Fibroblast growth factor inhibits interferon gamma-STAT1 and interleukin 6-STAT3 signaling in chondrocytes
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P01 HD022657
NICHD NIH HHS - United States
P01 HD022657-13
NICHD NIH HHS - United States
5P01-HD22657
NICHD NIH HHS - United States
PubMed
18950705
PubMed Central
PMC2655766
DOI
10.1016/j.cellsig.2008.10.006
PII: S0898-6568(08)00297-0
Knihovny.cz E-zdroje
- MeSH
- chondrocyty účinky léků metabolismus MeSH
- cytokinový receptor gp130 metabolismus MeSH
- fibroblastový růstový faktor 2 farmakologie MeSH
- interferon gama antagonisté a inhibitory farmakologie MeSH
- interleukin-6 antagonisté a inhibitory farmakologie MeSH
- myši MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- protein SOCS1 MeSH
- protein SOCS3 MeSH
- proteiny SOCS metabolismus MeSH
- receptor fibroblastových růstových faktorů, typ 3 metabolismus MeSH
- sekvence nukleotidů MeSH
- signální transdukce MeSH
- transkripční faktor STAT1 antagonisté a inhibitory metabolismus MeSH
- transkripční faktor STAT3 antagonisté a inhibitory metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- cytokine inducible SH2-containing protein MeSH Prohlížeč
- cytokinový receptor gp130 MeSH
- fibroblastový růstový faktor 2 MeSH
- interferon gama MeSH
- interleukin-6 MeSH
- protein SOCS1 MeSH
- protein SOCS3 MeSH
- proteiny SOCS MeSH
- receptor fibroblastových růstových faktorů, typ 3 MeSH
- Socs1 protein, mouse MeSH Prohlížeč
- Socs3 protein, mouse MeSH Prohlížeč
- transkripční faktor STAT1 MeSH
- transkripční faktor STAT3 MeSH
Activation of fibroblast growth factor receptor 3 (FGFR3) leads to attenuation of cartilage growth. The members of the STAT family of transcription factors are believed to participate in FGFR3 signaling in cartilage, however the molecular mechanism of this action is poorly understood. Here, we demonstrate that a chronic FGF stimulus leads to accumulation of STAT1, 3, 5 and 6, evident in both in vitro chondrocyte model and murine limb explant cultures. Despite the accumulation, both endogenous and cytokine-induced activation of STAT1 and STAT3 is impaired by FGF, as demonstrated by imaging of active STAT nuclear translocation and analyses of STAT activatory phosphorylation and transcriptional activation. Further, we demonstrate that FGF induces expression of CIS, SOCS1 and SOCS3 inhibitors of gp130, a common receptor for the IL6-family of cytokines. Since cytokine-gp130 signaling represents an important positive regulator of cartilage, its inhibition may contribute to the growth-inhibitory effect of FGFR3 in cartilage.
Zobrazit více v PubMed
Passos-Bueno MR, Wilcox WR, Jabs EW, Sertie AL, Alonso LG, Kitoh H. Hum Mutat. 1999;14:115–125. PubMed
Legeai-Mallet L, Benoist-Lasselin C, Delezoide A, Munnich A, Bonaventure J. J Biol Chem. 1998;273:13007–13014. PubMed
Legeai-Mallet L, Benoist-Lasselin C, Munnich A, Bonaventure J. Bone. 2004;34:26–36. PubMed
Chen L, Adar R, Yang X, Monsonego E, Li C, Hauschka PV, Yayon A, Deng C. J Clin Invest. 1999;104:1517–1525. PubMed PMC
Li C, Chen L, Iwata T, Kitagawa M, Fu X, Deng C. Hum Mol Genet. 1999;8:35–41. PubMed
Sahni M, Ambrosetti D, Mansukhani A, Gertner R, Levy D, Basilico C. Genes Dev. 1999;13:1361–1366. PubMed PMC
Sahni M, Raz R, Coffin JD, Levy D, Basilico C. Development. 2001;128:2119–2129. PubMed
Krejci P, Bryja V, Pachernik J, Hampl A, Pogue R, Mekikian P, Wilcox WR. Exp Cell Res. 2004;297:152–164. PubMed
Chin YE, Kitagawa M, Su WS, You ZH, Iwamoto Y, Fu XY. Science. 1996;272:719–722. PubMed
Nowroozi N, Raffioni S, Wang T, Apostol BL, Bradshaw RA, Michels Thompson L. Hum Mol Genet. 2005;14:1529–1538. PubMed
Krejci P, Salazar L, Goodridge HS, Kashiwada TA, Schibler M, Jelinkova P, Michels Thompson L, Wilcox WR. J Cell Sci. 2008;121:272–281. PubMed
Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, Vortkamp A. Development. 2001;128:4523–4534. PubMed
Köstner M, Hauser H. Eur J Biochem. 1999;260:137–144. PubMed
Watanabe K, Saito K, Kinjo M, Matsuda T, Tamura M, Kon S, Miyazaki T, Uede T. Biochem Biophys Res Commun. 2004;324:1264–1273. PubMed
Herrmann A, Sommer U, Pranada AL, Giese B, Haan S, Becker W, Heinrich PC, Müller-Neven G. J Cell Sci. 2003;116:339–349. PubMed
Aikawa T, Segre GV, Lee K. J Biol Chem. 2001;276:29347–29352. PubMed
Rozenblatt-Rosen O, Mosonego-Ornan E, Sadot E, Madar-Shapiro L, Sheinin Y, Ginsberg D, Yayon A. J Cell Sci. 2002;115:553–562. PubMed
Dailey L, Laplantine E, Priore R, Basilico C. J Cell Biol. 2003;161:1053–1066. PubMed PMC
Raucci A, Laplantine E, Mansukhani A, Basilico C. J Biol Chem. 2004;279:1747–1756. PubMed
Krejci P, Masri B, Fontaine V, Mekikian PB, Weis M, Prats H, Wilcox WR. J Cell Sci. 2005;118:5089–5100. PubMed
Priore R, Dailey L, Basilico C. J Cell Physiol. 2006;207:800–808. PubMed
Ben-Zvi T, Yayon A, Gertler A, Monsonego-Ornan E. J Cell Sci. 2005;119:380–387. PubMed
Aaronson DS, Horvath CM. Science. 2002;269:1653–1655. PubMed
Decker T, Kovarik P. Oncogene. 2000;19:2628–2637. PubMed
Yoshimura A, Naka T, Kubo M. Nat Rev Immunol. 2007;7:454–464. PubMed
Yamamoto K, Yamaguchi M, Miyasaka N, Miura O. Biochem Biophys Res Commun. 2003;310:1188–1193. PubMed
Qing Y, Costa-Pereira AP, Watling D, Stark GR. J Biol Chem. 2005;280:1849–1853. PubMed
Dagoneau N, Scheffer D, Huber C, Al-Gazali LI, Di Rocco M, Godard A, Martinovic J, Raas-Rothschild A, Sigaudy S, Unger S, et al. Am J Hum Genet. 2004;74:298–305. PubMed PMC
Sims NA, Jenkins BJ, Quinn JM, Nakamura A, Glatt M, Gillespie MT, Ernst M, Martin TJ. J Clin Invest. 2004;113:379–389. PubMed PMC
A registry of achondroplasia: a 6-year experience from the Czechia and Slovak Republic