dependence of Lung Mesenchymal Stromal Cell Dynamics Following Pneumonectomy. Stem Cells Dev. 2013;22:3214–3225. doi: 10.1089/scd.2012.0477. PubMed DOI PMC

Yin Y., White A.C., Huh S.-H., Hilton M.J., Kanazawa H., Long F., Ornitz D.M. An FGF-WNT Gene Regulatory Network Controls Lung Mesenchyme Development. Dev. Biol. 2008;319:426–436. doi: 10.1016/j.ydbio.2008.04.009. PubMed DOI PMC

Bolte C., Flood H.M., Ren X., Jagannathan S., Barski A., Kalin T.V., Kalinichenko V. V FOXF1 Transcription Factor Promotes Lung Regeneration after Partial Pneumonectomy. Sci. Rep. 2017;7:10690. doi: 10.1038/s41598-017-11175-3. PubMed DOI PMC

Armanios M. Syndromes of Telomere Shortening. Annu. Rev. Genom. Hum. Genet. 2009;10:45–61. doi: 10.1146/annurev-genom-082908-150046. PubMed DOI PMC

Pelaia C., Crimi C., Vatrella A., Tinello C., Terracciano R., Pelaia G. Molecular Targets for Biological Therapies of Severe Asthma. Front. Immunol. 2020;11:603312. doi: 10.3389/fimmu.2020.603312. PubMed DOI PMC

Holgate S.T., Wenzel S., Postma D.S., Weiss S.T., Renz H., Sly P.D. Asthma. Nat. Rev. Dis. Prim. 2015;1:15025. doi: 10.1038/nrdp.2015.25. PubMed DOI PMC

Tan Y.-Y., Zhou H.-Q., Lin Y.-J., Yi L.-T., Chen Z.-G., Cao Q.-D., Guo Y.-R., Wang Z.-N., Chen S.-D., Li Y., et al. FGF2 Is Overexpressed in Asthma and Promotes Airway Inflammation through the FGFR/MAPK/NF-ΚB Pathway in Airway Epithelial Cells. Mil. Med. Res. 2022;9:7. doi: 10.1186/s40779-022-00366-3. PubMed DOI PMC

Nimmagadda S.R., Spahn J.D., Leung D.Y., Szefler S.J. Steroid-Resistant Asthma: Evaluation and Management. Ann. Allergy Asthma Immunol. 1996;77:345–356. doi: 10.1016/S1081-1206(10)63332-7. PubMed DOI

Guidi R., Xu D., Choy D.F., Ramalingam T.R., Lee W.P., Modrusan Z., Liang Y., Marsters S., Ashkenazi A., Huynh A., et al. Steroid-Induced Fibroblast Growth Factors Drive an Epithelial-Mesenchymal Inflammatory Axis in Severe Asthma. Sci. Transl. Med. 2022;14:eabl8146. doi: 10.1126/scitranslmed.abl8146. PubMed DOI PMC

Frank L. Protective Effect of Keratinocyte Growth Factor against Lung Abnormalities Associated with Hyperoxia in Prematurely Born Rats. Neonatology. 2003;83:263–272. doi: 10.1159/000069480. PubMed DOI

Gupte V.V., Ramasamy S.K., Reddy R., Lee J., Weinreb P.H., Violette S.M., Guenther A., Warburton D., Driscoll B., Minoo P., et al. Overexpression of Fibroblast Growth Factor-10 during Both Inflammatory and Fibrotic Phases Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice. Am. J. Respir. Crit. Care Med. 2009;180:424–436. doi: 10.1164/rccm.200811-1794OC. PubMed DOI PMC

Buchtova M., Chaloupkova R., Zakrzewska M., Vesela I., Cela P., Barathova J., Gudernova I., Zajickova R., Trantirek L., Martin J., et al. Instability Restricts Signaling of Multiple Fibroblast Growth Factors. Cell. Mol. Life Sci. 2015;72:2445–2459. doi: 10.1007/s00018-015-1856-8. PubMed DOI PMC

Zakrzewska M., Krowarsch D., Wiedlocha A., Otlewski J. Design of Fully Active FGF-1 Variants with Increased Stability. Protein Eng. Des. Sel. 2004;17:603–611. doi: 10.1093/protein/gzh076. PubMed DOI

Patton J.S., Byron P.R. Inhaling Medicines: Delivering Drugs to the Body through the Lungs. Nat. Rev. Drug Discov. 2007;6:67–74. doi: 10.1038/nrd2153. PubMed DOI

Fu Z.H., Jiang Z.Y., Sun W., Xiong Z.F., Liao X.C., Liu M.Z., Xu B., Guo G.H. Effects of Aerosol Inhalation of Recombinant Human Keratinocyte Growth Factor 2 on the Lung Tissue of Rabbits with Severe Smoke Inhalation Injury. Chin. J. Burn. 2018;34:466–475. doi: 10.3760/cma.j.issn.1009-2587.2018.07.009. PubMed DOI

Ibrahim B.M., Jun S.W., Lee M.Y., Kang S.H., Yeo Y. Development of Inhalable Dry Powder Formulation of Basic Fibroblast Growth Factor. Int. J. Pharm. 2010;385:66–72. doi: 10.1016/j.ijpharm.2009.10.029. PubMed DOI

Zhang P., Yue L., Leng Q.Q., Chang C., Gan C., Ye T., Cao D. Targeting FGFR for Cancer Therapy. J. Hematol. Oncol. 2024;17:39. doi: 10.1186/s13045-024-01558-1. PubMed DOI PMC

Bulcaen M., Kortleven P., Liu R.B., Maule G., Dreano E., Kelly M., Ensinck M.M., Thierie S., Smits M., Ciciani M., et al. Prime Editing Functionally Corrects Cystic Fibrosis-Causing CFTR Mutations in Human Organoids and Airway Epithelial Cells. Cell Reports Med. 2024;5:101544. doi: 10.1016/j.xcrm.2024.101544. PubMed DOI PMC

Chen M., Lu Y., Liu Y.H., Liu Q.Y., Deng S.Y., Liu Y., Cui X.L., Liang J., Zhang X.D., Fan Y.J., et al. Injectable Microgels with Hybrid Exosomes of Chondrocyte-Targeted FGF18 Gene-Editing. Adv. Mater. 2024;36:e2312559. doi: 10.1002/adma.202312559. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...