A registry of achondroplasia: a 6-year experience from the Czechia and Slovak Republic

. 2022 Jun 16 ; 17 (1) : 229. [epub] 20220616

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35710503
Odkazy

PubMed 35710503
PubMed Central PMC9205086
DOI 10.1186/s13023-022-02374-x
PII: 10.1186/s13023-022-02374-x
Knihovny.cz E-zdroje

BACKGROUND: Achondroplasia (ACH) is one of the most prevalent genetic forms of short-limbed skeletal dysplasia, caused by gain-of-function mutations in the receptor tyrosine kinase FGFR3. In August 2021, the C-type natriuretic peptide (CNP) analog vosoritide was approved for the treatment of ACH. A total of six other inhibitors of FGFR3 signaling are currently undergoing clinical evaluation for ACH. This progress creates an opportunity for children with ACH, who may gain early access to the treatment by entering clinical trials before the closure of their epiphyseal growth plates and cessation of growth. Pathophysiology associated with the ACH, however, demands a long observational period before admission to the interventional trial. Public patient registries can facilitate the process by identification of patients suitable for treatment and collecting the data necessary for the trial entry. RESULTS: In 2015, we established the prospective ACH registry in the Czechia and the Slovak Republic ( http://www.achondroplasia-registry.cz ). Patient data is collected through pediatric practitioners and other relevant specialists. After informed consent is given, the data is entered to the online TrialDB system and stored in the Oracle 9i database. The initial cohort included 51 ACH children (average age 8.5 years, range 3 months to 14 years). The frequency of selected neurological, orthopedic, or ORL diagnoses is also recorded. In 2015-2021, a total of 89 measurements of heights, weights, and other parameters were collected. The individual average growth rate was calculated and showed values without exception in the lower decile for the appropriate age. Evidence of paternal age effect was found, with 58.7% of ACH fathers older than the general average paternal age and 43.5% of fathers older by two or more years. One ACH patient had orthopedic limb extension and one patient received growth hormone therapy. Low blood pressure or renal impairment were not found in any patient. CONCLUSION: The registry collected the clinical information of 51 pediatric ACH patients during its 6 years of existence, corresponding to ~ 60% of ACH patients living in the Czechia and Slovak Republic. The registry continues to collect ACH patient data with annual frequency to monitor the growth and other parameters in preparation for future therapy.

Zobrazit více v PubMed

Gardner RJ. A new estimate of the achondroplasia mutation rate. Clin Genet. 1977;11(1):31–38. doi: 10.1111/j.1399-0004.1977.tb01274.x. PubMed DOI

Oberklaid F, Danks DM, Jensen F, Stace L, Rosshandler S. Achondroplasia and hypochondroplasia. Comments on frequency, mutation rate, and radiological features in skull and spine. J Med Genet. 1979;16(2):140–146. doi: 10.1136/jmg.16.2.140. PubMed DOI PMC

Orioli IM, Castilla EE, Barbosa-Neto JG. The birth prevalence rates for the skeletal dysplasias. J Med Genet. 1986;23(4):328–332. doi: 10.1136/jmg.23.4.328. PubMed DOI PMC

Waller DK, Correa A, Vo TM, Wang Y, Hobbs C, Langlois PH, et al. The population-based prevalence of achondroplasia and thanatophoric dysplasia in selected regions of the US. Am J Med Genet A. 2008;146A(18):2385–2389. doi: 10.1002/ajmg.a.32485. PubMed DOI PMC

Itoh N, Ornitz DM. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem (Tokyo) 2011;149(2):121–130. doi: 10.1093/jb/mvq121. PubMed DOI PMC

Krakow D, Rimoin DL. The skeletal dysplasias. Genet Med. 2010;12(6):327–341. doi: 10.1097/GIM.0b013e3181daae9b. PubMed DOI

Xue Y, Sun A, Mekikian PB, Martin J, Rimoin DL, Lachman RS, et al. FGFR3 mutation frequency in 324 cases from the International Skeletal Dysplasia Registry. Mol Genet Genomic Med. 2014;2(6):497–503. doi: 10.1002/mgg3.96. PubMed DOI PMC

He L, Horton W, Hristova K. Physical basis behind achondroplasia, the most common form of human dwarfism. J Biol Chem. 2010;285(39):30103–30114. doi: 10.1074/jbc.M109.094086. PubMed DOI PMC

Peters K, Ornitz D, Werner S, Williams L. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev Biol. 1993;155(2):423–430. doi: 10.1006/dbio.1993.1040. PubMed DOI

Li C, Chen L, Iwata T, Kitagawa M, Fu XY, Deng CX. A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum Mol Genet. 1999;8(1):35–44. doi: 10.1093/hmg/8.1.35. PubMed DOI

Krejci P, Prochazkova J, Bryja V, Jelinkova P, Pejchalova K, Kozubik A, et al. Fibroblast growth factor inhibits interferon γ-STAT1 and interleukin 6-STAT3 signaling in chondrocytes. Cell Signal. 2009;21(1):151–160. doi: 10.1016/j.cellsig.2008.10.006. PubMed DOI PMC

Qi H, Jin M, Duan Y, Du X, Zhang Y, Ren F, et al. FGFR3 induces degradation of BMP type I receptor to regulate skeletal development. Biochim Biophys Acta. 2014;1843(7):1237–1247. doi: 10.1016/j.bbamcr.2014.03.011. PubMed DOI PMC

Buchtova M, Oralova V, Aklian A, Masek J, Vesela I, Ouyang Z, et al. Fibroblast growth factor and canonical WNT/β-catenin signaling cooperate in suppression of chondrocyte differentiation in experimental models of FGFR signaling in cartilage. Biochim Biophys Acta. 2015;1852(5):839–850. doi: 10.1016/j.bbadis.2014.12.020. PubMed DOI

Foldynova-Trantirkova S, Wilcox WR, Krejci P. Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias. Hum Mutat. 2012;33(1):29–41. doi: 10.1002/humu.21636. PubMed DOI PMC

Ornitz DM, Legeai-Mallet L. Achondroplasia: development, pathogenesis, and therapy. Dev Dyn Off Publ Am Assoc Anat. 2017;246(4):291–309. PubMed PMC

Wynn J, King TM, Gambello MJ, Waller DK, Hecht JT. Mortality in achondroplasia study: A 42-year follow-up. Am J Med Genet A. 2007;143A(21):2502–2511. doi: 10.1002/ajmg.a.31919. PubMed DOI

Hecht JT, Francomano CA, Horton WA, Annegers JF. Mortality in achondroplasia. Am J Hum Genet. 1987;41(3):454–464. PubMed PMC

Srikumaran U, Woodard EJ, Leet AI, Rigamonti D, Sponseller PD, Ain MC. Pedicle and spinal canal parameters of the lower thoracic and lumbar vertebrae in the achondroplast population. Spine. 2007;32(22):2423–2431. doi: 10.1097/BRS.0b013e3181574286. PubMed DOI

Horton WA. Dwarfism–an overview Recent developments in diagnostic and genetic concepts. J Kans Med Soc. 1978;79(2):58–61. PubMed

Horton WA, Hall JG, Hecht JT. Achondroplasia. Lancet Lond Engl. 2007;370(9582):162–172. doi: 10.1016/S0140-6736(07)61090-3. PubMed DOI

Wright MJ, Irving MD. Clinical management of achondroplasia. Arch Dis Child. 2012;97(2):129–134. doi: 10.1136/adc.2010.189092. PubMed DOI

Waters KA, Everett F, Sillence DO, Fagan ER, Sullivan CE. Treatment of obstructive sleep apnea in achondroplasia: evaluation of sleep, breathing, and somatosensory-evoked potentials. Am J Med Genet. 1995;59(4):460–466. doi: 10.1002/ajmg.1320590412. PubMed DOI

Zaffanello M, Cantalupo G, Piacentini G, Gasperi E, Nosetti L, Cavarzere P, et al. Sleep disordered breathing in children with achondroplasia. World J Pediatr. 2017;13(1):8–14. doi: 10.1007/s12519-016-0051-9. PubMed DOI

Unger S, Bonafé L, Gouze E. Current care and investigational therapies in achondroplasia. Curr Osteoporos Rep. 2017;15(2):53–60. doi: 10.1007/s11914-017-0347-2. PubMed DOI PMC

Mador MJ, Tobin MJ. Apneustic breathing. A characteristic feature of brainstem compression in achondroplasia? Chest. 1990;97(4):877–883. doi: 10.1378/chest.97.4.877. PubMed DOI

Onodera K, Niikuni N, Chigono T, Nakajima I, Sakata H, Motizuki H. Sleep disordered breathing in children with achondroplasia. Part 2. Relationship with craniofacial and airway morphology. Int J Pediatr Otorhinolaryngol. 2006;70(3):453–461. doi: 10.1016/j.ijporl.2005.07.016. PubMed DOI

Smid CJ, Legare JM, Modaff P, Pauli RM. Apparently benign craniocervical signs in achondroplasia: ‘neurologic leftovers’ identified through a retrospective dataset. Orphanet J Rare Dis. 2020;15(1):301. doi: 10.1186/s13023-020-01584-5. PubMed DOI PMC

Shim Y, Ko JM, Cho TJ, Kim SK, Phi JH. Predictors of cervical myelopathy and hydrocephalus in young children with achondroplasia. Orphanet J Rare Dis. 2021;16(1):81. doi: 10.1186/s13023-021-01725-4. PubMed DOI PMC

Hecht JT, Nelson FW, Butler IJ, Horton WA, Scott CI, Wassman ER, et al. Computerized tomography of the foramen magnum: achondroplastic values compared to normal standards. Am J Med Genet. 1985;20(2):355–360. doi: 10.1002/ajmg.1320200219. PubMed DOI

Pauli RM, Horton VK, Glinski LP, Reiser CA. Prospective assessment of risks for cervicomedullary-junction compression in infants with achondroplasia. Am J Hum Genet. 1995;56(3):732–744. PubMed PMC

Saint-Laurent C, Garde-Etayo L, Gouze E. Obesity in achondroplasia patients: from evidence to medical monitoring. Orphanet J Rare Dis. 2019;14(1):253. doi: 10.1186/s13023-019-1247-6. PubMed DOI PMC

Hashmi SS, Gamble C, Hoover-Fong J, Alade AY, Pauli RM, Modaff P, et al. Multicenter study of mortality in achondroplasia. Am J Med Genet A. 2018;176(11):2359–2354. doi: 10.1002/ajmg.a.40528. PubMed DOI

Ireland PJ, Johnson S, Donaghey S, Johnston L, McGill J, Zankl A, et al. Developmental milestones in infants and young Australasian children with achondroplasia. J Dev Behav Pediatr. 2010;31(1):41–47. doi: 10.1097/DBP.0b013e3181c72052. PubMed DOI

Pejchalova K, Krejci P, Wilcox WR. C-natriuretic peptide: an important regulator of cartilage. Mol Genet Metab. 2007;92(3):210–215. doi: 10.1016/j.ymgme.2007.06.014. PubMed DOI

Savarirayan R, Irving M, Bacino CA, Bostwick B, Charrow J, Cormier-Daire V, et al. C-type natriuretic peptide analogue therapy in children with achondroplasia. N Engl J Med. 2019;381(1):25–35. doi: 10.1056/NEJMoa1813446. PubMed DOI

Savarirayan R, Tofts L, Irving M, Wilcox W, Bacino CA, Hoover-Fong J, et al. Once-daily, subcutaneous vosoritide therapy in children with achondroplasia: a randomised, double-blind, phase 3, placebo-controlled, multicentre trial. Lancet Lond Engl. 2020;396(10252):684–692. doi: 10.1016/S0140-6736(20)31541-5. PubMed DOI

Fafilek B, Bosakova M, Krejci P. Expanding horizons of achondroplasia treatment: current options and future developments. Osteoarthritis Cartil. 2021;S1063–4584(21):00980–988. PubMed

Cowie MR, Blomster JI, Curtis LH, Duclaux S, Ford I, Fritz F, et al. Electronic health records to facilitate clinical research. Clin Res Cardiol. 2017;106(1):1–9. doi: 10.1007/s00392-016-1025-6. PubMed DOI PMC

Kodra Y, Weinbach J, Posada-de-la-Paz M, Coi A, Lemonnier SL, van Enckevort D, et al. Recommendations for improving the quality of rare disease registries. Int J Environ Res Public Health. 2018;15(8):1644. doi: 10.3390/ijerph15081644. PubMed DOI PMC

Baujat G, Legeai-Mallet L, Finidori G, Cormier-Daire V, Le Merrer M. Achondroplasia. Best Pract Res Clin Rheumatol. 2008;22(1):3–18. doi: 10.1016/j.berh.2007.12.008. PubMed DOI

Gollust SE, Apse K, Fuller BP, Miller PS, Biesecker BB. Community involvement in developing policies for genetic testing: assessing the interests and experiences of individuals affected by genetic conditions. Am J Public Health. 2005;95(1):35–41. doi: 10.2105/AJPH.2003.025734. PubMed DOI PMC

Goriely A, Wilkie AOM. Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am J Hum Genet. 2012;90(2):175–200. doi: 10.1016/j.ajhg.2011.12.017. PubMed DOI PMC

Tanner JM, Davies PS. Clinical longitudinal standards for height and height velocity for North American children. J Pediatr. 1985;107(3):317–329. doi: 10.1016/S0022-3476(85)80501-1. PubMed DOI

Liese JG, Silfverdal SA, Giaquinto C, Carmona A, Larcombe JH, Garcia-Sicilian J, et al. Incidence and clinical presentation of acute otitis media in children aged <6 years in European medical practices. Epidemiol Infect. 2014;142(8):1778–88. PubMed PMC

Hunter AG, Bankier A, Rogers JG, Sillence D, Scott CI. Medical complications of achondroplasia: a multicentre patient review. J Med Genet. 1998;35(9):705–712. doi: 10.1136/jmg.35.9.705. PubMed DOI PMC

Legeai-Mallet L. C-type natriuretic peptide analog as therapy for achondroplasia. Endocr Dev. 2016;30:98–105. doi: 10.1159/000439334. PubMed DOI

Igaki T, Itoh H, Suga S, Hama N, Ogawa Y, Komatsu Y, et al. C-type natriuretic peptide in chronic renal failure and its action in humans. Kidney Int Suppl. 1996;55:S144–S147. PubMed

Caniffi C, Prentki Santos E, Cerniello FM, Tomat AL, González Maglio D, Toblli JE, et al. Cardiac morphological and functional changes induced by C-type natriuretic peptide are different in normotensive and spontaneously hypertensive rats. J Hypertens. 2020;38(11):2305–2317. doi: 10.1097/HJH.0000000000002570. PubMed DOI

Witt S, Kolb B, Bloemeke J, Mohnike K, Bullinger M, Quitmann J. Quality of life of children with achondroplasia and their parents - a German cross-sectional study. Orphanet J Rare Dis. 2019;14(1):194. doi: 10.1186/s13023-019-1171-9. PubMed DOI PMC

Zemková D, Krásnicanová H, Marik I. Prediction of the growth in patients with achondroplasia. Arztl Jugendkd. 1991;82(2):237–241. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace